设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2028|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    . v+ o& T. O- i  ]% D, `# k2 k* L% O% L5 z
    解释的不错& A$ H) l3 g2 b! m/ ?8 _9 u* W+ f
    0 g0 ~) ]; M1 c8 p$ N
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    3 g( G/ u9 H  ]; q4 s, n7 B! v
    0 u. ]4 ?/ N! n6 p' B# l/ D  h' E 关键要素1 n; U3 D5 [  k& n
    1. **基线条件(Base Case)**
    / O% |4 _2 ^% o; s. ^! R   - 递归终止的条件,防止无限循环
    ! x8 I( B# R7 B" Y2 U: z   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1# |: k2 _, l: U# w$ i# @. m! E: q& `
    5 r4 ^* U' d9 P- U: J" M) \: @  `' n
    2. **递归条件(Recursive Case)*** I( @$ C1 D$ s. Z; K3 `
       - 将原问题分解为更小的子问题7 Z: `+ k' B( X. j8 ?8 P7 f( g' ^
       - 例如:n! = n × (n-1)!  V2 f, J! F8 k" |

    2 W4 Z+ R( f5 V; V# g( e 经典示例:计算阶乘
    : a# E/ c0 [/ T) tpython
    8 n/ k, q: R8 W7 Ydef factorial(n):# n7 h% ~2 o3 G+ E& l% Y7 r+ o
        if n == 0:        # 基线条件
    . y6 i0 _$ p6 W7 g        return 1
    ( A+ G7 b0 g4 {' L% P' }( S! O    else:             # 递归条件8 Z: Y' \8 @! X7 S
            return n * factorial(n-1)9 X8 ]- D2 f- A" O! U" R6 g2 C
    执行过程(以计算 3! 为例):
    $ y1 R( i) o2 o3 s5 C" S5 t; Xfactorial(3)& U" n# y/ }. o9 a5 `0 w  P& z. Q' o4 D  r
    3 * factorial(2)/ R' M# P! t* z% Q2 z9 T
    3 * (2 * factorial(1))
    / d  i1 L( C7 A/ h; E, g- `$ i3 * (2 * (1 * factorial(0)))# n, a, ~& W) m. t
    3 * (2 * (1 * 1)) = 6
    0 `. v  h/ ~2 N3 Y2 m6 B8 {; B! S/ [4 f  l
    递归思维要点
    * Z% D5 `- ]- C0 q; @1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    + ?" l8 Q3 V" e4 a+ T- R* U, m5 z; W2. **栈结构**:每次调用都会创建新的栈帧(内存空间)3 v" _) d* h1 I& n# g- n
    3. **递推过程**:不断向下分解问题(递)/ ~* h& }/ S( p$ `
    4. **回溯过程**:组合子问题结果返回(归)& \# ^# D7 Q1 j' u  [
    - \2 n* I; {( B/ {$ v4 H2 d9 Y
    注意事项
    2 b# t: x- V, o* V) D: j2 w( i必须要有终止条件
      g6 b: o6 L4 ]# o3 r/ e递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    * ^( x9 n- p+ N% G) T% j某些问题用递归更直观(如树遍历),但效率可能不如迭代
    5 a* b7 ^: f" |- ^5 n- Q尾递归优化可以提升效率(但Python不支持)% U! V) ~: {' J/ s8 S7 N2 U

