设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 765|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2015-11-30 11:11
  • 签到天数: 2 天

    [LV.1]炼气

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    8 C3 f" j) u+ s6 e4 M* {. p7 d4 f3 c2 ^# g2 W2 _0 e- r
    解释的不错0 Q. h6 L: r" i

    % S  {- |2 Q/ O/ L0 k* k递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    8 u4 S* `, E, ^0 }
    : A! }# w; l0 T% t4 F# X! t# F 关键要素
    ! G9 t+ z  h" t0 o2 f1. **基线条件(Base Case)**
    3 D* s" J2 y3 k, u5 o1 F4 m( d0 O3 c; l   - 递归终止的条件,防止无限循环8 P* n4 r! N& [' x. J9 T1 d
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    & a; y% B( {3 c% z7 }8 E* P8 i+ w, ^" o. {) Z- I7 g
    2. **递归条件(Recursive Case)**" w0 X" g( W, z- e6 C
       - 将原问题分解为更小的子问题8 L" F. J2 F8 J' s: z6 q/ }7 W
       - 例如:n! = n × (n-1)!
    * V/ g! c1 A' |0 g: V( |
    ( e' @3 ]. K$ H, r4 F! p 经典示例:计算阶乘8 }! n& t9 f/ e9 b6 Q6 u
    python
    7 M: d% p7 D5 I, x7 u. S$ `4 Cdef factorial(n):
    ( p5 [6 d1 k+ T9 c( \( j/ F    if n == 0:        # 基线条件
      ^$ g/ Z. H- i8 x! f6 H; g9 i; q# B! L        return 1
    . k  A& N& ^* ?. J5 K5 n) T    else:             # 递归条件
    ; u' o3 c" S, q+ w- s9 y        return n * factorial(n-1)
    3 W( V- m3 L* k. g) }7 H' [执行过程(以计算 3! 为例):* q6 M% u# {; ^/ E1 \- T% U
    factorial(3)
    7 [" A$ p" G" x1 ^' x7 U+ z( Y- d% _3 * factorial(2). X7 Q! a$ r& O  Y+ B
    3 * (2 * factorial(1))+ l, b' B0 I  ~" V: t$ m
    3 * (2 * (1 * factorial(0)))0 D6 l& v7 d7 f: N
    3 * (2 * (1 * 1)) = 6- m' z4 S+ O9 G, s* X1 o

    1 w0 _' w0 b/ Z: p% Z 递归思维要点9 t; [" v3 L3 d  V3 Q& L/ M
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    3 n8 a! |* Z7 e$ I2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    1 e) {, i& H# l* a3. **递推过程**:不断向下分解问题(递)
    * ]2 p# C6 d; W' e4. **回溯过程**:组合子问题结果返回(归)
    + f! R! N6 u9 S# i6 `! ]; b' m. z* D4 l/ u- A
    注意事项
    ' ~( k$ G' ~! a6 Z3 {7 Y9 b5 f必须要有终止条件
    ; [, ~) l; u, [+ Y; Q: T递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    & B% T& W; M( P4 ^  ^# Q某些问题用递归更直观(如树遍历),但效率可能不如迭代. m  h# f/ F) e: x; ]) v
    尾递归优化可以提升效率(但Python不支持)4 J) g& e' X& f& c+ v* I

    5 E5 g& V* _  t1 j+ H1 Q9 `* ~ 递归 vs 迭代1 N' L; Y) S, p) d& Y
    |          | 递归                          | 迭代               |4 J% Y6 a$ P" p2 J
    |----------|-----------------------------|------------------|
    8 d: k2 A! r$ C5 w| 实现方式    | 函数自调用                        | 循环结构            |' E+ Z& H1 X2 Y5 Q! B
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    / w. N  v5 r- u1 Y; z& A| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |* W4 ^$ ?) f2 N4 [9 ]0 X3 H
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |9 U7 \+ M5 _  q/ k$ O8 [' E

