在上一篇文章“MongoDB架构概览”中,我们简单介绍了一下MongoDB中的shard,接下来,我们详细的讲解一下MongoDB的sharding model。
& k* p! h% D9 S" k6 W0 S1 T. F" |1 r/ p6 D
当MongoDB的一个 collection 数据量太大时,我们按照shard key,把该collection分成多个chunks,多个chunks聚集在一起,组成了一个shard。% @" f. K$ z, U6 T- m/ O, O7 R
+ N0 \, ^ k/ N8 q
每一个 document 的shard key 的值,决定了这条document应该存放在哪个chunk中。如果两条 documents 的 shard keys 的值很接近,这两条 documents 很可能被存放在同一个 chunk 中。如图2-1所示。
( v# J+ k/ ?) x5 M* q; |* y% T* q9 S0 q% x; ]6 j" ] B& A
) M. a8 m% z% Y1 g+ s! K% h; h
$ W$ W' E6 N7 u8 ^* C4 Q
图2-1 shard key、chunk和shard的关系
# o$ K" h" O) D* W: J$ W 通过图2-1我们可以看到,数据在整个key space上的分布是不均匀的,这就导致了chunk中存储的数据量会不均匀。如果一个chunk中存储的数据太多了怎么办?多个chunks构成了一个shard,因此shard中的数据量也会不均匀,如果一个shard中存储的数据太多了怎么办?: S" l# Y) T% n* r r; p
2 q8 t- ^4 m& u" M* M
上一篇文章中,我们提到了解决办法。一个 chunk最多能够存储64MB的数据。当某个chunk存储的 documents包含的数据量,接近这个阈值时,一个chunk会被切分成两个新的chunks。当一个shard存储了过多的chunks,这个shard中的某些chunks会被迁移到其它 shard中。
& o) Q. A3 J8 ~3 F
0 ?! G$ I) V5 G4 t2 u, C4 W 当用户产生存储数据的需求时,把插入数据的请求发送给mongos,mongos先查询 config server,找到存放相应数据的shard servers。然后把用户请求,转发到这些 shard servers,同时,mongos会根据历史上插入的每条数据的平均大小,判断这条数据插入到这个shard server的某个chunk后,是否会导致这个chunk的大小近似达到或者超过64M。
" J6 e! \3 f/ A& g2 C: i6 d- v M7 }2 B; v: M
如果mongos经过判断,发现chunk在插入这条数据之后,会近似达到或者超过64M,那么就说明这个chunk需要进行切分。Mongos就要和这个chunk所在的shard server联系,并发送一个切分chunk的请求。" W# M: w9 B, |8 `7 D) b: B
8 D- _- q! z- s1 S9 L4 g4 D
Shard server接收到mongos发送的请求之后,首先查询这个chunk的shard key range,然后根据这个key range,计算一个midpoint,然后把chunk从midpoint处分为两部分。同时,把这个变化通知到config server。
# i. w. r& x: e2 ]" @6 T6 [% @9 l
请注意,这里只是切分chunk,切分后的chunk仍然在这个shard中。随着系统的运行,chunk中的数据量在增长,虽然通过切分操作,保持每个chunk中的数据不超过64M,但是, shard 中包含的 chunk 数量在增长。如果 shard server中的数据太多了怎么办?MongoDB通过chunk的迁移,来均衡shard servers之间的数据量。
- {* K4 I t8 V+ Y+ y6 B2 S# O. e" |: e- R. G. `9 M
在mongos上运行着一个“balancer”进程,这个进程的任务是确保每个shard servers上的数据规模大致相同。当数据规模不均衡的状态被检测到之后,这个balancer会联系那个数据较多的shard,发出一个chunk迁移的命令。3 K1 c7 o2 d6 A
' T W; R+ b7 h0 N 如何界定什么是数据规模不均衡呢?如果存储chunks最多的shard server,比存储chunks最少的shard server,chunks的个数之差超过预定的一个阈值n,balancer就向这个 shard server,发起chunk迁移指令。
3 O4 g, {$ B8 G' f0 t) ]+ P
