设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1452|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    ! o4 M. {0 ]8 N- C9 T  |; b0 U: _# e% J  ~& p
    解释的不错, ?+ Y7 h" j8 i+ _2 o  W

    ) @0 H; f% R( u) M, ~  S递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。% s/ Y$ j  s; L
    % r6 ]9 z6 i% c) g
    关键要素
    % R9 i6 t) k* l$ v( K  @4 Y1. **基线条件(Base Case)**7 Y) m& k! k9 R6 S- X
       - 递归终止的条件,防止无限循环
    0 g* T$ W& C' w- ?/ U$ J: R, R   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 10 y( d& P8 x9 k+ D" G6 h+ Z  D" R6 p

    $ D% p- k! F. @" A8 |' E, i1 j0 F2. **递归条件(Recursive Case)**
    9 p  p/ O: \4 G3 B7 D' H   - 将原问题分解为更小的子问题
    $ L( i9 {" x3 }; _# p8 t   - 例如:n! = n × (n-1)!
    4 A- ?4 ^. }7 t0 D) r6 K8 x3 M
    : p8 g5 T( Y0 J9 {1 j1 A) q 经典示例:计算阶乘
    * `+ I0 H* e" s4 ^' }! q1 ypython3 }* a2 B8 Y* t) O
    def factorial(n):" M1 Q8 [+ g& P3 V4 Y1 j9 N
        if n == 0:        # 基线条件
    . i# I% c, |9 ^/ m5 h; b        return 1
    : G% O0 N2 @, R) P    else:             # 递归条件! d( H1 G% S( n9 G# {7 x
            return n * factorial(n-1)0 ^8 k4 X2 \, R" l# r0 {
    执行过程(以计算 3! 为例):
    , }8 z: \, ^4 a. z/ D( X& Vfactorial(3)7 N# |" ?. x& d# p( n3 |
    3 * factorial(2)+ r5 G, g' |1 |$ ~* F
    3 * (2 * factorial(1))# Q; V6 [; ~7 J( U
    3 * (2 * (1 * factorial(0)))
    3 v* N" U6 b: w* s7 S  @3 * (2 * (1 * 1)) = 6. ]$ m' i2 A/ M- T( l8 C
    1 B+ j5 O! u1 U, J9 k1 K
    递归思维要点
    ! C  z0 h  X; R: A% m1. **信任递归**:假设子问题已经解决,专注当前层逻辑9 `- `6 A( J8 z; `- {+ k
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    ) i( i6 t- j  m6 h7 k3. **递推过程**:不断向下分解问题(递)
    $ V- e: c% X4 W$ r3 f4. **回溯过程**:组合子问题结果返回(归), o) V8 ~1 F$ J* [0 X+ g

    ! Z, I8 U) \% e6 \' Y2 O1 c. t, y 注意事项
    1 A- k0 y& J0 `6 ^必须要有终止条件' ?; V# b: ]$ u! I6 C7 q. k
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)( E! p& q$ ?  P
    某些问题用递归更直观(如树遍历),但效率可能不如迭代: _7 L6 A1 V8 O; u
    尾递归优化可以提升效率(但Python不支持)
    % ^$ o( {+ ~* e- u" [! d+ V9 p8 q3 Z  Z
    递归 vs 迭代5 u) i( b1 K2 }& `2 f5 b
    |          | 递归                          | 迭代               |
    & \7 I2 j3 b* k  ~% u) L0 I2 ~4 y|----------|-----------------------------|------------------|
    ; w+ \8 X7 ]& y- {( Q4 H& b# _4 U| 实现方式    | 函数自调用                        | 循环结构            |
    ; z1 \: N  `& p| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    ! L; W) ^7 ~8 Y) y/ K5 p6 W| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    4 \7 o3 d( z+ N% {2 X) B2 X, d. ]. H| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    ' r( d# ?/ U1 h" C6 F# Y" \$ P! _) I9 N: e
    经典递归应用场景
    + t+ u+ B6 n( C! w  z9 c( m1. 文件系统遍历(目录树结构)8 i2 y3 }8 @- ?$ Y; U+ J+ j
    2. 快速排序/归并排序算法) a5 H* ]* K# {
    3. 汉诺塔问题
    ( n( s  V! J( G. E( N$ W6 V4 z4. 二叉树遍历(前序/中序/后序)' f+ s3 m" z: Q+ P  v: M' d) ^( x2 n
    5. 生成所有可能的组合(回溯算法)6 v- q+ k, A. M

