|
本帖最后由 Menuett 于 2013-12-22 15:59 编辑 & @( n( A! x2 K
煮酒正熟 发表于 2013-12-20 12:05 ![]()
; o' ~' p5 q- J. {7 ^( I基本可以说是显著的。总的来说,在商界做统计学分析,95%信心水平是用得最多的,当95%上不显著时,都会去 ... 2 N' |# `% l' K8 X7 X/ l5 W
d. m9 b# p# Q3 {这个其实是一种binomial response,应该用Contigency Table或者Logisitic Regression(In case there are cofactors)来做。只记比率丢弃了Number of trial的信息(6841和1217个客户)。
1 G+ ?! K0 _) O7 `0 A+ E6 p/ d8 O9 z7 s: {4 h
结果p=0.5731。 远远不显著。要在alpha level 0.05的水平上检验出76.42%和75.62%的区别,即使实验组和对照组各自样本大小相同,各自尚需44735个样本(At power level 80%)。see: Statistical Methods for Rates and Proportions by Joseph L. Fleiss (1981)
! }+ J a) D; S0 V; {9 T, h/ I
# E% A2 a. k$ v4 m/ cR example:. z6 Y4 c q D8 o8 o: o
, Z5 e- X& `2 m, |> M<-as.table(rbind(c(1668,5173),c(287,930)))
* G9 l! M% b8 A! ~0 j/ b; z> chisq.test(M)! M- c% M; [3 u( e' ` i! T( l9 A/ \
8 E) D: g0 Q: Q; T& a+ R5 h( G
Pearson's Chi-squared test with Yates' continuity correction/ e n7 D2 b; q) K( ^: z) a
) S- p9 E/ m& N' j+ N/ {
data: M
, T( T0 J) C. l6 B! ^9 hX-squared = 0.3175, df = 1, p-value = 0.5731
& @4 b9 N2 L7 t* d2 T& [$ S1 D& J T# x3 N! c
Python example:
a7 \( W1 t {: y( y' P* ~! ~$ d. F7 d ~5 k8 V2 A# i% u! [, T
>>> from scipy import stats1 r' M" ^' S0 {3 u3 Z7 B
>>> stats.chi2_contingency([[6841-5173,5173],[1217-930,930]])9 `; L3 q" ]) u+ \, W
(0.31748297614660292, 0.57312422493552839, 1, array([[ 1659.73628692, 5181.26371308],# K2 s) l' W! y L: l& A; ?. m8 }
[ 295.26371308, 921.73628692]])) |
|