|
|
本帖最后由 晨枫 于 2025-9-9 09:24 编辑
4 @; ?' Y3 R; I/ N2 H: W, Z2 b3 W2 U9 \4 _
![]()
, ?' ~4 y6 x9 z Z7 O9 A; g" N& X3 x2 m( Q
![]()
9 s, l9 C% @4 z+ G
" e2 T3 g' ^% v9 y/ z![]()
- q/ n( H$ `0 n8 {# S$ b$ N, \6 }6 N
无歼-X在阅兵里赚足眼球。从外观看,很像无人化、无垂尾化、无鸭翼化、单发化的歼-20,一股说不出的“成飞味”。成飞又一次拿出亮眼的成绩,干得好。
$ M5 U4 w/ z- W( b
! t/ _5 m& ?1 Y0 t0 a0 }% f9 `无歼-X和歼-20一样,也采用DSI进气口。长度和翼展与歼-10C相当,估计最大起飞重量也相当。歼-10C为19.3吨,正常起飞重量14吨;为简化起见,“无歼-X”假定为20吨和14吨。不过看样子无歼-X不一定有外挂能力,所以14吨的正常起飞重量更加重要。
: v: E6 z# k7 f# R( Q2 C# T4 y3 g! U1 K! W$ ^
歼-10C机内燃油量3860公斤,也就是说,燃油系数27.6%。在第四代战斗机中,中规中矩,不算多也不算少。苏-27属于变态地高,达到40%,所以原始设计里根本不带副油箱。$ x2 _3 O+ I! ~3 @
) R/ W4 {3 P2 v" u" p无歼-X取消了座舱和飞行员。飞行员典型重量(连装具、手枪、头盔等)算70公斤;比照俄罗斯K-36D,弹射座椅算90公斤;比照F-15C和F-16C,座舱盖算85公斤;显控、操纵杆、氧气系统算55公斤。加起来就是300公斤。也就是说,歼-10取消飞行员的话,可以增加300公斤燃油而不增加起飞重量。3 i, o0 O. g% m# ~/ E6 J; R* q
7 l; U7 M+ {- I无歼-X没有飞行员安全顾虑,在结构和系统冗余上可以放宽要求,减重200公斤应该做得到。要是激进一点,用电动作动替换液压作动都可以,那还可以节约更多的重量。歼-10基本设计到现在,30年的结构、材料、3D打印进步和取消鸭翼、垂尾,从歼-10C的9.75吨空中再带来1200公斤减重不算过分。歼-10A到C的空重变化不大,DSI节约重量,但主动相控阵雷达增加重量,简单粗暴一点,可以算作补回去了。& B) {/ a% F: y }$ L( j, |
% f# Y7 [6 C* ]9 l' K这样,假定一切相同的话,无歼-X的机内燃油增加到5560公斤,燃油系数上升到39.7%。比照苏-27,作战半径可以达到3500公里,全内载、无垂尾减阻可进一步增加。8 |6 j5 g7 G2 n, W# U
, X0 K) s! A; W, E7 w7 \' S由于取消垂尾和鸭翼,降低气动阻力,采用与歼-10C相同的涡扇10B(加力135kN,军推89.2kN)的话,推重比还是1.04,最大速度恢复到M2.0没有压力,M2.2甚至M2.5都有可能。这不是推力的威力,是减阻的威力。作为比照,苏-27达到M2.35,F-15C达到M2.5。5 |9 S+ G! K( O# t; J- k# Y
6 }9 E2 x- w& f# X, y: C军推推重比达到0.65,接近F-22的0.7。这里,减阻可能再次发威,使得超巡成为可能。
0 ]$ {7 y' a+ t8 a: K: d A# p8 P
9 f s' Z$ @3 {* D( t7 C在机动性方面,目测无歼-X的翼面积至少不小于歼-10。歼-10C翼载381公斤/平方米,与F-22的377相当。无歼-X看不出是否采用矢量推力,但机翼后缘的控制面够大,确保不俗的机动性。, V, U3 a, |4 h4 N, \, s( ]$ ]
