设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1112|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 # R0 C, e- v* O) y" a
    . ~2 a  O" B+ F* a
    解释的不错0 D' A  n8 J, f/ t& W

    " y- A. z4 C- M/ l2 v$ Y递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。& P- m0 f4 W* S$ H0 [" [3 D( {
    ( O4 a! e& b% `- M6 p0 o
    关键要素! G# e3 k! t1 R9 q( d5 @/ J+ w
    1. **基线条件(Base Case)**3 N, _6 t: U/ p& j0 y/ ^
       - 递归终止的条件,防止无限循环
    3 B  u- X8 `6 J: C   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    7 P1 e9 o+ q' c
    ) U3 B! o" b$ i0 m% p2. **递归条件(Recursive Case)**5 b  W# O% r7 r( s/ n
       - 将原问题分解为更小的子问题
    , \1 s5 M+ y* z" H   - 例如:n! = n × (n-1)!
    5 z' s- h9 i' v5 U2 F6 |: m3 C' B- Z  Z) g* F; q7 q) F' m
    经典示例:计算阶乘
    : k- ~$ g- |6 a; H4 K  epython- f0 I* g4 j) w" G/ y1 h. d
    def factorial(n):
    # o- B" T3 J; D    if n == 0:        # 基线条件6 w( H' d0 M( o* Y& ?% R5 ]% ^
            return 1
    ( G* X, u- S" d) Y& \    else:             # 递归条件1 r$ y$ y' L8 h7 j
            return n * factorial(n-1)
    / E% N- {+ N  z( J1 |0 h; A执行过程(以计算 3! 为例):3 E% c) Y3 r' e3 D
    factorial(3)
    9 y8 f% m$ m1 p8 I) l9 J3 * factorial(2)* f0 Z; V- e: Z. n, F
    3 * (2 * factorial(1))6 x4 K& ^. q# q, a; O# ~& ]
    3 * (2 * (1 * factorial(0))): B5 o& B4 u! Z$ [
    3 * (2 * (1 * 1)) = 6
    0 e5 Z5 e) T, T; P
    " L4 v* n/ L, t8 B: X/ N 递归思维要点+ m3 V* q. F5 W
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    7 [% g& C1 I& \- H- [' l6 O; P2. **栈结构**:每次调用都会创建新的栈帧(内存空间)/ P2 v# l0 _9 N+ o4 V7 w
    3. **递推过程**:不断向下分解问题(递)
    : `& m$ K: I& b* x4. **回溯过程**:组合子问题结果返回(归)
    + u( R. x/ a" A4 D6 h9 J. y
    8 `. [0 \( m# Y 注意事项
    / v4 ]+ t) a% s& q* \4 w. U必须要有终止条件
    % g- F* M4 a7 f; X6 u递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    , H. v6 T) s, h4 I" \, |某些问题用递归更直观(如树遍历),但效率可能不如迭代# R9 v$ v% _) n  e0 ]1 w! i0 w
    尾递归优化可以提升效率(但Python不支持)
    8 m; o  F5 @; M; W" I0 l  z
    1 M1 C! H6 o& k/ \% v 递归 vs 迭代
    / a- o5 V9 C# P1 A|          | 递归                          | 迭代               |& B: v% |7 d8 {
    |----------|-----------------------------|------------------|
    ) [/ ^! Z, E# r; _& ~- p| 实现方式    | 函数自调用                        | 循环结构            |5 T9 h! }$ n# @0 R6 [$ W
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    ' @$ J9 M6 @" U) B  i1 |4 J6 C7 F| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |8 e6 J  S3 Z9 L4 b1 }
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |6 Y9 a- j& Y8 m) L( w  T0 A, W

    " T: ?2 O% n% l  D% b; u2 a2 E 经典递归应用场景4 P* ]( f1 K& H8 G7 E% L
    1. 文件系统遍历(目录树结构)
    # i& t: _! @4 {1 k$ g2. 快速排序/归并排序算法
    * Y, m+ v: r, k" V) b2 T) b3. 汉诺塔问题
    ' l% b7 c3 R8 f7 x/ E4. 二叉树遍历(前序/中序/后序)
    9 }0 g# C) T3 E$ u9 O: Y1 _5. 生成所有可能的组合(回溯算法)
    3 Q$ A0 F/ k  B% l* j+ k7 Z  n; z; j6 `6 H
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    开心
    11 小时前
  • 签到天数: 3098 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,4 x. n! v  K# K/ ^
    我推理机的核心算法应该是二叉树遍历的变种。' O# l( V1 i7 s/ f. a5 n
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    ; K+ x! C9 a9 u& Q' z; G0 N$ jKey Idea of Recursion
    5 c: b; i# Z; F1 U# [
    " k, b) `6 y6 h+ F+ ^0 q  u: U* O5 jA recursive function solves a problem by:
    ! w4 x7 ~- o) C. C' a1 ]- h; A7 L
        Breaking the problem into smaller instances of the same problem./ s$ f+ M1 n# b, ~
    1 q' ?( y7 v3 M( ^( Y1 ?: k
        Solving the smallest instance directly (base case).- G" j9 e5 @) k' L3 S1 v( m! P& T