    4 T  A" v" G+ v, ^- m! p6 j 经典递归应用场景" }: C' @5 @3 P* u6 J
    1. 文件系统遍历(目录树结构), {- P# _6 i; t6 w  A/ |( }+ Q
    2. 快速排序/归并排序算法
    - i4 e5 C7 {- T+ v1 V# Z6 o1 W, {3. 汉诺塔问题
    * {7 M2 p# o( \+ k( \) q  F4. 二叉树遍历(前序/中序/后序)
    ( D3 x' p0 e/ U5 Y0 Z5. 生成所有可能的组合(回溯算法)' y$ R) ?0 R7 ^/ j0 H
    9 F* {/ `7 f2 }
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    1 小时前
  • 签到天数: 2979 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    % D1 k" D0 t# i% c我推理机的核心算法应该是二叉树遍历的变种。: s( R  M: h6 }' |, x2 b! B
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:8 N! D% ]. X8 Y: d5 a% Y5 j
    Key Idea of Recursion
    . B* j" b) T: ]) d& W- o
    3 X3 x7 K! d8 x5 _/ N$ sA recursive function solves a problem by:
      Z! t& L- _3 C
    $ I" Y" D( J  b+ A( S    Breaking the problem into smaller instances of the same problem.7 s1 v* j4 U" Y6 b- c1 R

    / s/ j( x3 K4 O- D- g# Z5 r2 `    Solving the smallest instance directly (base case).; @- o) m6 Q0 C' `

    9 w" \- E$ e; {    Combining the results of smaller instances to solve the larger problem.
    0 q; J7 w+ K# H% _+ L
    + a6 s6 j  W. M7 b( s7 h: ]) `! L3 VComponents of a Recursive Function" K' {/ C5 m# o4 v! f0 {& B
    . ^+ ?) |0 x( c0 k9 G
        Base Case:& t6 r; R- K8 R/ E& V

    # W: `! i* M. D3 J3 t6 D: B) |        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    * U' x, B+ D" T! D, c
    & x( R& m6 y! l        It acts as the stopping condition to prevent infinite recursion.9 q. r* O  I' r' K9 a% W

    4 R% d. y& _, h  X; X        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.2 w0 {! a; `$ c1 y7 O" T" \  R

    5 y' D: k& K, }6 S, @( w    Recursive Case:
    : I) _* L/ {) p8 F: M" v' j3 u5 m5 B/ Q+ ?: ?1 Q9 n: a
            This is where the function calls itself with a smaller or simpler version of the problem.
    / Z) _* N5 g  W* S# Z
    * g9 l8 w7 s0 E% t) Q5 @! t        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    2 n6 l, N* A% W3 q4 ?& W' i& ?8 }: R
    Example: Factorial Calculation
    6 b5 j( {" U' L% i' S% u2 b# Y; u) R& M+ G- x4 u& S% r
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:8 i0 b* G. d1 w. h, z3 K

    * N- L, G" q$ d" _& t3 L    Base case: 0! = 1: M3 p8 u6 [* t* b
    " x, O4 J* k( s0 N. m# K
        Recursive case: n! = n * (n-1)!/ ?2 U( O. C+ @, U; i
    : t  F5 \" y- y2 T- V/ g
    Here’s how it looks in code (Python):
    ! S1 U% C) ?# a$ ipython
    3 S- T, Q& P; I5 F4 P9 k8 J0 a9 B" G2 V7 {, M( Q* j
      `. s+ j9 M4 `& A" K# H
    def factorial(n):
    ) ~! H/ W; h- {( {    # Base case
    2 X+ c2 v# {5 ^" t* ~6 q7 o    if n == 0:
    * h1 d8 M7 T' e5 q( e        return 12 k# c. s* ?+ N8 s, S0 w/ n1 p; e7 p
        # Recursive case' K) `$ p! V! R. Y' Y' Z
        else:
    ; B. f. M0 }" f6 e        return n * factorial(n - 1)1 _0 C0 k. a# q) t. x
    - u) V9 Y4 I4 x) z; y5 Q" Y
    # Example usage
    , |  Z- }6 C$ G- c' nprint(factorial(5))  # Output: 120
    1 Z( v$ ^: l6 _4 U2 p4 b
    & E8 m4 ?  g( V; _+ l9 W( p( b- f' CHow Recursion Works1 @" M5 b+ K/ ~" d; f1 J0 s

    ! A: C! A4 m2 [  u  b5 v" _, L    The function keeps calling itself with smaller inputs until it reaches the base case.
    , u/ I8 o/ G1 ?  `0 U  z6 L1 J* `# w! z# ?$ g* F* W% ~5 ]
        Once the base case is reached, the function starts returning values back up the call stack.: C) {: F* S$ N8 Q. d

