设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
楼主: 晨枫
打印 上一主题 下一主题

[科研心得] 问题:如何从数据里估算普瓦松分布的均值?

[复制链接]
  • TA的每日心情
    慵懒
    2020-7-26 05:11
  • 签到天数: 1017 天

    [LV.10]大乘

    41#
    发表于 2019-2-4 14:40:54 | 只看该作者
    本帖最后由 Dracula 于 2019-2-4 14:45 编辑
    : p( j! n: i6 V" D$ l! Y. J+ V' g
    晨枫 发表于 2019-2-4 14:34
    * a8 c8 V8 v& z# i3 N8 j6 ^, H1 J有了 μ和 σ想计算峰值就容易了,我的问题是如何从histogram计算log normal的 μ和 σ。看来这也是个办 ...
    & Q, Y' D3 m0 C9 I7 s
    " v7 {& H# v* Z% N4 Q/ G
    怎么计算分布参数的问题,你的题目我没看明白,不好说,但是正态分布你会做,log-normal 没有任何本质区别,一样的办法,就是数学公式不一样就是的了。应该不难。
    + K2 P2 {) a6 p
    8 k+ s! e6 r6 u5 h  a
    7 L3 p2 u3 Q* O; Z4 V5 L6 _, g(标准的统计学问题,估计log-normal分布参数也是有公式的,你到网上去查个公式就是的了。)( I% u$ s0 b6 M$ O0 i3 X6 j. O& w8 X% t

    6 S- ~; p- {# p5 K
    回复 支持 反对

    使用道具 举报

  • TA的每日心情

    2025-7-28 23:17
  • 签到天数: 1935 天

    [LV.Master]无

    42#
    发表于 2019-2-4 14:56:30 | 只看该作者
    本帖最后由 数值分析 于 2019-2-4 15:05 编辑 : v5 F6 h- z/ e! I6 b
    , W- y1 W2 V6 A/ w# i* ]
    你应该不用拟合分布函数吧?你只想知道峰值的位置,然后你又知道(或者说你假设)是泊松分布,所以峰值的位置一定是 x=lambda,(这里lambda不一定是整数),那么剩下的就是从样本里推断lambda了,这是个典型的估计啊. 对于泊松分布,lambda正好是期望,所以一般来用样本均值估计期望。
    2 B4 U, B6 J7 |( s# G你给每一个板子从最左边顺序编个号,i=0,1,2,3。。。,然后设每块板子i的对应温度样本值xi,,然后计算sum(i*xi)/n [即累加所有的(板号乘以对应温度)然后除以板数】 (因为你的分布曲线可能和泊松分布差一个常数,所以最后结果得scale一下)不就可以了么?当然,这得假设你的histogram真的得长得像泊松分布分布。
    7 U. F9 z, C7 b/ x6 N; q- @; t

    点评

    给力: 5.0
    给力: 5
      发表于 2019-2-4 22:28
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    2018-4-14 22:10
  • 签到天数: 354 天

    [LV.8]合体

    43#
    发表于 2019-2-4 17:40:34 | 只看该作者
    石化行业的DCS应该Honeywell多吧,这年头不支持OPC的很少了。# _9 m7 x$ `$ f
    数据送到电脑上算,算了以后在送回去。
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    2018-4-14 22:10
  • 签到天数: 354 天

    [LV.8]合体

    44#
    发表于 2019-2-4 18:02:11 | 只看该作者
    晨枫 发表于 2019-2-4 13:33
    6 I1 m8 R# x* o& u# G8 N0 M7 z唉,MATLAB里有histfit命令,干的正是我要的,可惜没法“偷”过来用啊
    / G- ?0 u% i  M% y* b
    我记得MATLAB支持OPC
    回复 支持 反对

    使用道具 举报

  • TA的每日心情

    2025-7-28 23:17
  • 签到天数: 1935 天

    [LV.Master]无

    45#
    发表于 2019-2-4 18:34:42 | 只看该作者
    数值分析 发表于 2019-2-4 14:56
    $ @6 E9 \5 A0 V+ l% b6 W- C你应该不用拟合分布函数吧?你只想知道峰值的位置,然后你又知道(或者说你假设)是泊松分布,所以峰值的位 ...
    / S" T( x  R4 w0 E
    多解释一句scale那块儿。因为泊松分布曲线下面的面积是1,而你的histogram显然不是,所以你的histogram和泊松分布差一个常数。你求出来的lambda的估计要用你histogram的面积归一一下。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    46#
    发表于 2019-2-4 20:39:47 | 只看该作者
    可以试试GMM Guassian Mixed Model去拟合统计分布
    3 A2 E# e3 l$ i# ]2 y1 h
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    慵懒
    2019-10-12 04:17
  • 签到天数: 1014 天

