设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1029|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 - F7 o4 m5 A) h

    / K. ?) L' A1 q4 M4 n' ^解释的不错0 M/ S: t) b! v/ Y# o  `

    , U0 k( m% {# D! y递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。) q/ U0 l+ Q' S0 ]5 O+ @1 u
    2 Q9 V7 R  r6 T! k' S  d9 {7 j
    关键要素
    ( X8 `3 R; ~4 _: o1 ~8 M1. **基线条件(Base Case)**
    ' @  S% |9 E, Z4 v0 n1 r1 K   - 递归终止的条件,防止无限循环
    7 l# T. p" G& [1 z# d   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 19 u" \  {8 q! U0 D
    9 u2 w) C) ~2 T# U$ z
    2. **递归条件(Recursive Case)**
    8 W$ ?5 h3 C1 u' A9 t9 I   - 将原问题分解为更小的子问题, t7 w; E$ `, _- @* r) y
       - 例如:n! = n × (n-1)!
    " k" I' }+ d7 F, r! h: b! ]1 A( k0 h% A
    经典示例:计算阶乘% U+ a# M9 E7 I
    python% }9 q) s' }7 L+ g' T% j% }: H* p
    def factorial(n):% X1 {4 W7 {3 `7 g
        if n == 0:        # 基线条件/ `2 _3 G3 A& K7 ]7 f  s! K: x
            return 1
    ' v- V; i  G8 p    else:             # 递归条件, H! F$ O: ?# W; b  a
            return n * factorial(n-1)# ]1 l) l3 i7 N! y4 c
    执行过程(以计算 3! 为例):' ?* Y! X4 W  ^2 k% u
    factorial(3)9 V( e+ a5 Y- F7 S9 z4 N
    3 * factorial(2)4 T4 m3 M5 x& V! L3 x
    3 * (2 * factorial(1))6 x. X. Q5 q& c4 w) O5 K8 P
    3 * (2 * (1 * factorial(0)))6 G$ W& L& l  G) ]
    3 * (2 * (1 * 1)) = 6" y9 x0 d1 p1 x7 a- i' k
    - q2 _. ~3 {. K7 A, f; h; _/ r
    递归思维要点
    ( F, I( E% L. U* o# E; \9 j1. **信任递归**:假设子问题已经解决,专注当前层逻辑5 _7 H7 P' c  |$ ^/ y
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)0 g: I7 P- J. W
    3. **递推过程**:不断向下分解问题(递)  S! ]1 A* r$ R$ v+ }+ F* K
    4. **回溯过程**:组合子问题结果返回(归)
    2 i8 M5 O) N( r, a
    ! v. c+ b9 @0 G: q 注意事项
    - ^4 [& T# r2 I" A必须要有终止条件
    * n0 ^: e+ o' f& P递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    ) F2 d0 q2 `2 h  @. Z% m4 u# x* ~4 g某些问题用递归更直观(如树遍历),但效率可能不如迭代  F* `& v+ a0 J) u, U9 Q( C
    尾递归优化可以提升效率(但Python不支持)% w4 n# _! U! m
    + [! Z7 q7 J+ y# O+ }; B" }2 J) [/ Q
    递归 vs 迭代
    ; A( N& E; h, H/ L& X|          | 递归                          | 迭代               |
    1 X+ F2 F) f# f4 X|----------|-----------------------------|------------------|
    ' i7 J  Y8 K1 x* g5 P( a| 实现方式    | 函数自调用                        | 循环结构            |
    7 T  P# r. m1 g# i* l| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    6 a0 P# I; O/ G9 o| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    6 V# Y2 x0 ]# _: ~7 _! T8 O2 K$ y| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    4 B: i: w3 j" h; _4 {/ e& i0 g0 H: ^& r- h$ o( p8 h
    经典递归应用场景. X& R/ T0 j  `4 g
    1. 文件系统遍历(目录树结构)
    3 Z& A7 P* w7 ]2. 快速排序/归并排序算法' S  t5 n1 I* I* n$ n, g
    3. 汉诺塔问题
    % ?  C# a# e" ^, x5 {" A# S4. 二叉树遍历(前序/中序/后序)
    2 O5 t  b/ `. R( n0 T5 d5. 生成所有可能的组合(回溯算法)
    . `  Q) s/ @: V9 D6 \2 Z
    1 i5 x6 u/ G* b. w1 [; C9 i/ Q* T2 i试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    5 小时前
  • 签到天数: 3076 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    8 Q- D9 W: T9 m; @我推理机的核心算法应该是二叉树遍历的变种。
    7 C! U3 T# T5 E1 l4 j另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    9 O1 O5 \# i5 c, W" E' fKey Idea of Recursion
    5 ~: Y9 s( `1 ^7 p) ]% ~. r' `/ N0 F
    8 p4 v2 z9 S( ~% P! c, p9 kA recursive function solves a problem by:
    2 B" h4 i) D* j) R( ]. p* f4 k8 [' _% Y% u9 ]% ~
        Breaking the problem into smaller instances of the same problem.
    ) |2 `( b2 R1 u9 e) z
    " m- K# n* N7 Z6 f- {# Q    Solving the smallest instance directly (base case).
    1 _$ z; b# V; ^0 L  N5 Q$ i; ^: L' ?! W* f4 l
        Combining the results of smaller instances to solve the larger problem.
    ! W; X: R. E# M/ z" o/ y- u& n1 J+ |
    Components of a Recursive Function
    8 ?0 G* T+ ?1 I( U5 j8 G' O" h$ ?# W6 }  W0 ^4 A
        Base Case:
    - h. P+ n2 e$ f: h
    1 U% ~3 n. t- y# ^+ f" Q! d* Z5 G8 o        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.8 s5 Z5 @! s. N0 U. c& e9 s* T
    : V+ F. i; X/ Q& u3 t8 |
            It acts as the stopping condition to prevent infinite recursion.' [% i6 O% ^. \% S3 O& `- ]
    ; ^; E5 b* ~/ L
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.3 x4 l2 L+ x0 \' U7 q# S( c
    " M) u) |: R  u: L+ @( u$ v
        Recursive Case:
    + Y$ T0 M2 |9 R6 k0 d
    8 ]! q* d, ]. I6 k1 ]        This is where the function calls itself with a smaller or simpler version of the problem.
    3 U( z- T& i+ `* p, V- c; l) |& x& G/ {" c6 p. K9 J
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    7 D; l! o0 Z, [! |$ e1 [/ e$ M8 g$ S' E1 ^  ~
    Example: Factorial Calculation
    1 ~0 P- B' K1 B- A! S& o3 z
    5 m0 H: p# L0 P  W! K4 B* vThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:5 a; c! `0 a8 o. s$ M% f7 ^