    ' }" j/ U1 ?; j" d) i" H试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    13 小时前
  • 签到天数: 3114 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    6 ~& D5 c$ @4 c. \我推理机的核心算法应该是二叉树遍历的变种。
    7 L! P5 V+ q7 v& D0 _$ \另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:3 _8 F8 W, i" z8 x9 m/ |" x) @, t4 ?
    Key Idea of Recursion" e8 S7 ^$ T0 W. ^

      j! C3 r& o7 }# c% }1 k5 ZA recursive function solves a problem by:
    ; B6 G& ~& A/ y. h: E8 B" ^) M. k6 P2 G9 f+ O7 o$ d2 Y
        Breaking the problem into smaller instances of the same problem.; R- {' g+ e, y
    . K6 b1 c& `: j4 L7 w
        Solving the smallest instance directly (base case).) q& K: q" a0 b3 C8 G3 T/ W

    " |! l3 k" X5 K! Y+ o$ f% L    Combining the results of smaller instances to solve the larger problem.
    $ A  N7 L* ?. L$ [9 k& _/ k
      }) F9 f$ G/ P+ A2 I6 D& Z: J+ YComponents of a Recursive Function
    9 Y$ ]  ^# a1 s5 @/ d3 Z! O" V' Q9 h
        Base Case:
    $ }- ?/ p5 q& Z# z0 j" z$ J3 Z4 o+ Q5 f' x  F8 E
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    " D0 V, \/ e# n; ^
    ) j4 k/ m/ y3 R9 A  M- u! G* x        It acts as the stopping condition to prevent infinite recursion.4 ~; c' ~- G: v+ a# h" Y( f
    ' v4 l- I3 @" |
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.% G3 I1 F, V$ Z( j4 q: Z0 @

    0 z3 |6 p! R9 E8 ?+ [" }6 f7 j    Recursive Case:
    , K. ~2 a8 c8 q$ ^3 y! |* n4 G; B4 q
    3 ?5 `' Q; l- a0 }" s0 O        This is where the function calls itself with a smaller or simpler version of the problem.6 r$ O3 p* F1 r8 H1 b
    . m2 U9 \7 F3 r) L* t* ~) ]0 p- i+ Z
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).7 V. i# Z' s3 x) q5 {" i0 l. |
    ) L( s1 J0 V8 Y% f
    Example: Factorial Calculation
    % q$ N: m' o4 i; s2 N
    & N- j5 Z5 W6 `8 B. vThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    6 D6 t8 X% P+ x( `- X5 F, [7 ~! R, l7 B' `* ~; M  s9 @/ W
        Base case: 0! = 18 n* `6 U( [$ T) J
    " A0 h% g; f: f. Y
        Recursive case: n! = n * (n-1)!
    - `4 O5 {$ N: x; ?1 W4 V7 V3 W% ~- |
    Here’s how it looks in code (Python):$ {7 z& u+ z8 `3 L2 J& w. }
    python+ u( G$ K% {$ ~* f
    9 \5 D- ~; [. t5 m+ d( T" l

    1 N6 T/ c# {# _! s9 idef factorial(n):# g: Z3 O/ d% S& `  |; T" ~
        # Base case# k9 O5 G7 \0 r
        if n == 0:
    ! }- P6 r* |$ I3 n. I; E        return 1' V  H" U/ j! {5 @' b
        # Recursive case* {5 u& V# X% x! P- D9 w. v6 A
        else:; N) l. L6 J) G# z% r, E! J
            return n * factorial(n - 1)
    : \7 c* a+ U3 i, f2 }, K0 h$ l8 q5 z- U
    # Example usage
    / C, @% n" B- X7 M' x, _4 k2 Vprint(factorial(5))  # Output: 120  N* X0 i& W# }, p: q
    , R+ f' \( ^! K
    How Recursion Works
    , w5 ]/ I  j) g1 d7 ]0 ~* w" B; y
    * b# n% m: X" |    The function keeps calling itself with smaller inputs until it reaches the base case.
    8 J, K+ C, U# r7 ~& w( x: a  t3 _2 ^; G. f' _4 P* p5 u
        Once the base case is reached, the function starts returning values back up the call stack.
    ) Q7 i7 E6 ^. i5 K/ ^  P# s5 s0 U4 Y- b! E1 Q
        These returned values are combined to produce the final result.- o7 v) b+ r6 X# h" V
    ; k& B+ E: P! p% Z( P4 A# `
    For factorial(5):
    ) Z+ m$ c8 @0 B# A1 C; M8 T9 Q# K6 b$ p$ A( p
    4 b* J  W! p6 z" Y
    factorial(5) = 5 * factorial(4): T4 w, P! p# K' I4 p1 `2 }7 z; I7 h
    factorial(4) = 4 * factorial(3)0 Z" t' X( s* y* A$ r+ [; Y: J
    factorial(3) = 3 * factorial(2)& y& I# w" l- w' W3 p2 J4 V
    factorial(2) = 2 * factorial(1)4 X. n. `9 t; Q  N
    factorial(1) = 1 * factorial(0)
    2 i; }/ V; f( ^' Ffactorial(0) = 1  # Base case, l7 ?5 z4 `% @# F

