设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 949|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    ) v) T4 o% i$ @
    & k" W" q1 q+ Z解释的不错' V! s+ D" e4 l; ^3 P+ O
    & J4 o9 b1 M2 Z% k1 |9 g+ ?
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    5 |# o: r0 _5 {$ ~' _
    : b% I# B# x0 R3 }% l. b 关键要素
    % F: G* E. v! p  s7 E1. **基线条件(Base Case)**
    * g. d9 j/ r4 H6 L7 t   - 递归终止的条件,防止无限循环, P2 m- t% b% I5 _! x9 n, M! F9 E
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    5 T  d& Z8 v2 a5 H6 q' H2 I
    8 j$ u$ U2 I3 W9 T$ I6 a2 M2. **递归条件(Recursive Case)**
    : \# \8 v$ {* A5 [8 @) l  ?   - 将原问题分解为更小的子问题
    , r+ ]! }% a7 o1 @! {   - 例如:n! = n × (n-1)!" C3 e3 n/ [* X
    1 V: Q# F0 j; L
    经典示例:计算阶乘
    / K/ O: R0 ]. Xpython' v( K! \% ]+ K# F0 o
    def factorial(n):2 x. u# z, `5 _" \/ ?6 @
        if n == 0:        # 基线条件
    2 `( B5 s) Y6 B( p        return 19 B) V2 |" {! U5 a2 f
        else:             # 递归条件
    7 C# _& U0 A" C+ P9 B- g        return n * factorial(n-1)% P, J: K' N0 {2 I0 Y' O
    执行过程(以计算 3! 为例):3 J' }( z- x1 ~" N6 ^, e! _
    factorial(3)
    * p, t" L% A" g% T, m9 v) a6 r# p$ Q3 * factorial(2)
    0 I2 Q, I+ A; _9 }3 * (2 * factorial(1))
    ' X2 G# C+ r: j3 * (2 * (1 * factorial(0)))' u7 ]4 Y/ L% z; `; J0 Q
    3 * (2 * (1 * 1)) = 6
    - y8 E$ x, h5 b6 r) f7 I* V0 m0 P& ?# j  X2 H7 t
    递归思维要点
    ! M6 z7 M* M- ^2 K3 S/ s; v: W1. **信任递归**:假设子问题已经解决,专注当前层逻辑9 T0 x( Q- w' J
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    + X8 o) W  m$ i3. **递推过程**:不断向下分解问题(递)
    . B% F1 C% F# [; m4. **回溯过程**:组合子问题结果返回(归)" f+ y- m3 X) U2 z8 K7 ~

    1 p6 T6 J  R' A" V 注意事项
    / f2 z; i) t9 h4 _! M7 i必须要有终止条件, b9 ?4 L: v9 H7 A0 l" U
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)+ p5 L) u+ Y9 z& \0 Y# q. F
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    * x. m! P; ~0 Y9 y尾递归优化可以提升效率(但Python不支持)
    ! X5 T8 J2 [: `, ^/ j0 {3 z# s! {+ w  D. b; @
    递归 vs 迭代3 ?# D- k% g# L- l3 Z' }! W
    |          | 递归                          | 迭代               |1 |. V1 J9 l5 ]2 D, M
    |----------|-----------------------------|------------------|- Q+ _: ]7 A- E" f" z; l
    | 实现方式    | 函数自调用                        | 循环结构            |
    ' m% V; b3 J5 Q: G9 q| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    5 M: n8 a" t! z: r0 _: [| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |* K' L  c' n$ c8 l$ H
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    $ _2 M+ s4 Z. d. |( I5 J# {- i: i
    经典递归应用场景
    + X6 V% p( I  _' M( J1. 文件系统遍历(目录树结构)9 f  L& B. i2 e5 b" m
    2. 快速排序/归并排序算法& w) L* @$ i6 S+ _3 s
    3. 汉诺塔问题* ^2 [2 e( p( P4 g
    4. 二叉树遍历(前序/中序/后序)
      _3 d/ w% k5 H2 I9 B& G) J( ]/ J5. 生成所有可能的组合(回溯算法)- c# w1 T  O1 @3 |
    ) T+ c% m' E' k! Z
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    11 小时前
  • 签到天数: 3043 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    ; M9 v" Y" s/ n. f; n, I# P4 d! P; s2 u# L我推理机的核心算法应该是二叉树遍历的变种。
    * M) \( N' ~1 P& u' W另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    . y' A+ X. ~; ]Key Idea of Recursion. o& n8 E8 U  z
    9 p* X& T8 {' \
    A recursive function solves a problem by:
    4 x5 x: \  z2 [- b6 c+ Q
    3 W* A( P5 m- P2 c" ]    Breaking the problem into smaller instances of the same problem.$ g' Z( S' {* o7 \% ]0 X

