设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1113|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 : K3 }- f( `) f0 l
    & h  g5 z0 U  J  k4 ]
    解释的不错
    ; u, H' v; T  H* q* i' d4 O3 P0 \4 i: y. W! _, L& n6 W
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。; J2 O7 V! C1 e4 m

    ! ]; T8 `9 C4 H* A6 G# ^& V# c 关键要素
    # T; @% f, q9 \3 s0 {; u  j1. **基线条件(Base Case)**8 n+ z0 J2 Z: F$ F
       - 递归终止的条件,防止无限循环9 H% m/ k7 R( U0 B
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    7 ~1 V* |$ }' \# _) l
    " ~& w1 y& ?5 `% J2. **递归条件(Recursive Case)**4 L" K; a1 u( y; p3 L4 F, z
       - 将原问题分解为更小的子问题
    - W. d. r. m5 A% M' x% ~0 w* E8 V   - 例如:n! = n × (n-1)!
    4 s# N1 B2 Q$ D* f2 q* ^3 z% j1 `8 |0 V
    ( ?- V2 g: M7 c) \$ y  f 经典示例:计算阶乘
    2 c3 ]& C) R  ?1 ?9 V3 |" xpython
    ' \: \/ x2 h6 L+ jdef factorial(n):
    * ?3 D& w0 w5 V9 z, e" N    if n == 0:        # 基线条件, V  s/ u; m% N8 ~2 `" c
            return 15 T: j' G7 j) ~
        else:             # 递归条件
    . w4 [" }# ^  {! n2 y9 a9 L6 }        return n * factorial(n-1); S1 ]: B- }! Y% V8 S9 x% `$ N/ `
    执行过程(以计算 3! 为例):# n8 v% d$ b; q3 T
    factorial(3)
    ( j1 ^# {$ V; x/ B  _$ q3 * factorial(2)4 O# Q# Z5 U* w7 z4 w
    3 * (2 * factorial(1))0 T2 \' E* J1 c1 B: M
    3 * (2 * (1 * factorial(0)))2 F$ [5 y+ ~1 x& B( C
    3 * (2 * (1 * 1)) = 6; U3 q0 K- O8 i8 o9 S/ @. p9 E+ Y

    7 @$ N) q0 y  A# g7 Q+ f 递归思维要点1 M9 e, }; s. h) c' {* k
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑; `/ F  g. h3 b* q" L! H  s  s
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    + m3 Q/ F4 r2 C3. **递推过程**:不断向下分解问题(递)1 ^3 P) w" C, \; W- e0 D# W
    4. **回溯过程**:组合子问题结果返回(归)$ p0 o! {8 W' i8 v
    7 j7 {1 G8 o$ k$ k7 q
    注意事项, r+ Z9 u# d: A! _1 a
    必须要有终止条件
    / u$ K0 C! t' x/ K" v递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    ! p' E: i, J/ h' y某些问题用递归更直观(如树遍历),但效率可能不如迭代
    2 T% v# Q; h) x  q+ T2 n2 a& ?# F尾递归优化可以提升效率(但Python不支持)  A5 f, U" s% ?' \4 {$ L

    : a' H" Y) \! Q) S 递归 vs 迭代
    6 i; v1 j! H, Z/ {& B. Y5 I5 E; N|          | 递归                          | 迭代               |6 q% m/ K' ^" \7 R
    |----------|-----------------------------|------------------|) n2 l* x7 ]& U7 v, K
    | 实现方式    | 函数自调用                        | 循环结构            |3 L* j& Q7 o! N) t- O
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |% X6 i  E' Z/ s6 ~& y+ m0 Z
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |2 y8 d! i1 m" j3 o5 B
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |, G% k6 [# g' D7 I' Q$ Y/ l9 M
    - @- T; {8 J. e2 P) f
    经典递归应用场景& C/ e! H# b0 Q
    1. 文件系统遍历(目录树结构)
    % S0 f9 I- [% k2. 快速排序/归并排序算法- C+ L1 P' c9 z8 c7 A
    3. 汉诺塔问题
    ! o. n# b' W% R& C2 m6 `5 ~" m4. 二叉树遍历(前序/中序/后序)
    # x! g, B1 Z, t! Q, X* y5. 生成所有可能的组合(回溯算法)7 x9 i2 |+ q8 ]4 |

