设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1627|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 " f) a7 K6 J3 [' m. t( e0 N  _

    7 C) r2 e& f5 f( |( K8 A- E解释的不错" C- s( o. q# x' w. R% A  v2 P

    5 E& F. y* n3 h" t1 t9 O1 x递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    3 s' b9 d: g8 w# ?1 c! O$ {6 H5 Z: W* i: u, W" ?4 g1 O
    关键要素
    4 j( H5 z3 \: M/ a  X1. **基线条件(Base Case)**
    ; f9 l3 o$ J$ f1 Y$ c) f   - 递归终止的条件,防止无限循环5 R  f3 L5 C/ \; m$ @: l7 D
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1$ y( [8 `1 ?6 r1 r
    $ [0 x* F/ I% p% z8 t
    2. **递归条件(Recursive Case)**- ^; E2 H6 d+ |0 a/ q, Y
       - 将原问题分解为更小的子问题/ ]! k. N: a% b1 n9 u' Q' ?
       - 例如:n! = n × (n-1)!
    " T# {/ b' b; J, Z
    . r6 D& d6 f$ f/ P 经典示例:计算阶乘
    ) S$ I' p+ f' Y& r9 [9 [/ S! C; j# p+ xpython: z. K5 K" U4 Y5 A/ A; C% b
    def factorial(n):
    " D$ m: w% R% F- `! r( v    if n == 0:        # 基线条件
    ' D9 ]6 p/ ]/ h; Y. M3 i& r6 h        return 15 w+ n+ Q" ~+ m3 ?
        else:             # 递归条件
    / f6 J5 }( B+ _! F' E        return n * factorial(n-1)
    8 C' w/ g4 ]; z: T4 V执行过程(以计算 3! 为例):
      P0 F2 e3 j% m% x0 C- H& T  S7 ufactorial(3)
    ( K0 [+ t% m& O1 P! t: P- t3 * factorial(2)# w# v. V: t: M! P( |
    3 * (2 * factorial(1))
    / M# l& R$ @' C" l+ J3 P3 * (2 * (1 * factorial(0)))4 M  {$ F* l% q$ E: t+ O
    3 * (2 * (1 * 1)) = 6" W0 r. v6 C+ E6 d7 _

    7 j7 z$ W+ N; ?7 ?. C 递归思维要点
    % N) H7 [  \8 t- ]& Z0 z; }& ~1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    ) d# F: A8 R& U, f# m) A8 D* V( Y2. **栈结构**:每次调用都会创建新的栈帧(内存空间)) b9 j/ B9 h2 b8 S1 o- Q: Q% W) [
    3. **递推过程**:不断向下分解问题(递)
    0 _1 I5 d* G% \. K, I1 |4. **回溯过程**:组合子问题结果返回(归)
    9 O" M; u, U: y' B* _$ f; X* y' A( }! U# W8 v# X
    注意事项* H& }1 L, ?; H6 i( H4 s
    必须要有终止条件7 `; [2 _% B: f
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)# n4 g: S" x, T; b! `0 e. d" `
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    . M$ B) ]; w: u尾递归优化可以提升效率(但Python不支持)
    8 m% ~5 }' H- [  I! a+ |) `& H, L* v" @$ Y* y! Q
    递归 vs 迭代9 u# o8 U, W1 K* r0 W  Y
    |          | 递归                          | 迭代               |
    3 b  Z2 ^8 L3 J|----------|-----------------------------|------------------|$ d. K( x; Z8 B7 V. H: f" g
    | 实现方式    | 函数自调用                        | 循环结构            |6 H' O6 v; H6 H$ o* }
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |- \" V/ {+ Z) B' s6 p) [/ u
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |  _! l+ `. `6 b& V! r  e
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |  w) K+ f2 u1 r, }7 P1 H

