在上一篇文章“MongoDB架构概览”中,我们简单介绍了一下MongoDB中的shard,接下来,我们详细的讲解一下MongoDB的sharding model。
# d- ~) t y( k4 I# ]# u8 V3 D2 A7 V* ?, r0 z% ? K" {' ^
当MongoDB的一个 collection 数据量太大时,我们按照shard key,把该collection分成多个chunks,多个chunks聚集在一起,组成了一个shard。6 ?0 |6 t" N: f5 t) p5 a$ A
U4 F. S8 x+ v) \8 c, o
每一个 document 的shard key 的值,决定了这条document应该存放在哪个chunk中。如果两条 documents 的 shard keys 的值很接近,这两条 documents 很可能被存放在同一个 chunk 中。如图2-1所示。9 Z4 W3 t& n/ o& d j! L
# w z8 m% O k3 F+ x I
4 s+ n5 _" z8 K: d
5 V8 s2 \9 o5 [& v6 V图2-1 shard key、chunk和shard的关系 * f5 u( l$ {; s; x
通过图2-1我们可以看到,数据在整个key space上的分布是不均匀的,这就导致了chunk中存储的数据量会不均匀。如果一个chunk中存储的数据太多了怎么办?多个chunks构成了一个shard,因此shard中的数据量也会不均匀,如果一个shard中存储的数据太多了怎么办?2 {8 ~2 [6 N- D3 R; u8 T$ V w- P
1 D6 s" N4 e2 F8 v
上一篇文章中,我们提到了解决办法。一个 chunk最多能够存储64MB的数据。当某个chunk存储的 documents包含的数据量,接近这个阈值时,一个chunk会被切分成两个新的chunks。当一个shard存储了过多的chunks,这个shard中的某些chunks会被迁移到其它 shard中。& I0 Z1 I+ g) G% q) \7 d
/ J1 V7 y1 S3 U- Y6 W/ H$ x& D5 m
当用户产生存储数据的需求时,把插入数据的请求发送给mongos,mongos先查询 config server,找到存放相应数据的shard servers。然后把用户请求,转发到这些 shard servers,同时,mongos会根据历史上插入的每条数据的平均大小,判断这条数据插入到这个shard server的某个chunk后,是否会导致这个chunk的大小近似达到或者超过64M。
: Q7 u: M7 u- o( n: |, i l# R2 V7 d$ g3 s' S
如果mongos经过判断,发现chunk在插入这条数据之后,会近似达到或者超过64M,那么就说明这个chunk需要进行切分。Mongos就要和这个chunk所在的shard server联系,并发送一个切分chunk的请求。
" R; J$ E, s# {& T) V0 ?2 u* O7 F( W# d5 [( |& ^
Shard server接收到mongos发送的请求之后,首先查询这个chunk的shard key range,然后根据这个key range,计算一个midpoint,然后把chunk从midpoint处分为两部分。同时,把这个变化通知到config server。
5 z6 h( Q! ?4 K8 X5 ]; J1 l+ }, S s. {% g Z
请注意,这里只是切分chunk,切分后的chunk仍然在这个shard中。随着系统的运行,chunk中的数据量在增长,虽然通过切分操作,保持每个chunk中的数据不超过64M,但是, shard 中包含的 chunk 数量在增长。如果 shard server中的数据太多了怎么办?MongoDB通过chunk的迁移,来均衡shard servers之间的数据量。
+ ^( N6 W. D% {1 k
( T- W2 B: k+ z6 Z6 @, c 在mongos上运行着一个“balancer”进程,这个进程的任务是确保每个shard servers上的数据规模大致相同。当数据规模不均衡的状态被检测到之后,这个balancer会联系那个数据较多的shard,发出一个chunk迁移的命令。
1 H. l+ v2 b2 _2 M* |
4 g9 U2 ^; B _/ L( } 如何界定什么是数据规模不均衡呢?如果存储chunks最多的shard server,比存储chunks最少的shard server,chunks的个数之差超过预定的一个阈值n,balancer就向这个 shard server,发起chunk迁移指令。# f) C4 g" l% ]8 B! L
