设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
楼主: 晨枫
打印 上一主题 下一主题

[科研心得] 问题:如何从数据里估算普瓦松分布的均值?

[复制链接]
  • TA的每日心情
    开心
    5 天前
  • 签到天数: 1941 天

    [LV.Master]无

    101#
    发表于 2019-2-5 08:47:33 | 只看该作者
    本帖最后由 数值分析 于 2019-2-5 09:07 编辑
    + V2 ~/ ^& g7 U4 [0 }
    holycow 发表于 2019-2-5 02:42- [. Q5 V# V. K6 a4 C$ ^& r" V
    1. 极值出在哪里,只要估计出lambda即可
    7 G& z8 e" _2 T( H2. Lambda的估计需要依赖于归一
    $ r8 E% d# |+ t9 y. \! @# v3. 归一的分母是可以主观确定的  ...

    / Q7 j/ O! B/ J9 X) ~. r( D9 r, P& ^7 }
    如果是对称的单峰分布的话,期望存在的时候,期望和峰度Kurtosis(也就是你说的陡峭程度)无关,一定在众数Mode,即峰值的地方.唯一的例外是积分不收敛,即期望不存在(比如柯西分布,这时候没有重心).对于不对称的单峰分布,唯一能影响期望的是偏度Skewness.6 y7 D# ~3 A: u* u. ~/ }
    # b/ M6 i0 K7 d% {* J, h
    这很直观,您再想想?

    点评

    手误了.多谢.改过来了.  发表于 2019-2-5 09:07
    后面应该是“不对称的单峰分布”吧?对称就没有skewness了。  发表于 2019-2-5 09:04
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    5 天前
  • 签到天数: 1941 天

    [LV.Master]无

    102#
    发表于 2019-2-5 08:49:26 | 只看该作者
    tanis 发表于 2019-2-5 03:266 _" V1 w1 z" c' p  r
    冒昧的问一句,你搞过竞赛么~ - N  }5 N5 Q% R3 i
    - ?3 T5 K5 k2 @3 Z" k
    思维方式挺像的~
    1 ?% }* D- `9 C5 ?
    我希望我搞过.可以当年没赶上机会.
    5 I6 I/ C" Z) F
    ' c" u# C0 \4 K1 f不谦虚一下啊,我一直觉得我要是搞竞赛的话能有点小成绩的...呵呵...
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    5 天前
  • 签到天数: 1941 天

    [LV.Master]无

    103#
    发表于 2019-2-5 08:54:08 | 只看该作者
    Dracula 发表于 2019-2-5 03:43) ~" u  g, }, e4 k+ G
    问题就是这个0度在哪儿你并不知道。至于曲线下的面积必须是1这一点,只要各个点同乘或同除一个数就都可以 ...

    6 i5 I7 m5 m) J! m嗯...这个问题其实有点像"人择原理",不好表达清楚.
    & f1 `) }/ p: C这一切讨论的开始都是晨司机觉得这个曲线像泊送分布曲线.只有这个"0度"的位置合适,温度曲线才长得像泊松分布.如果你上下平移一下,他就不像泊送分布了.我不知道我说明白了没有...
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    奋斗
    6 天前
  • 签到天数: 2106 天

    [LV.Master]无

    104#
    发表于 2019-2-5 08:56:55 | 只看该作者
    数值分析 发表于 2019-2-4 16:47* k0 A$ D5 K: j$ B1 h  W
    如果是单峰分布的话,期望存在的话,期望和峰度Kurtosis(也就是你说的陡峭程度)无关,一定在峰值的地方.唯一 ...

    - I) e% {' F9 h+ L0 }  g4 @你是对的,有影响的是分布的skewness. 所以归根结底还是晨司机在零度原点图上扫了一眼,觉得看上去像是泊松分布
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    5 天前
  • 签到天数: 1941 天

    [LV.Master]无

    105#
    发表于 2019-2-5 09:01:03 | 只看该作者
    holycow 发表于 2019-2-5 08:56
    : Z5 P6 c- Y7 S+ C* T* i: D你是对的,有影响的是分布的skewness. 所以归根结底还是晨司机在零度原点图上扫了一眼,觉得看上去像是泊 ...

    9 r4 @! X. m8 O" _' c对,我们可以管这个叫"晨择原理".这是这个讨论的出发点.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    106#
     楼主| 发表于 2019-2-5 11:33:06 | 只看该作者
    数值分析 发表于 2019-2-4 19:01
    9 K' N$ c' B9 Z$ Q4 z对,我们可以管这个叫"晨择原理".这是这个讨论的出发点.

    0 ^  }/ T/ b8 c& |
    " J1 ?4 j' b) e就像那个“哥德巴赫猜想”一样……
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    107#
    发表于 2019-2-12 11:55:43 | 只看该作者
    春节一直没来。现在来看到问题,这个问题是不是,prob(X=?|T=max(T))?实话实说,我没看太懂问题,我感觉不是统计问题,而是数值拟合问题。如果已经找到解决方案,就不用专门答复我啦
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    108#
     楼主| 发表于 2019-2-12 13:45:31 | 只看该作者
    老马丁 发表于 2019-2-11 21:55
    + C. E& p+ |; I1 d8 X春节一直没来。现在来看到问题,这个问题是不是,prob(X=?|T=max(T))?实话实说,我没看太懂问题,我感觉不 ...
    9 p: A- }: ?8 w. x
      O8 y' }. Z5 m! a- M4 }5 F' X
    是的,已经解决。这个确实不是统计问题,是数值积分和重心估计问题。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-9-17 16:28 , Processed in 0.040542 second(s), 21 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表