设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2030|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 1 c2 x, h1 @2 S6 w

    ! M' x, R. }+ [9 V6 w. D6 l: H+ ?解释的不错
    " r# d$ g# k- @
    & i& O0 w' R" Z' w! i递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    - D6 e/ c, W6 X# X1 x- P0 h4 K& _, V1 w) ~7 e
    关键要素; u3 L% f1 W8 C  a0 K+ y, \
    1. **基线条件(Base Case)**
    + n# {1 g9 w; x: T2 O) r   - 递归终止的条件,防止无限循环8 N4 i! c( j5 D5 ~. o
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1$ F: M7 |7 b2 t- F& g; W) n1 a# M

    % }2 `' [6 X1 Q2. **递归条件(Recursive Case)**
    9 I" l9 Q) h5 x7 T! `   - 将原问题分解为更小的子问题
    4 C/ }* i% q0 [* ^3 k   - 例如:n! = n × (n-1)!
    " }+ R+ s0 S) T; r
    ) X7 {  @4 v* Y+ C, D9 k  a9 J 经典示例:计算阶乘) V; `2 G# Z3 t
    python* ~) V' a% \2 T0 @9 ^
    def factorial(n):
    & w( F# `! t  \" X- d' [8 b+ i+ s0 A7 b: i    if n == 0:        # 基线条件
    " T) s( A: J! k, h3 K        return 1
    ! k! h% q5 e; ^2 _    else:             # 递归条件- j7 w! m# W& P3 w+ i
            return n * factorial(n-1)8 C7 c' s; i0 b& n4 d
    执行过程(以计算 3! 为例):
    & Y5 C$ u  P. ~) B* K+ Sfactorial(3)
    7 D! v! ]6 q, r4 ^3 * factorial(2)7 C' ^( o. }/ h; E. R
    3 * (2 * factorial(1))9 {  _: B1 l/ S
    3 * (2 * (1 * factorial(0)))
    ( F* V, ?6 M3 u2 x3 l3 * (2 * (1 * 1)) = 6
    * [7 A5 w( e8 L5 O! O) ^
    / g) P/ m2 G- Z" i$ G" t( M5 y 递归思维要点/ \' W& d5 Z: g  p; x5 O! T
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑2 J2 j2 X8 J" n. |
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)1 A0 F7 ]* N/ r0 P" h2 ^7 @
    3. **递推过程**:不断向下分解问题(递)% G; y! ^6 W* \! ~4 {
    4. **回溯过程**:组合子问题结果返回(归)
    ' M: u2 X& f% A$ R+ X* q0 P/ ]3 b' z: o
    注意事项
    3 X* N; w* y$ `9 k必须要有终止条件" o/ \7 |; W( c7 R$ _' U
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)+ W$ Z; z' n  a& t$ O, L
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    1 t: `6 \+ o; m6 M尾递归优化可以提升效率(但Python不支持)6 L* V4 @' |" t8 R/ G& J# J' C" ]

    % B- _5 L' ]0 @+ H& {/ d* X$ D3 c 递归 vs 迭代" q$ f+ w8 s8 V* x) a- B, e
    |          | 递归                          | 迭代               |
    * O5 g: L0 V) v|----------|-----------------------------|------------------|
    + s/ _, w1 }* C, M/ n/ q# z| 实现方式    | 函数自调用                        | 循环结构            |
    2 Y8 m  ?+ F* ~$ Q0 u9 O0 @. j| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    7 _2 D  z: [. J$ J# ^# f% k| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    % s' u5 v! r4 G4 _9 w2 A3 @, E1 l| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |6 b7 o" M7 u; R' v3 z- D, E

    / |# A- t9 [& X  }, j' d$ o) ] 经典递归应用场景
    ; }" ]) G. h: @# G5 p1. 文件系统遍历(目录树结构)+ F# X* b% R, g3 n
    2. 快速排序/归并排序算法% w7 l3 Z& e" Z/ A
    3. 汉诺塔问题
    : P) ^6 {' U7 K" x0 m, W! u, {4. 二叉树遍历(前序/中序/后序)6 P# D( m6 G2 N+ T
    5. 生成所有可能的组合(回溯算法)* q( N" j" @! ^* n5 h7 I( X