    [LV.10]大乘

    47#
    发表于 2019-2-4 21:47:53 | 只看该作者
    晨枫 发表于 2019-2-4 12:30
    5 ~3 J: E& C* Z3 g/ Z' ~: H5 L" v没人理我?都在忙着吃年夜饭?
    5 }+ Q' [8 g, [2 D0 {7 I' u
    + B, C4 [: R5 O4 ?@煮酒正熟 @holycow @tanis @关中农民 @老马丁 @Dracula  ...
    $ _  X4 y# N7 c) F2 A
    晨大,这得数学博士才中啊,额完全外行了,看见这个只能联想到面条
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    慵懒
    2020-7-26 05:11
  • 签到天数: 1017 天

    [LV.10]大乘

    48#
    发表于 2019-2-4 22:07:12 | 只看该作者
    我又看了一下你这个题,终于看明白了。你的问题是一条曲线类似于统计学上Poisson或者log-normal的density function的形状,在这条曲线上你已知坐标是x=1,x=2,... x=20,这20个点的值,你想要知道的是曲线的最大值是在那个点上。不知道我这个理解对不对。6 U) k6 g2 W/ q
    3 D) h! K6 D( ~5 d- U
    如果我的理解是对的话,这不是个统计学问题。你画的那个也不是histogram,因为histogram的纵坐标是在每个值观测到的sample size,而你的图的纵坐标是温度,不是一回事。因此统计学的书你不用查,查了也没用。解决这个问题最显而易见的办法就是最小二乘法,但应该是没有分析解,你不能用。我好奇的是如果假设假设曲线的形状类似于正态分布的density function,你们是怎么解的,使用最小二乘法应该是一样没有分析解。如果解正态分布有特别的巧妙的办法的话,或许稍微修改一下就可以用到log-normal的情况。
    $ U' ~% t- `, o0 l( ^; \9 ^- Y) e* Z. o5 e* {( ~
    1 I# {7 c( I2 w4 h$ Z5 C! w

    7 G( m* w; w- ?$ L' x" G5 K7 h2 h( s. m5 l
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    49#
     楼主| 发表于 2019-2-4 22:17:54 | 只看该作者
    数值分析 发表于 2019-2-4 00:56/ h) ^; f$ s; D- \8 [  Q, i4 [/ z: J
    你应该不用拟合分布函数吧?你只想知道峰值的位置,然后你又知道(或者说你假设)是泊松分布,所以峰值的位 ...
    % \" ]& N6 d3 e( x4 ]. V5 F
    这个办法好!回头试一下!我是打算用这个办法当正态分布处理的,没想到也可以相当直接地套到泊松分布。可能这就解决我的问题了!多谢!
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    50#
     楼主| 发表于 2019-2-4 22:20:16 | 只看该作者
    Dracula 发表于 2019-2-4 08:07
    , V5 {7 [: b% _% b8 y7 f我又看了一下你这个题,终于看明白了。你的问题是一条曲线类似于统计学上Poisson或者log-normal的density f ...
    ; v2 y. e1 w4 Y5 N. h/ [$ M( }
    对,就是这个意思。我也提到了,不是统计问题,只是“形似”,想看看统计里有没有现成的办法。楼上42楼就是我一开始想到的办法,但只想到那能用于正态分布,正想改造为对数正态,没想到可以直接套泊松。这就好了。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    51#
     楼主| 发表于 2019-2-4 22:21:02 | 只看该作者
    小刀 发表于 2019-2-4 06:39
    5 M- I( x7 H: b+ Q7 f' `" }2 I可以试试GMM Guassian Mixed Model去拟合统计分布

    " k" a; ]% T6 U! j- Y+ ?这个还是太复杂了。用在控制回路里,必须KISS。但还是要谢一个!
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    52#
     楼主| 发表于 2019-2-4 22:23:42 | 只看该作者
    视觉错误 发表于 2019-2-4 03:40
    " \8 W) M* g! z# c- t" A石化行业的DCS应该Honeywell多吧,这年头不支持OPC的很少了。
    - y% B5 K! P7 q/ B% }: h0 j数据送到电脑上算,算了以后在送回去。 ...

    , C7 c# K! i: E" |我们有OPC,问题是可靠性。用以下层基本的回路控制一般不用OPC,当机或者“交通堵塞”的后果太大。这是惯例。只有上层的APC可以用OPC,当了就自动shed到基本控制。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    53#
     楼主| 发表于 2019-2-4 22:25:29 | 只看该作者
    视觉错误 发表于 2019-2-4 04:02# k8 g3 Y  w9 G7 f6 ?- Y4 H
    我记得MATLAB支持OPC
    $ X& d5 P& J$ \% L
    是的,我以前还试过用MATLAB C通过OPC与DCS相连,在技术上这是做得到的,但可靠性达不到要求。OPC是不作为可靠的控制信息通道使用的,只能传送点监视数据或者一般数据采集。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    54#
     楼主| 发表于 2019-2-4 22:26:25 | 只看该作者
    gnomegordon 发表于 2019-2-4 00:39
    5 z' V8 P% X/ F  g/ m& W8 q- \; oapologize. 网上搜code太麻烦,还得验证。最好有本书可以翻翻 或者搜library

