|
本帖最后由 Menuett 于 2013-12-22 15:59 编辑 $ h! F0 B1 L3 U) Z
煮酒正熟 发表于 2013-12-20 12:05 * x) ~5 k5 X5 g- [
基本可以说是显著的。总的来说,在商界做统计学分析,95%信心水平是用得最多的,当95%上不显著时,都会去 ... 8 C7 x# N! j1 T- _% D; o) u
/ x, R* T. r" @" n4 D
这个其实是一种binomial response,应该用Contigency Table或者Logisitic Regression(In case there are cofactors)来做。只记比率丢弃了Number of trial的信息(6841和1217个客户)。
& t: D" V8 h$ ]( k2 m6 }3 o8 Q1 P5 f- @: V7 T& L' Z
结果p=0.5731。 远远不显著。要在alpha level 0.05的水平上检验出76.42%和75.62%的区别,即使实验组和对照组各自样本大小相同,各自尚需44735个样本(At power level 80%)。see: Statistical Methods for Rates and Proportions by Joseph L. Fleiss (1981)8 K3 y) R9 ?/ T! v
* |' I4 p, r* t4 K, K
R example:8 @- h: k# Y A+ l6 q% g# ]2 j% _
5 ^; n, h4 E, y+ y( z3 B1 J
> M<-as.table(rbind(c(1668,5173),c(287,930))); [* x% _; P( h8 W6 O" b
> chisq.test(M)
0 X/ c, ^- r% @3 K3 x( D* Y; L/ R8 E5 a, ]2 d* ~5 |
Pearson's Chi-squared test with Yates' continuity correction
9 n& ?( X5 Q9 B. T+ ~7 q" m$ ?
6 e3 Y8 F& k/ `+ bdata: M
1 T" i6 K$ o% `' vX-squared = 0.3175, df = 1, p-value = 0.57315 C6 W8 _- @9 G+ q
( }8 { [8 d+ w; x) F# t1 y2 X# pPython example:
) F) S3 [0 @* l6 m. s3 o0 G8 F% a/ H2 y& `- g
>>> from scipy import stats& t7 y7 h. ~% R8 L
>>> stats.chi2_contingency([[6841-5173,5173],[1217-930,930]])
" i& F' B( D; o7 R(0.31748297614660292, 0.57312422493552839, 1, array([[ 1659.73628692, 5181.26371308],5 c; z1 A* R% C" m$ |
[ 295.26371308, 921.73628692]])) |
|