    , o% h' n: J. O5 q 递归 vs 迭代9 S+ V- ?  N5 I* V9 A
    |          | 递归                          | 迭代               |
    + l3 p. \# W& u# ]3 m* _|----------|-----------------------------|------------------|
    6 ]" L) `1 h& b9 I% j" T, x7 L8 O- s2 ^| 实现方式    | 函数自调用                        | 循环结构            |0 x9 q% C- s: T* u" Z; m% i
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
      v$ q/ F# b- N| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |0 `9 ^, b3 F  P* R; ~6 B
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |. n, b$ F) r; c. t" @3 K
    4 f# U7 c: [1 K+ e6 @+ j
    经典递归应用场景
    3 b9 D# k; i' P0 f  O$ _1. 文件系统遍历(目录树结构)4 L7 J( y7 {  t" G8 x
    2. 快速排序/归并排序算法
    ) F1 H0 L- @& ?  i% |3. 汉诺塔问题
    9 m6 l, z* g8 r  F# a+ w4. 二叉树遍历(前序/中序/后序)
    # E8 x' W, M  w" J" \0 C5 z5. 生成所有可能的组合(回溯算法)
    2 ]1 j2 N' s3 e! f6 j. Y4 [( u4 z/ b0 r* F
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    昨天 14:17
  • 签到天数: 3166 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,6 D( L: S# p, P3 n+ k6 j
    我推理机的核心算法应该是二叉树遍历的变种。
    4 W) C( P1 V2 Q) M另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    ) u  w' ]" {) Z5 H; ^$ g. ?9 KKey Idea of Recursion
    " n: s: i5 B) Y& S! Z# J0 e, g2 U' ]
    A recursive function solves a problem by:6 |4 s  A- r$ w' F- w
    9 J8 H/ N( O  a7 P$ X2 s
        Breaking the problem into smaller instances of the same problem.
    0 {1 S/ k$ S2 ]3 \
    ; R9 _9 y6 Q9 r7 G9 D8 P  |    Solving the smallest instance directly (base case).+ ^3 B% U& t( D/ [
    6 ~/ l2 m- q# N% d" L( u
        Combining the results of smaller instances to solve the larger problem.: o" l7 p+ B  T! a4 Y0 _
    9 j7 z* c' o$ e# w! l7 g
    Components of a Recursive Function# R7 n. C3 `; n, b6 P- b
    2 k: w& Y: r) A6 O# L0 x3 S
        Base Case:
    3 ~  n2 e4 Y) Y5 _' q
    * R7 g2 h$ k# U* z. A        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    ( T# q( D0 \. }6 Q% ]
    % p8 z, N5 K5 s4 _1 L) i0 @        It acts as the stopping condition to prevent infinite recursion.
    . N: l0 B1 E, l3 w
    + Q% i1 e+ r9 V4 L' c' j3 N- T$ V        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    5 Q* c; F& u3 h% g. p' p. w) O. R0 S  n- `
        Recursive Case:' q- U- d, u& b% A
    ; l! L: ~  B# z3 G" x( _
            This is where the function calls itself with a smaller or simpler version of the problem.
    3 C4 Z0 v' g2 f& ]' Y, V% J8 C
    " S( n) a6 r0 x& c* O        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).1 E& D6 I7 {4 Y5 X: U6 j$ B

    4 V; p$ ?$ C' w  ~& kExample: Factorial Calculation, c/ ~9 d! Q3 j7 d$ y1 Y% O) B

    ( T, U- Y8 l; f6 y+ a2 jThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:( f6 j' s- [9 x" s4 Z5 c

    * S) g" D* y0 B    Base case: 0! = 1, d7 {5 {7 }. k9 J
    8 Z( i( K, w, e( r4 a. n9 I' x/ w
        Recursive case: n! = n * (n-1)!
    * t0 U" D  l% A8 \( U. m; j1 G: v. w$ _% F4 s/ h
    Here’s how it looks in code (Python):, q& A* h1 ]: B) \1 P
    python4 u: I4 k" ?, `2 B( w

    . O0 B( x- s  F3 D( |
    7 L% w, W4 h2 V. v1 k+ @9 ]" n2 @def factorial(n):
    , b/ F: w; h' L% C+ B: P8 `    # Base case8 f- x; r0 W) i/ i0 [0 g* b' I4 }& t9 z
        if n == 0:7 ~+ e# C4 B( W; a( t6 u0 e& k
            return 1
    4 `& L8 o" u+ |7 l) m. I# H    # Recursive case
    $ b6 M7 g4 K1 w" h! L, B    else:
    $ Q) c5 j8 Y8 }( x. j        return n * factorial(n - 1)
    # Q9 x% ^9 w5 A0 m. `3 l: w
    7 n8 w8 D# J7 B- |8 @+ q# `. N# Example usage
      S2 A  [0 c: L: m  v6 q( n6 Jprint(factorial(5))  # Output: 120
    % w# @$ j( N+ g0 b1 F7 C8 \; [/ M/ m9 x
    How Recursion Works9 e8 C) |# T8 F3 C9 h! i7 Z
    $ i5 E5 i* Q+ J
        The function keeps calling itself with smaller inputs until it reaches the base case." u  {; ?$ F' C7 b/ o- |9 t* _

    2 B; u5 q3 K) U7 w5 U: p    Once the base case is reached, the function starts returning values back up the call stack.% C4 T" N; f) ?) Y8 e$ u

    " ]2 h* R" j- b! J0 F    These returned values are combined to produce the final result.4 q! Q/ P) i) g( k  @
    3 F7 Q. C3 {! `; f1 B  W
    For factorial(5):
    ; ~* C2 x3 [+ i- \3 N- z, Q1 X1 l. z( M. ~3 M