    0 h& g$ j: c: w/ c6 V' ~Then, the results are combined:
    / \% U* P- P4 I0 F0 p) B! r' {( c
    # P% m# r$ l* c4 w% Z
    ; M; g6 ?% P0 Hfactorial(1) = 1 * 1 = 13 W: g. B  N' ~2 t
    factorial(2) = 2 * 1 = 2" q: p0 z- {- b& e4 {
    factorial(3) = 3 * 2 = 6# j  E7 e; H- @9 ]
    factorial(4) = 4 * 6 = 24) j' |* n, J1 {) @: T
    factorial(5) = 5 * 24 = 1206 |% y0 T1 F+ v' i+ ~8 x
    ) u$ s3 N5 k( ]" |* I. y. k
    Advantages of Recursion( [+ C4 {- q9 M
      r1 j0 L1 e. P5 i& y1 M
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).7 Q9 D( T7 c4 c8 R5 n
    ! n& M5 f; \5 K8 a2 d
        Readability: Recursive code can be more readable and concise compared to iterative solutions.9 j$ q2 \8 g+ {0 S+ p4 B/ O
    ' v: R- M: O$ q* S5 N5 |
    Disadvantages of Recursion
    2 \: [1 ?$ q1 U" _3 Q
    . @+ Y3 h1 T( q. o" N( \    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    - ]9 L8 C; W5 c) g' s& Z3 u: ~" I0 q- v
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization)./ H( x4 \* N# D. O$ g
    . i2 t  k* d( I  K
    When to Use Recursion4 T& h& s8 {5 ?; f6 K( ^
    3 t* z3 ?% X4 E
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    2 e! T0 g$ ?4 [( K* z& S6 z1 s  d3 c3 i" x; B7 p
        Problems with a clear base case and recursive case.# b- N+ ^+ z/ M2 |! [
    / k% ?; H% M/ P7 v+ L8 Z
    Example: Fibonacci Sequence
    + @1 B  [/ m: a" Q9 Y3 b  w2 u4 B7 H) f1 h5 s; p
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    " T3 G9 O' C2 S+ G
    , Q- u) m. U+ s    Base case: fib(0) = 0, fib(1) = 1
    , _( J% I$ Z# R/ F5 J$ j( ?0 v5 f0 p& l2 n2 M' w5 o
        Recursive case: fib(n) = fib(n-1) + fib(n-2)9 O4 A6 j6 J" @+ R( }9 a$ R. \: Q2 _

    - J1 Q) ^4 a: l6 k' t  Q8 F# ppython1 T/ ^' t4 V3 c* f. y0 l! ^3 \( P

    & x" G+ a/ B: K8 o0 X( q# ]* Y2 @9 e. C' e% B
    def fibonacci(n):/ V6 q' Z+ K: Z5 x( c1 N
        # Base cases+ p6 Y2 M* u1 y! W: n3 q6 G
        if n == 0:7 ~2 x. a: y% I2 T7 m7 Z7 T
            return 0
    ; `% }& q5 v  r! T    elif n == 1:! N( S' ]! z( K" Q0 l
            return 1
    / g9 x! U" a! d0 Y8 N) |7 E# J: n    # Recursive case6 i. T! J2 ^' v3 r5 W
        else:' X3 ~& c" Q, h
            return fibonacci(n - 1) + fibonacci(n - 2), U& n8 K) J' T+ J; s

    : G; l: |. v$ h! Q' r# Example usage
    7 G, ?. I: n  [$ g1 j( ]5 ?print(fibonacci(6))  # Output: 8
    ) p) x$ P; ?2 d2 l
    4 [1 f# X+ o4 |Tail Recursion: U  D# i/ V  Q1 y6 c

    : S0 B3 Y; O  s% W; `  mTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).+ @; C; m( K' B8 D, t$ m* Y6 q

    8 V! l7 l+ V1 hIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-10 20:26 , Processed in 0.030091 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表