设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1875|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    * g  D( n; g3 j1 {" W' H! S- Q  }2 q; r; }6 x4 g4 l' I
    解释的不错
    * {- {# P& T# W* I& {+ k  ?
    " E8 E2 v4 y+ n& D( w& z. E: X递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    - W/ }& r( T# [- S" x2 x. _6 ], u( @0 p* N
    关键要素3 }5 \7 H! x$ f$ `5 ^0 {
    1. **基线条件(Base Case)*** z& p- O& n" U, c& T- X$ {. f
       - 递归终止的条件,防止无限循环% w7 ^! ]( \- c( k( ~  _6 y
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1, r2 ^9 t; t7 l- m0 G" Q, {" E2 K

    5 u+ `' x" S8 C7 d, g( j, V2. **递归条件(Recursive Case)**
      g& |0 h- w6 {- w   - 将原问题分解为更小的子问题% ?0 F/ E. l& n& h8 e/ w; q
       - 例如:n! = n × (n-1)!
    6 r! ~" Y+ B5 L
    , N6 b- P* c% c; J+ A2 d 经典示例:计算阶乘
    3 f9 ]& N% P5 R$ B! h8 _python
    7 @! W( p, i9 e/ T# Q9 Z% Rdef factorial(n):* e& [; S  C0 P' r4 C6 ?: ~
        if n == 0:        # 基线条件
    5 }  \; r$ D+ p4 n        return 1- u; n( J' [7 e, a$ |" }
        else:             # 递归条件4 v2 m  A# z+ |
            return n * factorial(n-1): @9 f) s' [( M2 E5 a" d& H3 x
    执行过程(以计算 3! 为例):0 o4 Q% N/ G; H8 x$ x4 X  y
    factorial(3)- l1 _0 l* M% _- u6 |1 ~! j
    3 * factorial(2)
    ; `7 r6 R( P4 x; o4 t3 * (2 * factorial(1))( Q/ s! Z4 N7 I8 p! k* C; {( H
    3 * (2 * (1 * factorial(0)))1 Z8 K: z% ?/ n9 V& K; P
    3 * (2 * (1 * 1)) = 6
    7 s" v6 @; S. ]6 n" g0 y" o! ^: l9 ^2 G* l* T- X* C, M
    递归思维要点
    / D) t1 g) n* i( A: g1 f" d' a1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    7 p; i5 X5 Q; m$ P5 d1 v0 m2. **栈结构**:每次调用都会创建新的栈帧(内存空间)3 l$ L2 g  u% z4 e1 f' `9 B  h& }  i
    3. **递推过程**:不断向下分解问题(递)$ X/ [% S: Z1 K1 Z+ J9 J7 v
    4. **回溯过程**:组合子问题结果返回(归), Y- k& Y! _+ _

    7 f5 S: I% p  {( |7 _# T 注意事项
    $ g, M% }, x4 `" G/ P$ H  v必须要有终止条件  @$ t% E2 y$ @8 Q. v
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    ( \' ~5 u( f& [  n某些问题用递归更直观(如树遍历),但效率可能不如迭代
    7 ?+ o" x' J) Z6 p尾递归优化可以提升效率(但Python不支持)% Y  g9 c. B# L2 `7 x# Y0 x