    : H9 @5 m! X$ K8 s) r试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    昨天 14:17
  • 签到天数: 3166 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    + {/ R# s: E8 p. i( U) D& F1 W我推理机的核心算法应该是二叉树遍历的变种。
    - b5 f+ m- ?: ~. A8 j, a另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    " O) H6 o) [8 rKey Idea of Recursion
    . w/ M" t9 _( h! a
    1 Y8 H3 O1 z8 s5 L# TA recursive function solves a problem by:
    + t% d% }1 Q/ @7 \3 Q$ g6 v
    9 w; Z8 S4 A, U2 N+ y3 D' e    Breaking the problem into smaller instances of the same problem.! O% n+ Z: |, e: z4 \4 k% H7 `( L; C

    4 V/ d7 m) L) Q8 }* |5 ]; A( p' s    Solving the smallest instance directly (base case).
    , R3 _  _. u( |. B$ e! V+ J/ Z# Y; G4 ?- D: |1 |  p
        Combining the results of smaller instances to solve the larger problem.
    4 m, r5 y5 R1 _5 t$ \7 M+ q0 q0 |7 @' @  c+ p9 Y7 T
    Components of a Recursive Function
    9 h. a9 d) o1 Y7 }2 H" |0 {; Q
    * @( d- v, h* o! j2 p3 I4 ]+ D    Base Case:* Z- z! C3 f+ x& P- x  R
    8 R2 q- K+ H$ I0 Y9 O
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion., j1 v/ D0 e. }5 G: W, w7 Z* P

    - ~6 I/ H7 B. }& ~; x, Q4 S  ?        It acts as the stopping condition to prevent infinite recursion.0 O8 t% v7 m5 s# E3 c" A' O
    ( ]- s2 W  j8 O4 g
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    - G+ r+ g; T* W- ~! B
    . L9 L8 U6 w2 h# S6 L+ X    Recursive Case:
      f% z/ F: O( m) I; `3 I" R2 ?- J# |. B% S
            This is where the function calls itself with a smaller or simpler version of the problem.0 _6 ?) e8 n: S4 G

    : Y8 m8 o7 e" \        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    ( @& V7 ]0 X! [% U+ ~& |8 x0 p  Q- u+ W" N& T8 U
    Example: Factorial Calculation7 I9 S  e# ]& f+ Q

    ) [" _' d9 K5 l* VThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    0 L' y3 I& N( S5 r6 J$ s
    9 @: Q' P$ `! |% T9 M    Base case: 0! = 19 K# L5 [. R' ]5 V3 H; u* m- ~- Q* h
    + V! L9 u$ @6 L8 t6 S+ ~3 B, h. u
        Recursive case: n! = n * (n-1)!
      g: T7 G3 B# v% ~- V6 n, m1 a
    " M5 \. v4 i  h8 kHere’s how it looks in code (Python):7 Q& \7 B& Y. E
    python
    5 T- \  f" a; P1 L7 @2 O6 C1 l& f" ^( R$ l; m- @

    % C# |! h4 C8 @1 Z/ A# Ndef factorial(n):
    6 |8 _' i- y9 O! G% W& ?6 j    # Base case
    1 M$ U! F6 G# M* ?    if n == 0:; W# Q5 q, k7 B7 j, L" h" E
            return 1
    ( K: E: X, x+ C% s    # Recursive case
    3 E% U: {% h' X5 \8 d    else:
    9 |: Q) W) O. G, N2 G1 d* t        return n * factorial(n - 1)! @2 {! a9 u+ r1 J& n, N9 |/ i
    6 k3 v+ v5 |$ h, m, {$ ^. ~3 s: S
    # Example usage( S3 {; ~) N! z3 ?6 l
    print(factorial(5))  # Output: 120
    5 ~! J7 n2 e% d% K8 g( T9 p- I% V% A: z* [. O( L( R. s7 K4 p, I2 h
    How Recursion Works
    . m8 Y$ z+ _0 @3 ^9 o! w) {$ N9 {- @$ Q" R- l: Y& z& w9 T5 L9 B
        The function keeps calling itself with smaller inputs until it reaches the base case.7 Q' a1 {. D' y* o* w
    7 \6 g# G  a" b' h& `: p* d
        Once the base case is reached, the function starts returning values back up the call stack.
    " b9 |' c* a# m# B2 E& n  Z; q# ?6 ]+ K4 L1 ?* E6 Q
        These returned values are combined to produce the final result.: O% N: F5 M$ @7 S
      y* d+ E' ]6 l1 ?
    For factorial(5):1 m% t. o3 ~$ ~( @
    1 R, \" N' x5 A+ j2 {5 q' J' p