    * B9 J' J0 _/ o. F- T试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    开心
    12 小时前
  • 签到天数: 3098 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    5 e: U7 i9 \* B+ l, Y我推理机的核心算法应该是二叉树遍历的变种。
    0 L3 D+ k, `' ?- ]$ n另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    1 ~! c9 v& m: z: `5 Y& mKey Idea of Recursion
    ! J4 C$ k1 m9 \, l1 k6 E& m; ~5 }
    A recursive function solves a problem by:
    8 q: c7 o( U& x  ]9 I/ ]8 h/ z3 k9 w0 M  }- |3 b5 ~
        Breaking the problem into smaller instances of the same problem.: h( ]) _7 g. A' e% ~5 ^

    ) f0 @1 x- S: z: `2 f    Solving the smallest instance directly (base case).
    2 e2 v/ }5 p# M$ f' N) Y- _$ x3 ]1 m  u; P
        Combining the results of smaller instances to solve the larger problem.
      E: H9 w% w/ }; `/ H3 \$ R" ~- e2 U9 |. S8 g/ F6 @
    Components of a Recursive Function
    - Y! X1 T6 H) }; M/ O8 E, ~- S4 E2 K+ T+ W( S
        Base Case:# m# B! g9 f( K* ~- s; L

    ; r2 Y  s0 _2 ]        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    5 Q$ ~/ ~3 [4 }9 r+ c
    ) u; r6 [& l1 @9 o" g5 W9 t8 \        It acts as the stopping condition to prevent infinite recursion.9 }9 h! K$ [" Y  V. x& P
    % D' c/ |: j7 n, H. f
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.. k- |  a7 u6 k! l' y0 F

    3 M5 Q3 J# l  f! T    Recursive Case:
    8 B- E* Z8 o% Z
    4 Q9 @' V* ]$ L) V        This is where the function calls itself with a smaller or simpler version of the problem." M% `* N* Z1 ^! T/ l8 G3 x5 d3 S

    7 e+ W. k$ c( b8 M% d        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).2 T5 O+ |- N: S9 B$ t
    - [& V- \" m2 f2 |
    Example: Factorial Calculation
    5 s4 {0 p0 J) A8 p5 ?# H
    4 @2 d: `9 M. T, X* YThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    7 d- R0 h2 ]2 f/ o) ~) T0 }! Z6 u+ ?3 g) u% ]
        Base case: 0! = 1
    $ u0 w* {- D. C% s- D9 O+ t! V
    " X. |' A' c1 m, h9 A6 _    Recursive case: n! = n * (n-1)!2 ~0 F6 h+ O, Q, H  I, [* i
    4 K3 |3 C# O% \8 f7 q
    Here’s how it looks in code (Python):# Q$ B: i5 K% ~  N! }( @& k% ], e
    python
    1 U, o+ l: l2 ?, M
    / F/ J. p( o  O- X0 `
    % C3 ]7 A- G0 }  f* g3 _! Vdef factorial(n):
    ( q  V7 x3 n7 w    # Base case
    9 O& k# _' t8 {8 g' N; D" |/ w7 \    if n == 0:
      P+ L9 r% K4 ^$ T( ?        return 1
      X! O. P! m5 @$ F! o  Y, o    # Recursive case# z+ u* v4 K4 i& w6 S/ P
        else:
    ! v; D% M& K' X+ c" @6 E        return n * factorial(n - 1)% G. f0 ~$ ~6 V
    $ P$ |1 T; p" C$ m0 _
    # Example usage
    ' k% T  G: |3 ~1 c/ I: J4 c$ Vprint(factorial(5))  # Output: 1201 g( g8 g  {) {" t7 |, S
    2 Z( W2 {4 _! B! @, K
    How Recursion Works" D4 Q: ?+ u! D

    - w; q1 M- T7 Q( W7 O. r    The function keeps calling itself with smaller inputs until it reaches the base case.
    " D3 b7 H" H' F3 f
    + O& H. ~( B+ u    Once the base case is reached, the function starts returning values back up the call stack.
    9 ]% i5 C$ M9 w  G' Q# }' j% b$ S1 ?3 k0 s7 V- M
        These returned values are combined to produce the final result.
    ' D& x  h& ?% F: E( k" {- I+ G% C+ \: r; j8 P
    For factorial(5):% T4 u3 c7 C3 r3 J+ i0 K- i