    7 P# x! S8 f, w    Base case: 0! = 1
    4 A" \: f3 T& [8 E5 }6 }8 v# [9 E8 j
        Recursive case: n! = n * (n-1)!: Q4 D# V2 s7 `- z$ Y

    - P3 Y* b: P* o+ ^& ?Here’s how it looks in code (Python):' }2 r' I0 O$ f8 v
    python
    0 E4 D4 G6 n* W. Q0 Z; N9 T3 i
    . r  M) x' x, o0 }. j+ V% l& d! u9 B
    - ~+ F. a0 O4 |5 Z: ndef factorial(n):
    1 y$ T. M! t" S; h0 O6 `6 @    # Base case
    + D* j6 e: }) l, n1 ]    if n == 0:
    & ~, i8 s  }3 g- q8 o        return 1! z( b# W9 K! j
        # Recursive case3 x% V* l, ~( {  k/ O3 X
        else:
    % o" D4 D  W; S        return n * factorial(n - 1)
    ' D0 }$ W: {- c4 }' {) g- V1 V! n8 M6 {( `, I+ w
    # Example usage9 S. z3 D; k$ g  C% ]
    print(factorial(5))  # Output: 120
    2 H, m! j6 |7 W; Q' m7 B& j# c/ z. Q0 \1 d2 i
    How Recursion Works1 b5 o6 J" m8 _
    2 ^: D% L& b- c. R& {7 j! l
        The function keeps calling itself with smaller inputs until it reaches the base case.
    ' f9 v0 f1 {) t# c* [
    8 N* A+ [/ d6 V8 w& i0 e4 y) Z    Once the base case is reached, the function starts returning values back up the call stack.
    % q9 u/ T7 B1 b& O( H  Z+ P4 S+ v; L  m# B% m2 ?0 _
        These returned values are combined to produce the final result.; E. t8 l1 ?" ?. a