    " W8 }" d& r# |3 Y; m5 ?1 \factorial(5) = 5 * factorial(4)
    8 W% D( c! }0 i8 R- V* bfactorial(4) = 4 * factorial(3)0 w* U. C6 C' f4 L2 W
    factorial(3) = 3 * factorial(2)
    ' ?# H. A. o2 p& w6 i1 d2 Vfactorial(2) = 2 * factorial(1)  S" F* u5 u* l+ d9 e
    factorial(1) = 1 * factorial(0)
    8 U, u3 F6 y( j+ v) w, wfactorial(0) = 1  # Base case
    6 ~* k# M5 b" m6 |! P! G" W4 Y0 b1 \' @2 S4 P! k
    Then, the results are combined:, }3 C8 U1 ]6 ?, m

    9 l' O" ]1 h' F! g+ [: v7 G7 z+ f% L
    - N4 i2 s  X0 |2 [' L4 afactorial(1) = 1 * 1 = 1  D) a% M+ P6 h! v4 f- m9 t, S
    factorial(2) = 2 * 1 = 2
    $ h; u5 W1 ~3 t2 bfactorial(3) = 3 * 2 = 6" M" w& k/ n5 Y. z/ ^
    factorial(4) = 4 * 6 = 24, ]! d% ]- m2 c3 l$ d
    factorial(5) = 5 * 24 = 120* l* M4 C) B/ D$ G4 X& [

    ' S1 i. d& g8 @/ W0 gAdvantages of Recursion+ M( d  @; H1 x" \- _. k

    5 S$ y8 I& F0 P! R, w& _! i    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).2 V, r& }1 e3 ~( x5 e: Y
    , v! g7 b7 E# ^7 l
        Readability: Recursive code can be more readable and concise compared to iterative solutions.5 x! ?0 q. z1 E# ]& h) j' Y

    ; R2 v3 O' E9 U. E* V1 b6 f# `Disadvantages of Recursion
    # p2 w/ o$ x; R' Q' p" M
    ( N( _( z/ r6 N% u2 O    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    : o  S! O$ Z/ ?9 _1 B: k, w& s* f0 W
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).7 g! h2 A! Y& y
      h- ?' I* [, F; I  X
    When to Use Recursion
    9 a  h9 b: E$ Q* Z/ j- _. l/ ]$ O* f' A' N3 p* F- c/ k3 ?
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    9 q, {: H* n5 G2 l6 J
    + p+ b' s  ^7 p/ k- g. D    Problems with a clear base case and recursive case.
    % A) K8 c6 V5 x' {$ c  w
    $ F, u, h5 p' O+ c; \Example: Fibonacci Sequence( B$ a# n1 Q/ F" d  H9 L

    - ~7 ^( b0 @8 |# HThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    ; R8 m2 W) j) }! Z
    3 B+ j3 A8 I9 y9 j8 m    Base case: fib(0) = 0, fib(1) = 1* @+ ?! `* v6 H$ B, w" ~3 t

    7 l8 h8 v- F/ j4 t' X    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    ' i. U# Z5 G0 r& ^- F6 ]0 F0 l
    ' @+ m  Q; b9 i" |9 R; [python$ Z0 I* j. O7 f6 o5 S4 l

    $ \* j* ?- E  P! M; n- e' a0 D
    , _! J% s2 Z1 S5 n. X& o5 w" a; jdef fibonacci(n):+ d- q: m  X. C  \1 b  D3 l# w
        # Base cases
    0 g: J3 h: w7 z' z0 d2 y- l4 T    if n == 0:
    # |" y% c* o" y' f& g; g        return 0
    " e- b0 i1 \7 R( p$ t- C    elif n == 1:
    + [. F* z3 c4 _/ N8 e- G' J        return 1
      @8 H7 P1 Z& i' m    # Recursive case
    3 ]6 m" y/ f8 M6 }    else:
    ' v1 B1 W! G( t* ~+ T        return fibonacci(n - 1) + fibonacci(n - 2)
    4 E; _$ R; N# f: g9 n3 G& L2 q( L1 q2 a; m) S" n: p
    # Example usage
    & p8 a6 s" C; T6 }" fprint(fibonacci(6))  # Output: 8
    ; c8 l8 Y/ E' c" U, P1 @. M
    * d* T6 N% Y8 A  ~- L* T) M7 STail Recursion% i6 L! h/ E6 S5 j- w# h
    ; y6 @: u) _1 N4 T9 G, @: P2 l" |! s& V! u
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).2 K+ C$ _) R2 b' @: `0 s
    " e0 q* R' ?$ C8 C$ b: R" Q3 w- ?
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-8 03:06 , Processed in 0.057545 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表