    ) U7 D" `+ U) o6 k4 A; n3 {" ]; y
    factorial(5) = 5 * factorial(4)$ t: M, X( k" c
    factorial(4) = 4 * factorial(3)
    ) L: O" i; [+ [factorial(3) = 3 * factorial(2), e& g5 U( |3 b: p, ~' [0 s% m( C$ t
    factorial(2) = 2 * factorial(1)
    ) M; V: M* e- r2 G" |8 M6 tfactorial(1) = 1 * factorial(0)
    1 M3 p/ B* X0 H& O6 `+ _# vfactorial(0) = 1  # Base case) I0 [& u3 O) d2 `, _0 n& J& f) p* o

    8 v) |. D, V- {) PThen, the results are combined:
    $ W7 B2 J) }) |0 y/ z( j( k: e; M$ _% [, C9 m. x$ }
    / A4 e* K4 P) E
    factorial(1) = 1 * 1 = 1, c: ]% ~! ^6 S5 n6 P  h
    factorial(2) = 2 * 1 = 2
    % b$ _8 f' F! R5 a9 x9 d  C6 Ifactorial(3) = 3 * 2 = 68 z& C# d+ K/ W1 R! P3 s
    factorial(4) = 4 * 6 = 24
    5 g, y) r- e7 A6 E* B$ Yfactorial(5) = 5 * 24 = 120
    + C* ^9 R! ]9 O) U: p/ V& u' V% i1 z# V: V- v/ o. y
    Advantages of Recursion5 X  f: Q4 W! J3 X; ^  k% M" g
    ' k+ H' n; {  l( A) P: t
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    : b4 H* g* u! C: E) d" M# d( Y. o; }9 e7 X
        Readability: Recursive code can be more readable and concise compared to iterative solutions.$ o9 ~( t' q, e" S8 ^1 D

    8 E. q: }+ E: h. Q( {  {& LDisadvantages of Recursion4 `* i2 l- _( e/ |0 s; Z
    / W$ S" m& u) ^" r
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.: b. z3 U; X8 q) ^, E

    . ^: q4 ?( D' }, }) z    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    0 t6 c6 x, h' [6 j4 n
    $ v" ]0 k6 m6 S% W: d" V/ m! [) WWhen to Use Recursion- L3 t+ W0 p( J% S

    ; P3 S! L5 J, Z' Q    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).; k" ~, W- B( [# M9 {* V% G8 u
    3 Y, T& t2 s1 ^/ Y9 u% I$ Y% n
        Problems with a clear base case and recursive case.
    0 S# n5 W: G* V. d$ z! ~1 T* q
    ) W% ^) C3 y7 g+ a9 oExample: Fibonacci Sequence
    3 ~' S. }  p  J1 w1 S- ^' c
    3 K) ^1 c% v, L( J9 r1 ?& FThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:8 B7 T1 t- b3 J2 k

      [2 C/ k6 L! U5 z& v8 X! P    Base case: fib(0) = 0, fib(1) = 13 k5 C& s; B7 p

    % H% n/ ?. B: |- o" I    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    9 i' ], `; s( u, n" k
    & F. Z7 T- _+ e! a% a6 ^0 J. j' epython& m+ Q5 N) h0 J, X

    + w% B) |8 \+ ^- @. ^0 E
    . l2 L5 Z3 b( L2 D4 m0 Bdef fibonacci(n):6 i7 m3 ~# Q& J
        # Base cases7 x6 q3 H2 v4 a0 y  z& u; e  d; o
        if n == 0:
    " C6 n3 V+ ^5 _4 S. W& I# P1 _6 G) }        return 0
    ) R& s* F* r, e' t. i# a    elif n == 1:
      n* m7 H8 Y1 Y4 F) s; _" s        return 1
    8 q2 ]) Q5 Y, a, f& n7 G/ {    # Recursive case9 G& @7 k: U2 b6 E
        else:
    & ?/ ]( z, t  E, H5 g. ]! W        return fibonacci(n - 1) + fibonacci(n - 2)
    % W; M& y3 n! I4 y
    " m; ~1 E# w' N! v  @9 ?( O3 H" m% S. V# Example usage
      C" z' Z" m3 V' _print(fibonacci(6))  # Output: 8
    6 W& C. A# P( J3 o0 E3 |( a. Z
    & d, c1 G5 b4 o/ \8 Y9 xTail Recursion
    8 T& Y& u' I  I$ g
      X0 k& O3 Q6 {' \  Y8 PTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).& s: g" n+ |$ ~: K* r$ c

    , b) |8 W; O9 p+ {In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-21 18:11 , Processed in 0.034715 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表