4 f& V# \: p( U# [, n0 j& V% l! a 在MongoDB中,n的值,与一个collection可以分成多少个chunks有关系,chunks的个数越多,n就越大,但是至少n要大于2。当shard servers中chunks个数的差值小于等于2的时候,迁移就可以结束了。
6 K8 T' m2 N+ @9 e8 ?; m7 _2 K0 w6 e' Q3 I
Chunk的迁移是在线进行的,也就是说所有的shard server都处于工作状态。Mongos从数据多的shard server中,选择一个chunk,迁移到一个数据少的shard server中。 为了方便理解,下文中,我们把数据多的shard server叫做orig server,数据少的shard server叫做dest server。
/ X, _9 X3 [* G- Q6 l* J
8 l, T; S0 m6 y, X2 u, c 迁移的过程中,首先 orig server向 dest server联系,成功建立数据通道之后,chunk数据会被从orig server拷贝到dest server。这个过程会持续一段时间,时间长短,取决于数据的大小,如图2-2中的过程A。7 H5 R F* G' ?7 A1 L* w3 L) a) i! r5 e
$ i( g! F( y; H# e. F' _ 在这期间,orig server可能会不断接收到mongos转发来的用户请求,包括insert、update等等,导致这个chunk包含的数据发生变化。这些新增的数据变更会被记录下来,不妨称之为 delta update。当过程 A 结束后,orig server 将向 dest server传输delta update,如图2-2中的过程B。
- E2 c& ?; t* t6 U/ d
3 s/ Q) C, |1 J* r& m8 O 在执行过程 B 期间,orig server很可能继续接收到mongos转发来的用户请求,导致这个chunk包含的数据进一步发生变化。当 orig server向 dest server,传输完第一轮 delta update以后,紧接着开始传第二轮 delta update,然后传第三轮 delta update。如此反复更新 delta,理论上可能会永久地持续下去。
( y' [/ p: D: J; I! \/ C# {6 _( n4 l1 [6 `
为杜绝这个可能,我们可以设置一个最大的传输轮次,当进行到最后一轮传输时,orig server会停止接受来自mongos的所有更新请求,并把这些请求记录下来。- p9 }9 P% z0 P- ^
: s! S& G0 O) y! Y) M' C
' z0 j4 u% d. J8 S$ o1 S图2-2 chunk的迁移过程 当最后一轮传输结束之后,会经过如下的几个步骤来结束chunk迁移的操作。 1. Dest server会通知config server,该chunk已经从orig server迁移到了dest server中。Config server更新这个chunk的映射信息,如图2-2中的过程1。 2. Dest server通知orig server,数据传输已经结束,让orig server向 Mongos,提交一个StaleConfigException,如图2-2中的过程2.1和2.2。 3. Mongos会从config server查询到 dest server 的地址,如图2-2中的过程3.1。 接着,从orig server获取到最后一轮传输时,orig server尚未执行的,来自用户的数据更新请求,如图2-2中的过程3.2。 最后,Mongos 从orig server 获得这些尚未处理的请求后,把它们转发给dest server处理,如图2-2中的过程3.3。 4. 以上的过程结束之后,在未来的某个时间,orig server会把这份数据物理删除。 在迁移的过程中,存在着一种特殊情况。假如这个被迁移的chunk,正面临着高频率的更新请求,那么在传输delta update的时候,会发现delta update越来越大,以至于delta update的增长速度,大于从orig server到dest server的传输速度。 在这种情况下,整个迁移过程要中断,之前所传输的所有数据都被放弃,也就是图2-2中的过程A和B,以及过程 1-3,通通被放弃,相当于这个迁移操作没有发生过。Mongos会从 orig server 中,选择另外的一个chunk,重新开始迁移操作。选择的标准,是这个chunk 的数据更新的频率不高。 9 [# b! F. m2 \# [- l0 a
Reference, [0] MongoDb Architecture |