    / K3 N( e' w0 x; l- a 递归 vs 迭代3 H- [& ?% Y3 z% i; e% o4 n  i1 ^8 l
    |          | 递归                          | 迭代               |
    : G7 \$ |0 F' o0 _# b* f7 `& i  G3 p|----------|-----------------------------|------------------|& p) v0 W6 z' ~$ C$ v" g' O* |+ j- o
    | 实现方式    | 函数自调用                        | 循环结构            |$ N: W. t/ }7 |# s( L
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |; |3 s! e/ _; g3 E) j1 C4 s) p
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |7 E5 f1 J* }; _
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    , B. Y, p+ [9 l8 i; m! M. n
    + L* x& Z( q" q* p4 R' D; Z5 g 经典递归应用场景) ?+ k: V% J* M: J% K* O' K4 \
    1. 文件系统遍历(目录树结构)/ {. N6 r- \! k: m3 v, u: Y% P" g
    2. 快速排序/归并排序算法( j2 B5 h  X+ z8 J- M8 P
    3. 汉诺塔问题' s: L+ a! h2 A- O# `: h
    4. 二叉树遍历(前序/中序/后序)% X: i$ j! G$ W+ P+ c
    5. 生成所有可能的组合(回溯算法)
    + f+ n* a2 }' @' O# i5 \, p& n# _" I! ^, {9 y3 T+ n' G' C' @7 z
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    昨天 06:27
  • 签到天数: 3147 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    ( s* ~3 T, g8 ?2 q  s# H2 ]我推理机的核心算法应该是二叉树遍历的变种。
    * F. t( u$ w9 ?! Y* q7 I另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    1 t$ h# W: j+ \; e4 q: p( {. o& {  ^Key Idea of Recursion
    ! O3 \3 F$ w' u( b. {) P5 w
    3 L  S( O7 @, ?9 j, P6 xA recursive function solves a problem by:9 ?7 _8 h8 l& E2 H' N! p! r
    9 Q0 ]# G6 Y: |/ X
        Breaking the problem into smaller instances of the same problem.: O8 k  L% w, m. Y; H/ z0 N, ?) O
    4 Z( z$ Q' d) E2 P4 h+ X# ^
        Solving the smallest instance directly (base case).+ d+ y( D, d4 l8 |
    - z9 L! c9 W* a: Q! i! P
        Combining the results of smaller instances to solve the larger problem.+ b: |. j& n) f- R4 r: M
    ) X7 z$ t& c1 a! x! _  ]
    Components of a Recursive Function
    / \# a9 ^- }* z" b( Z' W" |; ]
    ) ?# U6 Z& E+ M1 d    Base Case:
    2 H4 D7 P  z( X% R* }; z
    9 J/ ~: k9 \9 E# C) R: [9 l        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.; P' u9 W" @( K' p) w

    # h5 e' u8 N. i% }& B& ]- i7 o9 {' a        It acts as the stopping condition to prevent infinite recursion.. |" R& R+ {* \- I& X% ?' _( p

    $ A( n4 Q$ }% g6 k        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    ( o; b& J- C5 ]+ p. v2 r6 S3 t  b8 K# M( _5 z( ]5 n
        Recursive Case:0 W; @5 U4 Q7 z8 G  C( d5 W
    0 @4 v2 v7 J9 u1 B0 c5 {; |- g( o
            This is where the function calls itself with a smaller or simpler version of the problem.
    ( v" U2 M( f# O( j2 x) |; {5 q" U. p# n2 ?. m6 }
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    ) w2 d# X0 E% d. a& H$ [7 e
    + W8 C* E$ G) P  C% e3 |2 g' |Example: Factorial Calculation# B! S/ l2 D( c. S6 A  `
    . I% O2 E  m% q) g6 _* v" L
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    ! H! ~/ X# p2 ~' g
    1 N5 I) T, G5 i4 a    Base case: 0! = 1; h& x& d! u  ?, U: h# u' j
    : Z  r$ \) }+ P4 u
        Recursive case: n! = n * (n-1)!) r5 x2 P' }( l' l/ j
    8 Y5 [- Z, R; [4 [* n
    Here’s how it looks in code (Python):
    * p/ l# Q; }1 `8 M) ^9 opython* V6 \6 j0 ]1 F# E
    5 j7 K! R% @* [3 g# l

    " \& b8 F) ]% z+ b' ^2 u# J* _def factorial(n):
    0 f+ J/ g/ w3 f8 k9 Y    # Base case
    3 K/ f5 g8 _# y    if n == 0:; L0 _' H0 f! H5 E7 c$ R
            return 1
    - Q7 B' X7 g- G/ j; ^. g    # Recursive case5 k& Z! q0 o5 N' u
        else:* r1 y3 I$ e6 w  d, A# a' K
            return n * factorial(n - 1)
    $ S" _& }4 Q4 @) I% Q$ z3 d: L, ~" f* O7 I' }
    # Example usage
    ; T6 f0 c; a" p! mprint(factorial(5))  # Output: 1203 y- X/ F# q: D! a( a6 W% i9 ^
    - m, T$ E! Y- _
    How Recursion Works
    + W4 A# S* V' e8 V+ v
    - }/ i: Q$ X+ W4 W! E    The function keeps calling itself with smaller inputs until it reaches the base case.( r4 A0 M; m/ Q# ?$ d4 H( m" f: m

    ! `; p% y- r8 T    Once the base case is reached, the function starts returning values back up the call stack.
    7 w: x7 s; |; E1 _( l. H: Y. m4 H
        These returned values are combined to produce the final result.! Q/ k' _7 }* e9 I( ^% r& I