    $ Y. U. o* {2 C* X6 `3 J9 ] 经典递归应用场景
    ) o, s( m# ]) I7 d6 c' ^& A1. 文件系统遍历(目录树结构)7 n  b6 J6 f0 a0 b5 M. Y
    2. 快速排序/归并排序算法( [% r$ [; B9 z4 N" z
    3. 汉诺塔问题
    * K# l9 e4 S' O" H* O4. 二叉树遍历(前序/中序/后序)/ A: r9 H. \) q! _: l1 U6 H
    5. 生成所有可能的组合(回溯算法)
    + w) v# y3 K5 [9 Y! ?% d7 @
    " t0 n: l+ ]# P$ ^7 y8 T$ N试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    11 小时前
  • 签到天数: 3126 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    2 ]9 |' O2 c; t1 Z* b我推理机的核心算法应该是二叉树遍历的变种。
    " B  w% z7 q# p/ X  b, w2 B另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    & z) M' [1 ]/ X6 y" N; f; O0 CKey Idea of Recursion# x" G1 O: s9 {  O* Q# L% ~
    % _( w0 Q% ?1 z% Q3 J1 _
    A recursive function solves a problem by:# W. i" A6 ^3 |7 d
    ; C0 h" D- Q) m) l, m3 e  c% s
        Breaking the problem into smaller instances of the same problem." a4 F3 {# e6 l) c  G1 i5 d; F
    " d" n; c5 t3 [. d2 q' r& I
        Solving the smallest instance directly (base case).
    6 s1 U+ v& i) P  G4 E  K" v( Z, ]& P0 X) y/ @
        Combining the results of smaller instances to solve the larger problem.6 m1 ?. w- u, l  K
    8 B2 I$ \  n! L' F- C, D5 O7 k' h
    Components of a Recursive Function
    ! @3 L( n; X# o( E
    # o( Y' L: c! j/ _    Base Case:
    9 s' `" d: a/ V  D3 x" F5 T$ z: }- j5 G  k+ p6 K% ~
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.$ {( P4 Z' `6 r

    2 a1 s% x: K" V0 f+ K' A2 x        It acts as the stopping condition to prevent infinite recursion.$ ]3 ]9 v, z4 C5 ]
      y) q2 Z) f3 j% j( n# C& q: Y: k
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.; l2 |: X- F$ b

    - F( k+ X' E* y$ U- D    Recursive Case:6 t; b) D( E8 W- n# I* u
    0 Q+ v# M! J; `5 n1 b7 W
            This is where the function calls itself with a smaller or simpler version of the problem.
    7 Z( j$ o. H6 a3 A; @" b9 c# }! N  L
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).% O8 L/ ]7 b  w  ^5 ]; O4 D

    ( X7 x) w/ ]; t7 ?, i4 l8 h: ~Example: Factorial Calculation
    / s  v  o' Q& C' S
    & p9 E2 X9 }( K6 BThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:: j5 ?2 }. K* l5 q3 I

    5 G# W  ^2 M5 y' m$ X' y5 w    Base case: 0! = 1  ^7 S, C: X2 R6 z( L5 C) v/ t

    - }! c* y5 {( I1 C: T# Y    Recursive case: n! = n * (n-1)!; m# {6 M  Z6 A! j# o
    * c' L6 b0 f- D  ]
    Here’s how it looks in code (Python):
    % ]& \# t, h  X  H1 @+ U0 mpython, k  R& t1 `9 X' D
    1 r8 S: v( a4 Y4 E! S  ~! K7 [

    , `/ n0 @( }% v5 g3 B& Sdef factorial(n):6 p; a6 ~( \4 _$ k1 V  v( [0 }
        # Base case: ]- W4 l' b) ~* T
        if n == 0:, l8 x0 C+ a  k* N
            return 1& I2 w, C, l& [) Z6 _! |0 M4 x8 e
        # Recursive case
    ; X0 d6 P: a) L, U2 c1 E    else:! Y/ X% |% e, k* m$ U! ?' d
            return n * factorial(n - 1)  U/ f% u& ?; F7 Z8 N- b& L2 L* {

    5 f' V. j. Y) w! R% X6 S# Example usage2 F2 P( w9 g1 ^. K! S3 h6 ?) ^
    print(factorial(5))  # Output: 120
    " V* {, R; X- Q, y1 E5 S. {( _/ V! z4 w" @4 I8 ?
    How Recursion Works
    % |% [$ j9 L7 H% i2 P  i1 D
    9 d0 x) f6 W1 K# f- p/ \    The function keeps calling itself with smaller inputs until it reaches the base case.
    8 ?7 X- O7 L9 m' W) h& m: D" u0 c, o5 J
        Once the base case is reached, the function starts returning values back up the call stack.
    9 x% o; j4 W3 F% ]6 y6 W. `
    7 ?6 p' ~5 o" ~    These returned values are combined to produce the final result.1 }2 R2 {& }. q7 v0 U% o; R8 t