    ) y# @" O* W1 q- e/ d/ V% r) NFor factorial(5):( y+ p1 A* B1 E, \

    2 R: J( Y0 Q, q. X" o! j4 R& |: W8 }5 d8 W; L
    factorial(5) = 5 * factorial(4)
    . ]( V( b8 X; ^5 [: E1 Ffactorial(4) = 4 * factorial(3)# }. d) s; [7 \5 ?
    factorial(3) = 3 * factorial(2)* Q$ r( N( W! B" ^. g  }" k
    factorial(2) = 2 * factorial(1): J6 q5 {" S& ^0 g+ V
    factorial(1) = 1 * factorial(0)
    ; v* `# V6 m+ b% U" sfactorial(0) = 1  # Base case
    ! Q: C7 c6 {5 D' w' N/ H4 W1 r- T" j+ i
    Then, the results are combined:$ _8 J2 t6 t* A) X( a' `+ W, Q
    % T6 b7 l3 E  ?9 q& F
      N' X' u# P/ X# T. Q0 X5 D
    factorial(1) = 1 * 1 = 1
    + d; p' y7 o% L5 |' u( ]factorial(2) = 2 * 1 = 24 s. ]; [9 H& u
    factorial(3) = 3 * 2 = 66 }  }7 x% ?! q  M4 g
    factorial(4) = 4 * 6 = 241 p  R7 F* z7 t9 M. z' a
    factorial(5) = 5 * 24 = 120
    3 f0 g5 M2 w3 k
    6 ~+ W5 B0 Z* cAdvantages of Recursion
    & ^4 o: ]1 }/ X2 |4 g( T" D1 o/ `! d; T, j
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).  a2 s# C1 |0 Q. D2 E3 Y$ M& H0 g
    & b8 G0 y/ v/ g* z" x0 m+ A# }* B
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    % L* Z3 }0 v* a- j9 |  Q4 Y4 U4 Q( z, m3 _. L3 K
    Disadvantages of Recursion
    5 {# X7 |" D5 l: R- }; j7 }
    3 E0 q3 z4 H% z5 t+ d: U    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion., q; l! k! o$ ~3 o- U% y

    3 ~( g- P! x# v- j, Y2 F7 x! j    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).7 V2 }' _4 w1 R" d# s5 [
    , E$ y2 v2 D* W4 D- }1 x
    When to Use Recursion( `6 y6 C/ W1 h* l2 Y! s3 Y8 ~
    % F* P8 ?  C. ~5 ?% O
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    8 c& _" x! ]. V9 T# u. m2 {" z$ P. A& ], w7 T9 s
        Problems with a clear base case and recursive case.
    % N% W6 u: H( T' o7 W4 q1 N# Z7 R0 E% t$ k" _
    Example: Fibonacci Sequence9 M9 c, I- J8 G  A* \8 _

    . D4 i& \  Z; a# qThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    ; R# A* L- K& r5 w3 k) R5 R& {4 [' e+ s
        Base case: fib(0) = 0, fib(1) = 1
    5 d6 c8 I, u" `9 M6 S& q  q( `+ g# [8 x' R/ F. r; S& ~/ i4 J
        Recursive case: fib(n) = fib(n-1) + fib(n-2)( R# O7 P& K8 B4 f
    : }7 K0 Q! Z( E3 J  P% P
    python, [! g* b3 M, b+ Y. T% R+ o
    4 l) L& R9 @) s, J( v) v# ^% y
    * X' f, d& p2 f; q8 |; H! G
    def fibonacci(n):
    * v1 `! E5 W( P: N  a/ c5 B/ y/ K' l    # Base cases2 _6 v* `; Z& o) r. X
        if n == 0:
    9 y* V8 a% m! N- ]        return 0! `6 }: m. q0 S- H3 Q+ d9 p0 Z
        elif n == 1:
    ! O; V# H, o( x        return 18 E2 a% l6 L/ `' Z" R& {8 V, [
        # Recursive case
    0 y" M5 I  e; x7 A. X' q1 C! o    else:
    & y+ e  `" F9 f' u2 ?2 I) V        return fibonacci(n - 1) + fibonacci(n - 2): Y- o; D$ s$ Q  e; i: `

    ; a* _' B3 D6 \- E, w& q- X# Example usage
    $ H- }% l( T/ vprint(fibonacci(6))  # Output: 8
    - K( T( {, K8 n7 G+ Y( `) ]) a- o' v
    Tail Recursion
    6 k: d& \7 q( a9 ]6 G# u
    5 |" `; Y8 e, [8 ~# KTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    / c& ]) U- r/ S) A) A5 k. Z. {1 \, @" r7 s0 M9 }$ `
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-10-26 14:03 , Processed in 0.039579 second(s), 22 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表