设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2943|回复: 5
打印 上一主题 下一主题

[科普知识] 我理解的拉普拉斯变换

[复制链接]
  • TA的每日心情
    奋斗
    2021-4-20 05:43
  • 签到天数: 300 天

    [LV.8]合体

    跳转到指定楼层
    楼主
     楼主| 发表于 2023-9-27 11:25:14 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 可梦之 于 2023-9-27 11:33 编辑 2 Z. q$ z" k6 C( O* ~! m, P! {

    - @+ I: m% S) z* Y" d  E# O& H最近工作需要,又重温了一下电路知识,对拉氏变换有了“新”的理解。- P7 J' m" r& r9 p  {* [

    / C5 i  F9 f8 C7 X) J: @* g众所周知,高斯小时候就原创了求和公式。求和公式就是将大量的加法运算变成了简单的乘法。换个思路看,天地自然宽。4 o" E7 c" X: J$ r

    ) g/ J5 s: v1 J0 G. e. a- ]电路中很多微积分方程,如何解就很烦人。我们能否换一个工作域,将微积分变成我们熟悉的乘除法呢?$ ?' y, u. E) E" @+ K

    9 }0 _5 M/ r' |( y( B% e* O( R% l, L5 o3 A

    ' _. c2 Z. B* b' e; s翻开数学工具箱,复数看着靠谱。复数有三种表达方式,欧拉公式将其转成简单的指数表达方式:$ G( t% \- {: v% o
    ( |: x2 D7 R( N: H" T
    / q  m+ Z) e- m3 M% \
    9 d/ p. k: b9 N" }
    不去管复数的具体含义,运算从实数转成复数后,乘除法变成了加减法,微积分变成乘除法3 ?/ R5 W6 B! `+ ~
    1 ?/ q3 F9 J& ^9 p' h. q

    / r% l# R" j1 C
    7 E$ |1 `9 e# Y% C* i数转为复数域,那么函数呢?从上面我们看到指数很有用。哪个积分变换用到了指数呢?大名鼎鼎的傅里叶变换啊。不负众望,时域的微积分变成了频域的乘除法。
    . ^$ z; m4 q9 G
    5 s- T5 h0 C4 F
    ' T. |% o3 Q0 ^7 B6 }
    ! ~  F7 r) `/ x5 g傅里叶变换有一个小问题,要求函数绝对可积,也就是积分是要有限的,否则搞出来都是无穷就没有意义了。但是电路中很多函数不满足这个条件,比如x^2。那怎么办呢?
    3 s$ x1 L- B9 i0 k# E8 D- F+ W
    ! `0 R6 L6 Y5 A! f$ ^: ~! U. {拉普拉斯跳出来说,我可以把他变小啊。指数是增长/衰减最快的了。不管你函数多大,我给你乘上一个衰减因子e^-at,在t足够大的时候,都能给你拉下来,满足傅里叶条件了。5 k9 E' K% v' c) f' s9 u

    + c' [; c: J9 t; g- _
    7 D. U; }: }) P4 M; z9 s: M8 C* a% W$ f1 m8 x  q4 }+ w: U
    指数相乘可以合并为加法,a+jw不就是一个复数s吗?这样就成了大名鼎鼎的拉氏变换了。
    % {7 ?. x4 i2 D& [( S" ]' q2 }2 ]. Z2 M) y9 p* H
    有了这些数学工具,我们可以将电路中的各种变量变成复数,方程转到复频域,这样微积分就变成了我们熟悉的多项式。做完操作再用逆拉普拉斯变换转回来就好了。

    评分

    参与人数 13爱元 +102 学识 +2 收起 理由
    mezhan + 10
    喜欢 + 8
    老票 + 18 + 2 精彩
    testjhy + 10 谢谢!有你,爱坛更精彩
    helloworld + 6 涨姿势

    查看全部评分

  • TA的每日心情
    开心
    2025-10-27 04:12
  • 签到天数: 1953 天

    [LV.Master]无

    沙发
    发表于 2023-9-27 12:05:26 | 只看该作者
    高斯小时候提出的 只是等差数列求和公式吧?
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    奋斗
    2020-3-8 17:23
  • 签到天数: 94 天

    [LV.6]出窍

    板凳
    发表于 2023-9-27 12:06:14 | 只看该作者
    高手就是信手拈来
    9 h; T( J0 c! d以前看卡文迪许扭秤、云室,感叹设计的巧妙,没想到数学也有这种操作
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    奋斗
    2021-4-20 05:43
  • 签到天数: 300 天

    [LV.8]合体

    地板
     楼主| 发表于 2023-9-27 13:20:28 | 只看该作者
    数值分析 发表于 2023-9-27 12:05
    6 V1 |0 l/ U# E) L: Q& d% h3 k高斯小时候提出的 只是等差数列求和公式吧?

    " `# C4 X" e  v+ M9 V& _对对对,1+...+100,本来想说高斯公式,但是高斯公式太多了
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    2025-10-27 04:12
  • 签到天数: 1953 天

    [LV.Master]无

    5#
    发表于 2023-9-28 04:40:41 | 只看该作者
    又看了一遍,时域变频域的好处似乎应该加上卷积变乘法,在电路里输入卷积上冲激响应等于输出实在是太好用了。

    评分

    参与人数 2爱元 +16 学识 +2 收起 理由
    helloworld + 6
    老票 + 10 + 2 涨姿势

    查看全部评分

    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    奋斗
    2021-4-20 05:43
  • 签到天数: 300 天

    [LV.8]合体

    6#
     楼主| 发表于 2023-9-28 08:43:42 | 只看该作者
    数值分析 发表于 2023-9-28 04:40
    7 m: }# _- Y, o+ s0 F/ r2 F# T又看了一遍,时域变频域的好处似乎应该加上卷积变乘法,在电路里输入卷积上冲激响应等于输出实在是太好用了 ...
    2 j& Q. x6 _/ }3 }
    对,还有反着用的。频域乘法后逆拉氏变换不好算,可以用时域的卷积

    评分

    参与人数 1爱元 +6 收起 理由
    helloworld + 6

    查看全部评分

    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-7 08:44 , Processed in 0.038762 second(s), 22 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表