    0 K0 X! B7 ^! c9 Z1 M    These returned values are combined to produce the final result.% h' E- f- U4 |0 J. U

    ; S# q8 O; U+ z5 W0 [: tFor factorial(5):
    6 P  q+ O  X  z+ m* g2 b
    6 U5 R  s: _: u" R: V4 Q6 c. j
    factorial(5) = 5 * factorial(4)9 d3 q8 L2 ?# O; J# C
    factorial(4) = 4 * factorial(3)/ T$ D0 M8 _+ |( J8 w+ K
    factorial(3) = 3 * factorial(2)
    ( X% i8 K$ F; V. r, }factorial(2) = 2 * factorial(1)3 x( @% e4 t8 g. K( M5 J$ I
    factorial(1) = 1 * factorial(0)
    # j+ }9 _" t: r* ]+ |+ f* afactorial(0) = 1  # Base case
    . P0 T( n1 M7 X
    ! a$ u- m% F" ~* [Then, the results are combined:# ^; j7 h0 R/ v8 O
    ( S) m* f# Y& L1 T1 {3 {# c6 W, p/ Q& U
    1 [( W9 m- t6 [7 O$ h
    factorial(1) = 1 * 1 = 1! _" A+ Z6 \7 {2 o! B1 E  @9 ?
    factorial(2) = 2 * 1 = 2- P9 }5 j) a8 E5 t
    factorial(3) = 3 * 2 = 66 c# G0 n; K) m
    factorial(4) = 4 * 6 = 24# L, o2 p9 w2 n2 u# s/ Y
    factorial(5) = 5 * 24 = 120
    ; E& j: ~0 a+ _; j4 {$ l# K
    5 s: o) g" b) @4 a/ ]Advantages of Recursion
    # I/ ~* H* M) s. z* |5 I( a
    7 r  r- W* {; n    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).! L* Y& }" E2 U% r) ~
    & |6 ^$ n5 ]+ O- w3 D5 U1 X
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    8 H7 |' \! F3 _6 ?" m) u# C. D7 S+ k* E3 A, u' b* w
    Disadvantages of Recursion& g0 D: F4 F' D4 G! d% J
    7 o" {. p  J9 O5 r+ r( }6 B, k- C
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    ; M, h0 F/ t) ?
    . D* Q8 I" S4 N" m& H) J    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    5 a# }3 {3 n* H/ w7 H# a& J
    0 t1 j% C3 G% n. K. [, j% F/ f5 CWhen to Use Recursion) M! b5 y0 R' F6 k% g. T

    . q0 z* p6 C; S  `" }8 C    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ) m7 |& A% b* [2 k" }" W; t$ t! X( y+ D4 m7 b7 n' D
        Problems with a clear base case and recursive case.7 Q; q7 M0 n* c6 W( Y; O

    ( ]' X. ^% @1 {3 }Example: Fibonacci Sequence9 C! w# X$ ]2 w# [+ m3 j6 B- `
    9 F: h) m! ~9 i
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:7 ^3 S. P8 @4 B1 _4 C
    / l& a5 |2 N* [7 ^: z# X
        Base case: fib(0) = 0, fib(1) = 1
    2 W" z1 ^% q6 k) j1 e" q9 L7 K9 y  U4 H$ Y$ ]
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    ! ?$ X" w8 Y% i0 M' i; ?9 F
    8 V( h0 k& y0 J" v6 v* \python$ L: M5 s# ]1 l( C' o& C7 l) j

    $ C2 i0 P4 j  E% r
    $ Z: a. C9 A* y( J$ w$ i7 Qdef fibonacci(n):
    8 p6 t" V3 k3 c, k6 J    # Base cases; Q. R4 m3 c3 U' j/ w& Q
        if n == 0:
    5 y7 A2 B6 l, T6 o        return 0
    : ~1 [6 G1 F  @, X; G* U    elif n == 1:
    ( |+ ]  f8 F! Y% K        return 1
    ) P) b! t5 N6 Z2 d* o+ V    # Recursive case! C& p- L" {/ S7 w
        else:0 ?( }: H) ?8 b1 W9 Z
            return fibonacci(n - 1) + fibonacci(n - 2)
    3 l& s7 t; U3 A2 d8 {2 ]9 F
    # z1 p/ }1 {3 N) k. l# w- Z- A# Example usage5 [: P" c# ]3 |
    print(fibonacci(6))  # Output: 8( Q" H4 h% S% t# a2 P+ E3 E
    " ]" R" N+ @& J9 H! ?
    Tail Recursion
    ; E* D/ k' ~* s. d
    8 F/ w% V. T& @7 {Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion)." m* x7 n2 E4 w3 }* ~

    * u3 P! ]3 _) K% G1 m* [; tIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-7-14 07:44 , Processed in 0.044174 second(s), 21 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表