设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 689|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2015-11-30 11:11
  • 签到天数: 2 天

    [LV.1]炼气

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    ( }0 C5 w: G* w5 C
    0 F4 T. f4 d6 V7 `解释的不错! |0 H- y' L* u/ N3 G
    9 W) W2 t$ i1 ~4 a5 d
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。5 ^1 e9 X# ]* {2 h: J

    ) ?- Z: J; q  X$ N 关键要素. A& c6 E9 a! G# ~; R( o! v
    1. **基线条件(Base Case)**
    " J" v" y* a) P- p7 f& f6 U0 o   - 递归终止的条件,防止无限循环
    0 j4 m0 o" @2 R- H   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1, Q+ }' e4 ^; U6 f2 i5 W# W5 I) E

    % g$ `! p: e! C0 x3 V" c9 H2. **递归条件(Recursive Case)**
    % s# ^; ^7 }3 c8 j( m   - 将原问题分解为更小的子问题' t) K3 _) `; E
       - 例如:n! = n × (n-1)!9 A6 L1 F$ x6 s+ Q: B% d

    3 ]9 T# I& Q0 w- k; H  |& i" ?. K" | 经典示例:计算阶乘0 b& t, T' z. g
    python
    ! ~  `: h# i& W2 kdef factorial(n):
    , F, @* c% ~/ a1 m    if n == 0:        # 基线条件& K0 s& @* J  ?, o
            return 1; o8 e! u; s0 u- c1 s
        else:             # 递归条件
    + q1 _9 O2 c. F7 m" O+ P6 S        return n * factorial(n-1)6 l) p3 B2 G7 r) [8 @
    执行过程(以计算 3! 为例):, ]$ e0 i9 c" ^9 m7 a  K
    factorial(3)
    ' u! f1 b: q: v9 J4 F; m% q5 u3 * factorial(2)/ f# h4 t4 t. x$ \- f  s; u1 F, p* E
    3 * (2 * factorial(1))
    9 u0 P% h/ |" Y  r6 l* ]+ h$ m4 N3 * (2 * (1 * factorial(0)))
    7 L" k( {8 `+ S* `' y( r* B3 * (2 * (1 * 1)) = 66 Z% `& n$ o. m! _1 t# l0 B

    9 B1 ^: c) J' G* i4 P' |+ \ 递归思维要点
    0 `( O! j; d  W* Y5 |( X' N7 \2 A7 N* Y1. **信任递归**:假设子问题已经解决,专注当前层逻辑+ F  n- _+ o0 R6 F
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间). x0 M3 |2 r  H6 }8 M9 }
    3. **递推过程**:不断向下分解问题(递)
    ' O4 ^1 Y; t- }  N8 S4. **回溯过程**:组合子问题结果返回(归)
    3 n2 x/ R& N& Q( W5 |+ A7 \) P( g1 P9 e
    注意事项. V6 I2 \" s/ d% |8 h' B
    必须要有终止条件" z3 C$ k, N; f- @$ p. P
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层); {7 \9 e* ?8 Y& y. ^5 z; x
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    & Y9 Q, J! O$ R5 \0 n7 F6 T尾递归优化可以提升效率(但Python不支持)
      N& b+ S) U; u1 c, M5 \# I7 S/ ~9 I. I* w* L. n7 y
    递归 vs 迭代
    ) y) d/ e1 I; d|          | 递归                          | 迭代               |
    % C& |( }: i: f4 d' u, ^! M" g; w' n|----------|-----------------------------|------------------|4 k$ R4 {# v5 X9 G1 F
    | 实现方式    | 函数自调用                        | 循环结构            |
    ; {+ q/ D" Y; ]$ f! || 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |  a- d, r. I0 ?
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |* G9 o  V4 x$ q; t
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    9 m+ S9 n% z6 ]" n" e4 }5 ~1 K: ]$ L9 _) V
    经典递归应用场景
    3 E; ^/ u3 X( H4 N! a1. 文件系统遍历(目录树结构)
    1 d: {6 G% y) }5 C6 [. ~) @2. 快速排序/归并排序算法
    3 ^. y9 V7 d: W' v3. 汉诺塔问题
    7 N( j6 E7 G; I+ z1 l8 j3 ~8 q4. 二叉树遍历(前序/中序/后序)
    / ~' }2 U; R) V$ _6 u, }5. 生成所有可能的组合(回溯算法)
    & b% k$ ~- h, ?# A* K1 M5 ?0 \) l- D4 @' c
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    昨天 06:34
  • 签到天数: 2951 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    ! C. y" ]8 y/ h5 Q我推理机的核心算法应该是二叉树遍历的变种。
    7 I" R- k, h9 K9 [. a另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:" v/ A% T) J1 k) V* k* ~9 o
    Key Idea of Recursion2 I9 z7 f2 W+ L0 }2 g3 G
    4 v$ h2 B# {" L& Y3 S
    A recursive function solves a problem by:0 r) R" L/ q; ~2 N# j9 Z! d' L