    1 H# p6 w/ e% d, V6 o    Combining the results of smaller instances to solve the larger problem.* A+ c, U# G" L4 w$ j

    6 |  ^% r. j, W# p) S. U' uComponents of a Recursive Function$ F& c3 g) L5 C7 i/ A  Q
    2 x! w- b$ Z% C) B5 X; z) ?
        Base Case:# r6 N& E2 w4 F6 G# H6 O) {

    / {* @) S# v& ~, ^3 |8 H- Y        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    ; Z6 _6 F) u0 n, f+ s9 t/ _+ S0 y9 E( p0 X& z
            It acts as the stopping condition to prevent infinite recursion.
    ) f& z6 {8 _: H" m
    " c1 A% @. J/ S8 I/ y; w2 t% t; `        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.9 w: v! J; {1 T6 `2 W; l

    ) i/ Z0 ]7 r% q    Recursive Case:5 ^9 I9 [' F: ]: \

    $ Y' ]0 H6 H- [8 V. \        This is where the function calls itself with a smaller or simpler version of the problem.
    + V8 U8 B0 R2 ^4 }  V! {7 _; y% Y1 S" u$ X9 ^
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).6 P. `% Y5 `  ]1 |8 w# e, P6 H' p, m6 @
    0 W* K- o2 r5 b: _/ G  E1 _
    Example: Factorial Calculation
    $ u6 C6 m: o  _6 l' e' `6 B6 M! N  B/ s  u; X+ V, `  ?+ ?
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    - s0 O) r. t2 l; g
    - \7 d2 E5 U: P+ x) m, @7 A    Base case: 0! = 1
    3 n, Z! _' R4 ?* u- z3 Y5 I" l( A: e0 t
        Recursive case: n! = n * (n-1)!4 d3 D% d! Z( J* b% C
    0 Q' Y4 k3 ]; P0 y0 z4 ^
    Here’s how it looks in code (Python):
    1 P/ |& W& p1 e  o  qpython
    ! A( p# [. r- H8 o4 R% L+ T: d5 N* j, Y$ m0 u  ~2 N& k" `

    . r% Y6 ~7 ?1 ~8 edef factorial(n):
    9 d  |: z+ V; v% H& i    # Base case
    ( S5 e. w9 r5 }$ [    if n == 0:# s* [7 A! e/ }5 n- b9 B" Q% O
            return 1
    ! F" R( ^! x" p4 n" U' ?& G0 J( L3 j    # Recursive case; A" q  n  h3 f+ ]. x; b7 P
        else:
    ! b' T9 l$ E% O/ ~0 _2 q% f        return n * factorial(n - 1)
    1 [7 w9 U: U3 q! g7 K
    2 k' P6 u- z8 D/ O' d# C& N# Example usage! U+ p% @5 U4 \$ f" C# R
    print(factorial(5))  # Output: 120
    & Z, f, \5 i! z6 S# _! N& z2 f* s1 m; y& m  L8 A
    How Recursion Works
    : Z) x. i! @; c- ^' {; t9 ^/ T$ R0 h7 r. D  Z+ p
        The function keeps calling itself with smaller inputs until it reaches the base case.) g# s4 X* Q3 n4 d* j$ T

    0 M9 Q& C/ |! P2 F! t( J) q    Once the base case is reached, the function starts returning values back up the call stack.& |8 [) _6 Y8 i# V6 H  T

    4 x  k. c3 c0 K) n, o, |5 E    These returned values are combined to produce the final result.
    0 b3 J4 }- R: t8 G+ H! [6 Q: N# w3 Z
    For factorial(5):2 J9 V6 r1 c- n, H. E0 Z0 E7 V6 |