; D- d A3 u- X, D
) M/ x6 P; Y! i! P8 I5 l
- g4 D3 x7 z& ?( F- b, O+ i无歼-X采用了全动翼尖。后缘控制面的作动机构鼓包呈“内八字”,这是因为后缘带前掠,“内八字”才与控制面成直角。全动翼尖应该是像平尾一样上下偏转的,而不是从两端向内下垂的。这可以从紧贴全动翼尖开缝线的大型鼓包看出,鼓包的外侧实际上超过开缝线与全动翼尖下的“肿块”衔接,这意味着转轴贯穿的部位。转轴需要的鼓包是横向的,但不利于流线和减阻,所以有很大的纵向整流罩。机翼内的厚度不足以容纳偏转机构。
" t& G$ H: y( R
+ O: l& q5 }3 |$ n) ]! O1 B全动翼尖对横滚控制比副翼更加有效,但在已经有副翼的情况下,并不需要更多的副翼,作用可能与偏航控制有关。根据公开报道,大面积的全动翼尖对于改出螺旋特别有效。进入螺旋是低速大迎角极限机动时容易发生的问题,很难改出,现在不怕了。这间接意味着无歼-X有容易进入螺旋的问题。或许迎角限制特别宽松,反正无人,反正有全动翼尖帮助改出。这意味着在同样的基本气动设计下,容许更加接近失速和螺旋极限,发挥出更加强大的机动性。9 F7 ?$ J/ B8 Z
$ G8 ?4 w; F" m超音速无尾飞机比较细长,机翼后缘控制面很靠后,没有B-2、X-47B那样无尾飞翼纵距太短引起俯仰控制力臂不足的问题。但无尾飞机的方向安定性老大难问题还是看不懂怎么解决。
& C! C" U, m3 t! E4 c- L6 ]2 M; V9 d3 M9 c: c
开裂式副翼是B-2开始的老办法,不仅机械结构复杂、阻力大,从背后“看过来”,也形成雷达角反射器,影响全向隐身。全动翼尖据说有控制偏航的功能,但想不出如何在通过差动阻力控制偏航的同时不引起不必要的横滚。或许无人机不怕频繁但微幅的横滚?要是不怕微幅横滚的话,没准真是可以利用“反向偏航”现象来控制航向。7 P: M6 I* v8 L0 L
! M) h; a/ [1 b% e, P5 a: t副翼在差动偏转时,产生不对称升力,进而产生不对称的诱导阻力(为产生升力而付出的必要阻力代价),使得升力增加、向上抬的一侧由于更大的诱导阻力而产生把机头“拧”向自己一侧的趋势,与横滚本身产生向下压一侧的侧向升力而转向的趋势向抵触。换句话说,向右横滚的时候,飞机整体在向右转,机头反而向左偏转,形成侧滑。这就是反向偏航现象。一般飞机需要方向舵向右偏来补偿。但无尾飞机不是没有方向舵嘛,副翼倒是很好很强大。反正无人,横滚摇两下不碍事。' Z( ~1 f! C8 t3 m( o. [
4 v* y. E4 f6 I" K6 [但沈飞六代机上首见全动翼尖,那是有人机,不宜没事乱横滚,哪怕是小幅度的。看来用全动翼尖控制偏航而不导致不必要横滚的问题解决了,就是还不懂其中机制。
% R; M p) Q' t! J! M8 B' [
3 |, E" N; D5 v/ A![]()
6 D, \* I) K7 E0 p7 G) [: p7 s+ @0 l
这里的沈飞六代机可以清楚地看到左右两侧翼尖都在向上翻,但是否相同幅度看不清,是否有其他翼面配合动作也难以看清。
$ a$ @& l! q2 W) ^: H; B; |3 ^2 S! k
中国已经实现无尾自由了,但还有很多黑科技看不明白。
) h# y$ R) d5 F/ e4 C) B* [6 i
7 f8 Q) \# y+ K% E. D8 _4 u% J无歼-X的图片多一点,可以先盲猜起来。无歼-Y的图片多起来之后,也来猜猜。但这俩都爱不释手,对美国空军的压力至少和南北六代一样大,甚至有可能更早形成战斗力。 |
评分
-
查看全部评分
|