5 C' z6 ]3 b! O7 G5 W2 g 在MongoDB中,n的值,与一个collection可以分成多少个chunks有关系,chunks的个数越多,n就越大,但是至少n要大于2。当shard servers中chunks个数的差值小于等于2的时候,迁移就可以结束了。
, L/ V" u" x) d' \( f
0 @2 K5 A4 {6 n$ {! p8 } Chunk的迁移是在线进行的,也就是说所有的shard server都处于工作状态。Mongos从数据多的shard server中,选择一个chunk,迁移到一个数据少的shard server中。 为了方便理解,下文中,我们把数据多的shard server叫做orig server,数据少的shard server叫做dest server。
1 _. g" w5 w' d* w. h) e& n8 Q
: Q: @ s; P1 N, `% ~ ` 迁移的过程中,首先 orig server向 dest server联系,成功建立数据通道之后,chunk数据会被从orig server拷贝到dest server。这个过程会持续一段时间,时间长短,取决于数据的大小,如图2-2中的过程A。9 A- N; r& I" V9 _* y# E H) g8 R
; v" _9 }, r0 N5 f- f
在这期间,orig server可能会不断接收到mongos转发来的用户请求,包括insert、update等等,导致这个chunk包含的数据发生变化。这些新增的数据变更会被记录下来,不妨称之为 delta update。当过程 A 结束后,orig server 将向 dest server传输delta update,如图2-2中的过程B。
5 c# D2 M) W# A+ m% e2 y! n$ z S& |+ ^: c
在执行过程 B 期间,orig server很可能继续接收到mongos转发来的用户请求,导致这个chunk包含的数据进一步发生变化。当 orig server向 dest server,传输完第一轮 delta update以后,紧接着开始传第二轮 delta update,然后传第三轮 delta update。如此反复更新 delta,理论上可能会永久地持续下去。5 U! P9 d3 K% ^# t9 ~5 V
0 I$ b8 v! K2 y* w
为杜绝这个可能,我们可以设置一个最大的传输轮次,当进行到最后一轮传输时,orig server会停止接受来自mongos的所有更新请求,并把这些请求记录下来。" M2 l, c2 t1 W# M1 L w& Q+ J) Y
" }$ ^' C$ E$ U( k4 x
$ k1 m- k" }$ N2 Z: I4 ~. O3 C% k, R图2-2 chunk的迁移过程 当最后一轮传输结束之后,会经过如下的几个步骤来结束chunk迁移的操作。 1. Dest server会通知config server,该chunk已经从orig server迁移到了dest server中。Config server更新这个chunk的映射信息,如图2-2中的过程1。 2. Dest server通知orig server,数据传输已经结束,让orig server向 Mongos,提交一个StaleConfigException,如图2-2中的过程2.1和2.2。 3. Mongos会从config server查询到 dest server 的地址,如图2-2中的过程3.1。 接着,从orig server获取到最后一轮传输时,orig server尚未执行的,来自用户的数据更新请求,如图2-2中的过程3.2。 最后,Mongos 从orig server 获得这些尚未处理的请求后,把它们转发给dest server处理,如图2-2中的过程3.3。 4. 以上的过程结束之后,在未来的某个时间,orig server会把这份数据物理删除。 在迁移的过程中,存在着一种特殊情况。假如这个被迁移的chunk,正面临着高频率的更新请求,那么在传输delta update的时候,会发现delta update越来越大,以至于delta update的增长速度,大于从orig server到dest server的传输速度。 在这种情况下,整个迁移过程要中断,之前所传输的所有数据都被放弃,也就是图2-2中的过程A和B,以及过程 1-3,通通被放弃,相当于这个迁移操作没有发生过。Mongos会从 orig server 中,选择另外的一个chunk,重新开始迁移操作。选择的标准,是这个chunk 的数据更新的频率不高。
4 I+ c( \" b8 ?. o$ n/ H. K Reference, [0] MongoDb Architecture |