    0 @3 O2 N& c# L! h2 i4 \; ]* l$ e2 R* W7 V3 q
    factorial(5) = 5 * factorial(4)( I) R1 y: S; Z/ k
    factorial(4) = 4 * factorial(3)! o7 i7 ^6 U6 ~0 ]# I! R: z
    factorial(3) = 3 * factorial(2)
    " @6 H8 X7 x2 ^6 D) c  M) ifactorial(2) = 2 * factorial(1)( q/ u5 D2 D5 ?
    factorial(1) = 1 * factorial(0)0 L- D- A* `" @
    factorial(0) = 1  # Base case4 }: I1 p4 V( P6 j, `/ E( V
    ' G0 M  E" w% y& g% c% x
    Then, the results are combined:
    & ]0 r, G" ]5 I6 R+ L& h/ T
    5 S, ~1 N  q4 E8 b- C6 y/ W
    , c+ N" N) b5 W: B3 ?factorial(1) = 1 * 1 = 1; F+ \2 x/ D$ N* E1 i
    factorial(2) = 2 * 1 = 2" |: e" ]/ d$ f, d, Z3 p
    factorial(3) = 3 * 2 = 6! Y- i, l$ P8 _' |) p( x5 c3 G) d1 {
    factorial(4) = 4 * 6 = 24
    / f, v, M+ H$ e1 n/ u# B1 }factorial(5) = 5 * 24 = 120% X$ k4 [" v  \, _

    - a+ V" r( ~0 g# {: v  g! M6 M. JAdvantages of Recursion
    " y/ H& c( E$ B) z4 R7 }, q* F9 v0 [  j. r) |) x4 Q2 E& S3 q
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    ! n8 s3 f2 f5 H* [+ M! h! r9 L0 H) Y$ f8 w. @+ N6 g* o% s
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    + ]; R8 V" i4 p8 S, i4 d) P  B3 k( S4 \
    Disadvantages of Recursion
    2 K0 L2 B* o5 b% d! x5 [8 E0 i" _8 C/ \& n, }2 R# F; ?0 [
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    $ o! y5 d* y  c3 ]8 |( p  I" s" ]9 o9 h, o; b
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).) O7 X5 Q0 T4 `

    " Z: ^& |5 V4 S2 N6 ]+ K  @When to Use Recursion& s2 Q% G4 y& ]- K4 T. T
    3 }. N8 i+ s- N$ @: Y& m
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ; u" I3 Z+ s! }2 g& t/ Q
    3 f- {5 Q9 \( p3 g8 F    Problems with a clear base case and recursive case.5 M, S& Y7 q' H5 d4 E* z
    9 X5 x+ j" P2 B) t) u/ g
    Example: Fibonacci Sequence+ A1 {" x  ]) V/ M

    8 Q  U' @  ]9 Y4 E1 h- `0 YThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    2 @( h. s0 [( G5 c8 r: C! l) ]  W+ x4 B% N+ U% {6 |
        Base case: fib(0) = 0, fib(1) = 1
    3 q7 w& O. W. D
    " d, B$ \0 z; I4 f( `    Recursive case: fib(n) = fib(n-1) + fib(n-2)0 T, j% I+ d9 g2 c

    ) u, n4 v; q$ l! B6 Q) `* |python
    ) E2 O0 L* ^0 W/ y
    8 g/ K! ^% e) |- Q4 J
    + o0 R6 b! z$ y' _0 O1 Vdef fibonacci(n):
    - }0 y* I+ S- D  F    # Base cases
    . q' q, y8 x- T! G& S    if n == 0:
    $ n+ O3 n( u' W, S        return 0
    ) Q5 Y8 [- T  v1 ]5 J    elif n == 1:
    0 m$ P: {  k( i0 A; Q7 v. k        return 1
    + |  U( P* g' j0 K6 d8 Z    # Recursive case9 b7 U! s4 O: E! D8 u8 K9 ]
        else:
    + I$ D2 Y3 b& x        return fibonacci(n - 1) + fibonacci(n - 2)
    % N! R% j" t3 W; I  y& E( t7 q; _8 _* t3 y) L' b! u1 [
    # Example usage0 v/ Q& U5 V5 o
    print(fibonacci(6))  # Output: 8% i/ O2 m6 w4 A, y
    6 Q" u  o. r3 r, o1 w0 O
    Tail Recursion
    : x5 K* H5 @* o/ L) k
    * G9 \3 T: z* `, O8 k1 b4 DTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    " [5 c8 r, v* O7 b' s6 d* C# h: J& w5 r, ~% Y( A  D& p
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-21 17:25 , Processed in 0.035892 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表