    ; u/ @/ ^' v& @% J) IFor factorial(5):+ u1 i2 I0 I  q3 ~+ D3 e
      f. p; A- U9 Z. F% q
    . {$ b; z" ]) c
    factorial(5) = 5 * factorial(4)  H) [0 x5 N8 s! S
    factorial(4) = 4 * factorial(3)
    - Q6 z. N8 F9 i% Gfactorial(3) = 3 * factorial(2)2 i+ t7 a! ?* h7 {; d
    factorial(2) = 2 * factorial(1)
    ' c- }6 w! P3 P& m$ [5 ]+ u- s7 N# lfactorial(1) = 1 * factorial(0)
    5 R! `+ I0 V. m1 M  |factorial(0) = 1  # Base case+ G  p5 \: i% j0 u' [) W

    ( e1 R2 n" L- w: C" ]" |- U( J" xThen, the results are combined:
    % }2 k  @% D! K$ k6 F. Z0 e) s
    9 ?3 L! p) y& w2 N) e' e. ]6 G( @- U3 _+ y3 u
    factorial(1) = 1 * 1 = 1
    $ G6 m1 s0 ~1 Hfactorial(2) = 2 * 1 = 23 [/ I3 l1 k4 R4 [9 k6 i
    factorial(3) = 3 * 2 = 6( O/ F/ a7 m1 q# n  j5 c
    factorial(4) = 4 * 6 = 24
    # v0 i* J4 H7 b- xfactorial(5) = 5 * 24 = 120
    6 d4 a% T/ J% f  Y3 @. F7 w
    % n) n- K8 j: I6 h& W; BAdvantages of Recursion
    4 ?# D- y& O9 W5 p; l& M
    9 o8 }; c/ u. j4 C$ N- z0 P    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).; h; @1 O% K1 W( q  F1 L: |

    ) Q; d3 O. O/ H7 g, i    Readability: Recursive code can be more readable and concise compared to iterative solutions.' {5 Y4 j9 O- U1 T' ~0 q  v2 A9 D

    - _; ]! R1 M% nDisadvantages of Recursion
    9 p. J7 W9 p2 [* ], G6 ~4 y( p5 d" @9 m* t9 h% f3 E, n; j
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.0 C% A# `; J9 u) o" ^8 r

    : T: Y5 E- x) J) P8 q' Y8 `    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    2 _: L8 M+ f3 {' `  J
    8 H7 u: V9 C& z% c, y. M" k- hWhen to Use Recursion
    , L$ o$ L$ J/ x- R: W2 q; d: W6 `) u) {4 R" e
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    8 Y- K* J3 b7 U, ~5 d, i8 u8 C  F4 Y* E# {7 I
        Problems with a clear base case and recursive case.# \% D/ r) k. t' Y/ ^
      ~/ h" C! T5 v
    Example: Fibonacci Sequence0 L! ~. |7 j1 ?) }, t
    ! u7 v, z. S8 F  S6 p6 G
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:& n  T( Q2 M5 u$ d" ]& ~  T# K
    8 f: V9 E0 S0 G9 d  c
        Base case: fib(0) = 0, fib(1) = 1' A5 X  ^+ d2 G' S
    $ ?/ c" O8 L, P! F  ]- K. [' K
        Recursive case: fib(n) = fib(n-1) + fib(n-2)5 X, @( z7 ^" ?+ |/ k# \  G
    - X$ W8 P: Y5 \. V
    python
      E! S8 X& R; d5 D) n8 @2 p
    : G( A6 H  C0 A$ ?0 l5 {3 X+ G1 ?. w8 a5 a
    def fibonacci(n):
    " V' m9 V  ]2 [6 W2 P2 ~    # Base cases+ B1 O$ T6 t4 l
        if n == 0:
    * }8 C* ?, c. z' I- ?+ u) C0 l4 e        return 0
    9 f+ m5 g: z- \4 v8 d! ~  A3 L    elif n == 1:5 [& P/ q3 Z/ F  {4 X
            return 1  `2 `7 Z& j! c* ^. o) T
        # Recursive case& B2 q% e2 H3 w
        else:
    1 B! Z$ _- W. s3 i! J        return fibonacci(n - 1) + fibonacci(n - 2)) m7 ?" ]& Q9 J4 \3 B0 f; B3 u

    ) j0 Q* R" I" w; @% o+ @$ y# Example usage
    , S# D/ p$ E, z- \% |! pprint(fibonacci(6))  # Output: 8
      z% [- j' s5 i; |
    1 B- _3 y& S( R+ u( w" }Tail Recursion
    4 {% R4 J' c/ z) D: c2 H& l% R) s% d6 }7 |
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
      p3 X2 i7 j/ w, Q
    0 w1 \8 w& v3 o% _+ pIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-24 19:37 , Processed in 0.028474 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表