    * I2 S1 i6 H! x3 X    Solving the smallest instance directly (base case).' ^: f3 M2 v% q! i2 f
    ( C& }0 n& {7 ~0 A* h
        Combining the results of smaller instances to solve the larger problem.
    ! R0 r/ e+ F/ S* U, q6 W
    $ V* ~1 F  ^7 T& ?Components of a Recursive Function
    . u5 O6 m% ?! J  I& j' l3 G0 [9 t; i0 i7 o# Q
        Base Case:
    0 o/ T5 Q3 F) P
    % {# R, ]+ J- o5 Z$ ]0 p        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    - k( w9 Z! h8 W0 ?" v9 T/ ]/ I! b' P8 f
            It acts as the stopping condition to prevent infinite recursion.
    ( T, f3 R! f" D% y  X; n) P4 ?+ F, r6 d7 j
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.4 U* C8 K. t* I' E* i
    - p3 O! U: D& c
        Recursive Case:$ k3 F1 Z+ X: ]3 L
    2 x& h# _4 F  B% V+ A& d: e
            This is where the function calls itself with a smaller or simpler version of the problem.2 g2 x( I; r: v6 f7 g& y

    ( e2 D0 C2 |2 n9 s! u7 s        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).9 G  X& I; ~& w5 P

    3 e; ~8 s1 p, ]Example: Factorial Calculation3 D9 x  E6 m. \4 @

    4 @: c. ?( o/ j- }The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:: @' s0 q8 F* q
    $ g/ i) t9 f1 `, o/ @
        Base case: 0! = 11 X5 R  d& H" h  S' B# c6 \7 h) z

    5 G' o% z2 j5 w    Recursive case: n! = n * (n-1)!
    - w5 G/ p& E9 h7 m" Y4 p+ v( K) n% M# G6 V
    Here’s how it looks in code (Python):
    + n+ h8 [6 ?4 b; Z9 x" T/ R, C  d7 fpython4 {% ~( _- o& s( @+ ~" J2 H0 p6 o

    , Y, b2 i' Q- _* i( m5 W: ~; ~2 M5 L. j& D+ I0 Z' s! e$ d' R& c: |
    def factorial(n):( t0 U' K4 a9 v/ w6 d! P
        # Base case  f6 R- J1 ]) Q, m- L8 M
        if n == 0:
    ) F, c6 S9 B( y- n7 k4 k* B        return 1
    ( a  ?: v( x- j8 s9 ~* J    # Recursive case
    1 d: S$ i* B: M% q/ V) ]    else:
    6 A) ]  [; i6 q* ^) H% n        return n * factorial(n - 1)
    7 Z7 l* G( w8 h0 ]
    ' i" _( U) `- E2 q8 V0 U# Example usage
    ( g0 U- N$ I! n# H2 s, bprint(factorial(5))  # Output: 120
    ; w0 x1 U6 K8 N* g2 d- v7 |0 K) ?/ m( I% {: A- x6 z
    How Recursion Works0 x7 n- B# I; Z0 q

    ' G4 @  [0 N' S+ Q% J% c" ^; U    The function keeps calling itself with smaller inputs until it reaches the base case.
    # E7 }9 @+ K2 E1 \; J  O& K/ {2 l) V- C) _( o2 [
        Once the base case is reached, the function starts returning values back up the call stack.3 f6 M. t  s5 S
    " a5 l% j6 ?5 A) @
        These returned values are combined to produce the final result.  M% A3 q  g' I; I9 N% ?! Y
    5 y. P! ~! }0 A5 b8 W* e
    For factorial(5):
    6 W) h. k9 I' v0 a
    % Y1 j8 u5 i7 f3 [/ h/ b
    # A% U; |" |% T4 I3 r+ v* c' W. ^factorial(5) = 5 * factorial(4): @0 q4 A# Z& D. b8 u$ K
    factorial(4) = 4 * factorial(3)
    0 t0 [$ s+ \* i0 n! `  X9 V1 Dfactorial(3) = 3 * factorial(2)
    % P5 e; b5 z. M) O! i1 e- y8 V7 C0 Mfactorial(2) = 2 * factorial(1)1 O  Y0 D# w( |" E+ M
    factorial(1) = 1 * factorial(0)" `; J2 B0 I" I0 X& ?, k: w8 L
    factorial(0) = 1  # Base case
    , Y; u4 a+ S, Q2 O1 B2 j  f! G# E9 ]) C) b9 ~
    / m2 p. |( V: V, L7 A( O& NThen, the results are combined:
    2 n  Q) ~7 \- q$ Q2 a9 Q  \$ c% L* i$ [" ]' l! e