    : Q( b2 r$ o& d. m2 {; P5 x0 e7 ]再次感谢。楼下45楼有好办法,我先试试那个办法,比kernel density简单多了。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    55#
     楼主| 发表于 2019-2-4 22:26:58 | 只看该作者
    松叶牡丹 发表于 2019-2-4 00:36
    $ ~, c2 `* l0 `9 G8 H7 Z# v晨大辛苦,您太客气了。祝新年快乐!
    6 e: Q9 }0 k3 ^7 x6 q
    松叶MM新年快乐!
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    慵懒
    2020-1-3 00:51
  • 签到天数: 71 天

    [LV.6]出窍

    56#
    发表于 2019-2-4 22:31:30 | 只看该作者
    晨枫 发表于 2019-2-3 23:46
    % I/ W( T  l0 a1 V' c6 H是我描述得不好。再来一遍。) O2 x1 w2 ~! a$ Z" `

    & @% I- J5 a2 O' U2 R我有一条样子像泊松分布的温度分布曲线,但只有几个稀疏的点,想用类似泊松 ...
    1 x% q7 h4 |  b6 @9 L& M3 T
    就是正态分布然后在x轴上平移么? 类似Y=(X-a)^2.
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    慵懒
    2020-7-26 05:11
  • 签到天数: 1017 天

    [LV.10]大乘

    57#
    发表于 2019-2-4 22:33:46 | 只看该作者
    晨枫 发表于 2019-2-4 22:20
    2 a# Q9 B/ I0 n4 @& V对,就是这个意思。我也提到了,不是统计问题,只是“形似”,想看看统计里有没有现成的办法。楼上42楼就 ...

    / |' ?" q0 s% F1 k! _' w8 {5 h42楼那个办法不对。那是把这当成个统计学的问题来处理,但这不是个统计学问题。你的纵坐标是温度,不是sample size,不能这么用。最明显的是,那个办法解出来的量纲是温度,而你想要的应该是具体是那块板,因此那个解和你想要的没什么关系。: h& r  n" a# |0 ~! o1 k! @- E

    ( e7 ?2 I# Q% k/ C  z
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    58#
     楼主| 发表于 2019-2-4 22:35:21 | 只看该作者
    数值分析 发表于 2019-2-4 04:34! c( e/ ]0 c" }* l! \% @
    多解释一句scale那块儿。因为泊松分布曲线下面的面积是1,而你的histogram显然不是,所以你的histogram和 ...
    2 l$ z, f2 Y1 W
    多谢!记住了!% ?& E: E( M; s" G: J9 e* w
    6 m8 I6 r( F+ |% j
    其实你说的办法我已经试过。我把正态分布一边的尾巴砍掉,至少外观上接近泊松或者对数正态。只要有峰在,估计出来均值就还不错,越对称越准确,就有点窃喜。但对道理不摸底,不敢放手用。除非在数学上站得住脚,否则在线的时候没人看着,给我乱估一个就完蛋了。现在看来,道理就是你说的,这个办法不只适用于正态分布。曲线只有只有半边的话,就有点悬,这个可以理解。一般到不了这个情况,程序里简单判别一下也不难,另作处理。
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    慵懒
    2020-1-3 00:51
  • 签到天数: 71 天

    [LV.6]出窍

    59#
    发表于 2019-2-4 22:37:37 | 只看该作者
    晨枫 发表于 2019-2-4 00:03- a% w- ]7 u/ y/ A# {+ E: p
    咳咳,这个其实不是统计问题,是从有限的温度测量估计温度分布曲线的问题。吸收塔一共20块塔板,每块塔板 ...

    $ @) I6 O0 c( L3 I1. 20个数据点在分布上有没有规律。比如两头低中间高。
    * }" [( M" I$ J4 m) f: ]2。规律稳定么?
    6 l% T6 V( M8 s; _7 s) {5 w3。可不可以简化成20个点里找最大值。
    3 a1 b$ A( Q3 ^4。峰值如果不在采样点(塔板),而在塔板之间,只能按相邻塔板的问题计算温度曲线斜率,然后插值,而其要比较峰值塔板两侧的斜率,取较大的。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    60#
     楼主| 发表于 2019-2-4 22:38:00 | 只看该作者
    雨楼 发表于 2019-2-4 08:31# I9 n% G5 _: @* p. Y6 h
    就是正态分布然后在x轴上平移么? 类似Y=(X-a)^2.
    * M4 D# @; {% F+ i+ c' r9 k5 u
    差不多。我开始也想过用抛物线然后平移,但平移量本身也要最小二乘出来。可能还是可以线性化然后用简单的最小二乘。我来试试看。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-8-24 00:40 , Processed in 0.047809 second(s), 21 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表