|
|
本帖最后由 Menuett 于 2013-12-22 15:59 编辑
) Q8 i0 R! i+ ^( m0 g, [煮酒正熟 发表于 2013-12-20 12:05 $ q! r$ k$ v- V
基本可以说是显著的。总的来说,在商界做统计学分析,95%信心水平是用得最多的,当95%上不显著时,都会去 ... " P- w/ y! W+ R* F( J; N; J
B( Z' v, i. k$ M2 u% A' S这个其实是一种binomial response,应该用Contigency Table或者Logisitic Regression(In case there are cofactors)来做。只记比率丢弃了Number of trial的信息(6841和1217个客户)。
( Z9 M- b2 e( {; t% O0 ^" X r/ T1 L+ K/ u2 p3 n3 E( m
结果p=0.5731。 远远不显著。要在alpha level 0.05的水平上检验出76.42%和75.62%的区别,即使实验组和对照组各自样本大小相同,各自尚需44735个样本(At power level 80%)。see: Statistical Methods for Rates and Proportions by Joseph L. Fleiss (1981)/ G4 ], X2 W0 t* ?0 q) M5 _ C; M
X0 A/ _, r, k: d8 \$ E. DR example:2 S/ F( m% Y( l2 A4 m2 P- ?0 y
5 _' v; u8 @& P/ g; L6 X$ z, q4 C( Q% s
> M<-as.table(rbind(c(1668,5173),c(287,930)))& p" C* Z _8 a. ]7 O
> chisq.test(M)2 P. k/ i' w# D( z M8 V- F
6 L1 b* d f- e r M" t! f) d
Pearson's Chi-squared test with Yates' continuity correction
8 v' D4 Z1 @# W7 g$ s, T( q; G
data: M/ J# s8 d0 h/ K0 a- `" G% N; |/ [
X-squared = 0.3175, df = 1, p-value = 0.5731: L$ r( x" ^4 K# f# T
7 i. L7 V7 U/ ~( ?/ |Python example:8 w. d$ O% u( P; k2 A) C) S/ ~0 k
& A( N+ |3 N$ P0 Z, h" o
>>> from scipy import stats z0 s9 b- N+ U, z; e
>>> stats.chi2_contingency([[6841-5173,5173],[1217-930,930]])
' K7 q: ^: p$ n; }; J% q, ~. z(0.31748297614660292, 0.57312422493552839, 1, array([[ 1659.73628692, 5181.26371308],' B: ]- [" d/ ~7 j f S
[ 295.26371308, 921.73628692]])) |
|