|
|
本帖最后由 Menuett 于 2013-12-22 15:59 编辑 * h" D& m* }7 j K! o
煮酒正熟 发表于 2013-12-20 12:05 5 o5 F3 G9 s: R" O) L) L& g
基本可以说是显著的。总的来说,在商界做统计学分析,95%信心水平是用得最多的,当95%上不显著时,都会去 ...
% `+ z8 h! d8 v" u2 }
0 L0 x6 [' c+ r3 c$ _这个其实是一种binomial response,应该用Contigency Table或者Logisitic Regression(In case there are cofactors)来做。只记比率丢弃了Number of trial的信息(6841和1217个客户)。
; W7 k8 @& C; K! q! ^: X! E0 B) `" j8 H: x: z/ F
结果p=0.5731。 远远不显著。要在alpha level 0.05的水平上检验出76.42%和75.62%的区别,即使实验组和对照组各自样本大小相同,各自尚需44735个样本(At power level 80%)。see: Statistical Methods for Rates and Proportions by Joseph L. Fleiss (1981)! e! {; q k g3 P3 s- R
! z1 @4 n) k, ~( V5 p, s
R example:0 r/ T0 z9 }1 b) t' N6 }& ?+ W& x
+ R4 i3 L3 \2 }/ n
> M<-as.table(rbind(c(1668,5173),c(287,930)))
" h% H9 `! Q0 D% \> chisq.test(M)5 s' y8 Y2 n7 ]1 k9 s) N5 P/ c- m
/ e! l; N! `( G6 X3 a0 ^9 y Pearson's Chi-squared test with Yates' continuity correction" k- h7 e8 _, @" N( t7 }$ o9 L
& B& {+ e8 P% Y9 Y
data: M
" C6 ~& k$ o, RX-squared = 0.3175, df = 1, p-value = 0.57314 y9 N$ e! O) m2 i: X* t1 h
5 @% N! g' i7 I7 d* W& f7 oPython example:+ R7 p8 ^" N; x& g% D3 _
O) {1 s/ y5 h. l
>>> from scipy import stats
/ R, L- Y; s- f5 x$ t5 m>>> stats.chi2_contingency([[6841-5173,5173],[1217-930,930]])6 U& F! S- N! v% I) K& z
(0.31748297614660292, 0.57312422493552839, 1, array([[ 1659.73628692, 5181.26371308],
/ i \2 }# l5 E: W: r [ 295.26371308, 921.73628692]])) |
|