    ' E/ O7 k  U, t; Z, q. vfactorial(5) = 5 * factorial(4)
    0 [  p5 R; C# K" c( Dfactorial(4) = 4 * factorial(3)# |+ g: K; f" m  q7 ]
    factorial(3) = 3 * factorial(2)
    ; Z; a. K/ V. Q* h4 i& bfactorial(2) = 2 * factorial(1)
    " h7 r( g+ w! X# d1 @' x/ ifactorial(1) = 1 * factorial(0)6 t& u) M3 \: W/ _1 V
    factorial(0) = 1  # Base case
    * ]/ `: U; }  C. @; A6 D6 K  `; F* J7 W2 k4 m* r6 x1 s
    Then, the results are combined:; Y! ~4 T  @# b. z7 Y" T3 l9 }5 i% h

    + H6 p: B; V# `" X) y5 O5 M9 a' k0 E! _& v% P3 v! F% l4 G
    factorial(1) = 1 * 1 = 1
    9 Z7 O) I0 }" ?. ?" J6 qfactorial(2) = 2 * 1 = 2
    4 Q) a2 M3 H3 U5 e3 X- S+ ufactorial(3) = 3 * 2 = 6' s! L* T. O2 R% b; b
    factorial(4) = 4 * 6 = 24- a0 X/ |6 @/ ^/ N: G; R
    factorial(5) = 5 * 24 = 120) @# V) u$ a$ O: x9 }  D7 Z% l

    5 i, U" V: T# ]7 a' ?- A) L" z8 v" lAdvantages of Recursion1 u2 C. N% P+ k  ?& E$ Y1 d
    ( Z' `# T) M7 v8 Y+ f2 |" G
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).* }8 r- X- R7 e$ o0 h
    6 Y; s$ b4 o, t- V. X' }8 Z
        Readability: Recursive code can be more readable and concise compared to iterative solutions.$ K! j- \8 [3 V# x
    " `( I6 |! K/ {0 _$ o
    Disadvantages of Recursion
    7 _% {, O7 s/ K2 T9 Z1 ]4 W  r
    * a' j8 q* r; e( ]9 Z! ]7 H, v    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    ) K9 N  c1 A9 v6 S3 w* ^" O) S+ j# F
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).( N! Y' H0 ~/ R7 f( Y) W! I

    ; ?5 j2 e, `! h2 X, MWhen to Use Recursion: \' t+ ]2 ^( \

    ) }% K  l8 x/ o% c    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    8 o/ p2 t0 ~& E6 q+ x2 G7 s# J; O* ~! c+ f; B
        Problems with a clear base case and recursive case.
    / U" g5 Z0 y. K  S# {& y  r" p: {. _  H
    Example: Fibonacci Sequence0 p8 g' }; c0 q  L4 f/ J. f

    * I% |$ b5 U4 T5 Y: R+ J$ m# RThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    " ^9 o; y& y8 r+ v4 A  M* n- {. n+ r' @% w
        Base case: fib(0) = 0, fib(1) = 1
    7 t% l% I  `7 s8 q9 R* d' x
    4 @8 \; u! Q3 ]    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    ' ]3 O. N5 I, w4 Q8 f8 ~3 W) w& H5 T5 k8 v
    python
    7 |5 V. i, r! A, z* d  }1 b0 D
    ) x/ X% x0 K: N# m5 |) g
      ^1 @0 S  `% x  ]9 W& z$ P. b7 rdef fibonacci(n):
    : k3 C7 Q# {, H. _: `  d7 u) `% J    # Base cases& {. Z5 S; h% F
        if n == 0:
    : H7 N9 ?3 Y; w# n3 E        return 0
    ' p1 J' i6 O  G3 a! J& P    elif n == 1:2 w7 B- ^0 Z  j5 r* w& y" @/ f
            return 1
    0 Y& k8 R9 b6 l2 G2 b    # Recursive case, G3 U$ O: c. B+ X7 p/ N6 G+ G
        else:
    & g) ^! j4 R. e        return fibonacci(n - 1) + fibonacci(n - 2)
    : s6 ^4 G& G/ Z6 z% a0 D# }9 c  t7 s: O) N
    # Example usage) @- z+ B* T0 L, c2 B4 w
    print(fibonacci(6))  # Output: 8
    $ x7 Q. \% @& ^2 e. M
    7 l+ X, F3 r& F" LTail Recursion1 C7 G& D2 n' g6 O$ M

    2 @; `) o8 _) w  e# |: }- @0 j1 bTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).' ~) l2 C  ?6 B

    4 }9 p, ^* v$ Y% T2 DIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-8 00:33 , Processed in 0.059885 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表