    & ^7 o& k7 Z5 h    Breaking the problem into smaller instances of the same problem.
      H; G% v9 O5 Z
    4 l0 s" u/ [3 f3 Y9 p% H9 z4 ?    Solving the smallest instance directly (base case).
    8 z3 z9 Y, f, X6 d7 i9 W. T2 j- k; M6 F8 u
        Combining the results of smaller instances to solve the larger problem.
    # E2 |' H. [7 ^# q& P* v- V8 d4 m: Q7 j3 z. I% \% z! d
    Components of a Recursive Function4 W6 }+ ^1 {( o+ {0 O
    $ m9 q1 A( C+ q: l% W) M% U
        Base Case:
    " y1 l7 B4 d7 h
    ( @# ]* p/ D. S% {! z# x        This is the simplest, smallest instance of the problem that can be solved directly without further recursion., _% m' E) z* I9 B2 \

    / c9 |0 Q# V" y7 V7 y3 Z6 ]& k; m        It acts as the stopping condition to prevent infinite recursion.
    $ @, R) ~5 n/ w4 K  b, S2 q
    & I1 M8 C3 \/ W' a# y        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.  j1 @9 O4 t9 ~: Z7 M- w) \
    ' C0 N) U- f7 e  X! o2 ]# q6 `
        Recursive Case:$ F  e/ I4 y. J
    2 ^6 ^, f9 z# d5 U
            This is where the function calls itself with a smaller or simpler version of the problem.
    6 k$ w& ^) q  M2 a8 ^% g
    3 @4 T! P, z' Z        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).# Z7 \7 y) C2 S" P$ B6 k0 R4 x

    " b! ~8 }: P+ ~# p' bExample: Factorial Calculation
    / [8 H$ E! Z4 A. N; T8 E, E
    + W" A3 s$ y1 l: mThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:& p5 {; P3 e6 S9 D5 S% t
    $ W7 g. ~! E3 W; g8 Z, b8 q0 i6 P
        Base case: 0! = 14 g  v2 c7 f: i/ x. ]
    # D  k% K7 u  ~* o  G2 D2 ]
        Recursive case: n! = n * (n-1)!
    8 ]7 ]' z' T4 ]' f4 c) d
    - Z4 l- x0 ?7 ?7 f; OHere’s how it looks in code (Python):0 _- ^9 C- g3 n. F6 y* v: d% s
    python
    - j& a6 |9 U8 n+ b/ \1 `; s- V6 m5 C# D( Z- R$ c

    & r& b: P+ F+ }! P( X) P4 ~def factorial(n):
    / Y5 `# E; N5 G3 N    # Base case
    ! Z0 c5 V* T* m" G: @" N2 R    if n == 0:2 t  B6 ^3 Y5 k6 s) Q6 z' p
            return 1  P  ^* ?; K* ^0 }
        # Recursive case6 h4 O: K, m9 t. T
        else:" h9 E0 \+ c' r( ^) B+ E9 E" k# I
            return n * factorial(n - 1)+ @0 m+ |6 c  o% l. ^* W4 y6 q
    * f" g: ^4 }: n8 ~5 l
    # Example usage' [4 l! O; {: w
    print(factorial(5))  # Output: 120' B" l) R& J; l2 ?5 H) T

    " R- h( t7 U0 i. w4 t/ ~0 MHow Recursion Works. r' L; i& V/ n: L& t
    ' x, f) m* y6 g  t7 ]  s3 t
        The function keeps calling itself with smaller inputs until it reaches the base case.+ D5 N! L9 n0 ~. c9 F* R; t

    ' m0 r2 d' U; Y- H' `. a& B+ Y    Once the base case is reached, the function starts returning values back up the call stack.
    ( s2 H4 ?/ u  `5 Q% ^2 y9 N( Q8 q7 a, I0 E: K, u
        These returned values are combined to produce the final result.
    # \( S$ |6 G& K$ W6 k
    4 D+ Z9 h  F7 bFor factorial(5):
    . o  ~& o: V) |8 g3 @, b# J/ L- u