    0 a7 i* O$ R: ?1 pFor factorial(5):4 m5 C! O+ z) |! q

    / ^8 Q! r. J2 D6 ^$ `% r4 i# u- H
    2 k5 m5 J9 ?+ w6 C. v/ E/ Dfactorial(5) = 5 * factorial(4)8 Q& v+ M5 i9 ?  _1 a- }, O
    factorial(4) = 4 * factorial(3)
    8 l; f6 T0 H3 a( Y$ S0 Qfactorial(3) = 3 * factorial(2)8 e9 p$ [% ]# `- R. b
    factorial(2) = 2 * factorial(1): `: b1 ~! l0 f/ S) g/ D2 T
    factorial(1) = 1 * factorial(0)
    * P% A% r" N2 h" Y$ ]8 Kfactorial(0) = 1  # Base case$ ^1 P6 q/ C, j4 s% t9 u  \- r  H
    ; o$ b9 g' \0 C" e, r
    Then, the results are combined:
    * T% u. u3 ?' k; t# O8 I! a" J; s" _' M$ `5 Y+ |
    ) Y5 s1 Y% @  r8 _; n
    factorial(1) = 1 * 1 = 1) d8 v& [! [2 J% Q& i/ q
    factorial(2) = 2 * 1 = 2
    / U' `* {& X7 \# `  F/ v" Yfactorial(3) = 3 * 2 = 6
    6 @" B1 S. v1 j& {& W2 m  xfactorial(4) = 4 * 6 = 24% W+ d2 E; Z) P7 [4 d
    factorial(5) = 5 * 24 = 120
      H' x! E) w' @( y2 @. A4 w6 u4 x4 v
    Advantages of Recursion$ l, G3 |( }; D! J

    ; T" t  A2 |' X; Z# p    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).1 @- w# c6 _# r
    1 h2 i9 Y* E5 o4 H) e" Y, \! Y0 M
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    9 |5 H) T# J. Q7 L5 F0 }7 k4 R
    ! }" [; x4 c  N: ZDisadvantages of Recursion
    ' b( t: K' z/ I( |9 f! _
    % X; k% r  U: Q* [    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    ; M/ [! q5 [1 j: o9 p% q, V0 F. K" R! q0 j3 G' c; ~9 e& W* b
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).( p& U  b- [" C$ w& r
    0 g: j, B; w% J( ^7 p; W' f, s# g
    When to Use Recursion
    ; ?3 {& U, }3 x4 M5 J
    7 V; z( L. }  R* M: v$ q; k    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    7 U$ D1 H& K- c# q- I$ e7 I
    3 j1 I. M/ B8 x5 R    Problems with a clear base case and recursive case.) S1 d6 [5 c" U# X1 l
    8 c; c4 Q! o% X; ^0 m# I
    Example: Fibonacci Sequence
    $ J' }$ U- u; l3 L( o( _! B1 Y  V' y4 T* C- V0 V
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
      r$ [, a8 C, ]" J) j* `1 ~! @7 X# A
        Base case: fib(0) = 0, fib(1) = 1
    - j' r: d- [9 J- ]6 q( U
    - l! Y, l- J# O6 K    Recursive case: fib(n) = fib(n-1) + fib(n-2)0 Q( s+ y! z- E# L. k1 y- Z

    & y0 @' a, z7 f' ?: S! t* Epython
    4 h/ U4 ?1 L! @6 p" q( {7 Q2 T7 T  h
    * T/ G4 Z3 z4 \7 q) E: h& |8 p& R: o
    ( D7 K/ |& Q! Z# j3 ^/ Idef fibonacci(n):
    . J$ ^2 d* G$ ]- ^$ u# L; P2 {    # Base cases5 r/ P: n# E7 Z) v
        if n == 0:# G( j+ @7 O+ C* f6 K
            return 07 U1 w& [. M' j) D( h  W1 ~7 N
        elif n == 1:
    3 ]$ D2 I3 i! D        return 1  h) G5 @, k% B+ S
        # Recursive case
    5 P6 L, _0 u% U8 ^& A    else:, R8 E4 ]3 x. _" j! g3 ]& y: H: Z
            return fibonacci(n - 1) + fibonacci(n - 2)
    8 c6 q) S; Q$ ~6 Z+ y7 s9 p3 r5 i7 n
    # Example usage" ]2 P: Q3 o" f5 e- }" F/ T
    print(fibonacci(6))  # Output: 8
    1 Y3 K0 m4 B7 G8 ]# n. L3 Q5 e  b4 W( A
    Tail Recursion) W& j9 ^8 D2 \, j2 I( B3 b6 i
    9 d  M* V$ }& @
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    : l- \, }2 T+ ~9 _; J
    $ a* B* N* o  W# {In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-18 07:07 , Processed in 0.030080 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表