    " R) ?. J7 ], N" h# Z9 qfactorial(1) = 1 * 1 = 1
    1 n) S* {+ U" ~+ [7 Dfactorial(2) = 2 * 1 = 2! d& R+ }" J# C
    factorial(3) = 3 * 2 = 6
    5 F& N& e( o; G  B5 G) xfactorial(4) = 4 * 6 = 24
    & `$ b3 r- u* vfactorial(5) = 5 * 24 = 120
    ) n2 s5 _3 v0 w3 g/ s: Y& i! U, S. ^5 r# D; G
    Advantages of Recursion# u6 u/ o2 K" h! ?
    . p8 y& ^9 o# ]; r
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    ( K" h: V9 c4 g0 p% r2 {2 t* ]4 K0 i* k% z
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    3 T  D6 q: o8 Q7 o5 q4 H5 M
    9 c6 z$ W% ~) C- {Disadvantages of Recursion
    9 g3 N# A2 F  g: z* S8 k+ p( y  r- p* U( ~* ]
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.. n( K7 I8 o) b- f1 `% M
    9 N) A' R% @+ X& V* O6 g! d, m
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    # W0 @0 F( e' Y2 J- [5 J
    & F# E, ?/ t- y7 vWhen to Use Recursion
    ' w" T: ^7 C0 r* [# K6 F0 F5 [: v3 U0 w: o
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort)." |' U3 K+ ~9 r6 F/ U- }

    : X- H" s3 l% J/ ^8 Y( Y  O% Q- C    Problems with a clear base case and recursive case.
    9 T. h& ^" p6 A; `3 P
    , l& i) y5 ^3 r- k  b+ H' uExample: Fibonacci Sequence. P8 S0 ~* Y8 W. {8 a  Q

    ) O/ E/ n9 [. |% |2 ~The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:$ z/ R, k; M* D  A* N

    / g' q8 {3 y7 f1 j* {) z: p2 y, i    Base case: fib(0) = 0, fib(1) = 1) Q/ X/ c/ f- a$ a5 g
    * t7 [# @( M+ d; i
        Recursive case: fib(n) = fib(n-1) + fib(n-2)) T2 f3 U! u- \5 W: ?
    : z' o% g8 z+ Q" a4 r/ r5 D# u: c
    python
    - k* x* K0 p% t/ |, o: {6 ^. Y3 m2 `; f8 o* K! A

    7 T' `; _; q0 ?) j* ]1 _def fibonacci(n):+ T: o! k* K, m/ \$ Q
        # Base cases- b. S- M$ h8 v" L0 L9 j1 y: t) t
        if n == 0:2 B# Y5 d5 B; Z, T. ?& Q& k
            return 0
    * \6 W; k3 l7 J5 h: T0 `    elif n == 1:
    - M, T4 M) B' z: R6 {        return 1+ N, V% e& u1 I; M, p  i
        # Recursive case7 C3 @2 A+ `, w  o" x9 ]
        else:0 r& X7 Q6 \7 }" Y& r
            return fibonacci(n - 1) + fibonacci(n - 2)6 F) S( Z$ ?  o- p, ^
    , }9 [" E3 ^7 [  `0 ]9 l
    # Example usage
    * e  x4 O8 E$ M* f& ^& [$ eprint(fibonacci(6))  # Output: 8
    % R$ s+ m% I; e( |( u. j; ?2 n4 W# f4 j7 C5 }9 i, F
    Tail Recursion
    ' ~2 ~- ?+ |" T  p4 o) {2 e" _! Y
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).( U6 r, }) B! O$ p2 d' ?9 B

    1 O0 I/ N& B4 ~) B9 zIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-9-17 17:17 , Processed in 0.035213 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表