    , d+ Y5 D; E4 q6 q0 R) ?5 gfactorial(5) = 5 * factorial(4)
    ( S" |: L) m( f! c' _factorial(4) = 4 * factorial(3)  @$ W  B7 u$ F% e7 {# }
    factorial(3) = 3 * factorial(2)
    / f- i# |) H& m" B% D6 o& Afactorial(2) = 2 * factorial(1)$ p; R! L2 q1 N
    factorial(1) = 1 * factorial(0)
    2 c. o. L/ ?: v# K( ]2 Jfactorial(0) = 1  # Base case
    & {3 N6 [9 b# F6 P" T
    / ]5 J9 K  \  @. iThen, the results are combined:" c; }: ?" ]/ X/ i

    $ \, d0 Z) }& C7 a- x) G$ r0 A2 C- f9 F" B* G5 x
    factorial(1) = 1 * 1 = 1/ o8 W9 d3 @7 P  R9 C- d
    factorial(2) = 2 * 1 = 21 S) M( L# T' [5 k% Z& K2 l3 J
    factorial(3) = 3 * 2 = 6
    % G0 w6 }, M) I& dfactorial(4) = 4 * 6 = 24) ?- Q4 c7 g) X4 u% `
    factorial(5) = 5 * 24 = 120
    . z; M: M! {! c5 X. d
    ; g2 |& N% c, E& d$ Q# NAdvantages of Recursion
    2 W: X8 x% K# m, C: o: g, f) Y; k* E) p, G/ V  N5 r
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    6 G! g+ b( ~3 `2 O( C( s9 o/ w3 q# d; D: _& E6 B8 l( J( R
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    . Y, F: x  {2 z! i# h2 T  ~* o$ s; `+ k
    Disadvantages of Recursion! w: A/ |/ L5 L+ O* L  U

    # |; n! x0 @( M# f    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    % P5 ^9 u; k& Y, M; \. U* X* a& h2 G9 I$ m4 x! H5 R
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).- [$ o. K: F8 q
    . t& o6 h9 N- U; e" n
    When to Use Recursion
    7 ]  l( v- ~; O. e4 a0 A. x+ d0 k  U% C
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).* S: G( z5 W* k

      v! G# b7 H' ^0 g0 K+ v! O4 H    Problems with a clear base case and recursive case.1 Y. P( u+ t& j7 U6 ~, `$ x
    5 T, j. X$ p$ j0 D( v
    Example: Fibonacci Sequence
    * G- n) M8 e7 E" H8 h) u% b" ~  B
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:: i; W# y- F" H7 D7 G' f% w

    / c4 p: m2 g& s9 F+ Y5 \, s    Base case: fib(0) = 0, fib(1) = 1
    ' }" i3 I/ Q. K% B8 j: O: O
    - N" [! L: v  L) l! p, n) I3 k: w    Recursive case: fib(n) = fib(n-1) + fib(n-2)- t- ~( ~' @/ e# e
    2 f1 j& |" D% I7 Q
    python
    ( T& U# r2 l) D5 h
    + `/ F# z6 D3 W* K; s
    # Z: v3 N- Z+ t7 P* D! w5 Rdef fibonacci(n):
    8 t( g: ~- t! @. o    # Base cases8 @, g) [( I7 P. Y' q. L
        if n == 0:# G% B3 _/ Q7 Z& p8 ]
            return 0: T# n: h! M9 j( b0 L! K
        elif n == 1:
    / r" }7 E; J2 a# A: L! |8 g2 }        return 1
    " C. ~5 M& W8 R# ?, |# I) l    # Recursive case
    5 l$ B/ |& X# \* Y+ q    else:
    , N/ F5 ]  w  J9 [2 y6 t, ?        return fibonacci(n - 1) + fibonacci(n - 2)
    ( W1 x& p- o: [9 F( K/ G
    8 l% e% [4 _& ?: m  V# Example usage
    ) {5 S& B! b8 l+ c8 gprint(fibonacci(6))  # Output: 86 Q+ m  A& J3 k9 h) v
    5 _5 i. a% p/ i' X" W. i2 l+ m6 a
    Tail Recursion: I( A% J; p7 h

    / p! P  I, k0 g7 e, STail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion)./ A4 A5 _5 T3 a" {% y& k
    * L+ X$ f& A+ I8 u) y
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-6-16 05:45 , Processed in 0.035808 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表