设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1299|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    6 ~) n0 z( J9 v: M; _% s3 S! V& C  s( ]+ g5 \, \& t% {
    解释的不错1 ^$ [  G$ y5 b' l  r( c

    + n5 ^' H4 {/ m" R, w2 J0 Y递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。9 L4 c. }+ c; G8 S8 N+ M2 V. F/ }& Q

    . p) n1 W5 \& G2 ~$ x6 B9 S, D 关键要素/ F1 K$ j8 `) _6 `9 E: Z% M
    1. **基线条件(Base Case)**
    0 I9 |4 j" L* p6 @% M* p' w   - 递归终止的条件,防止无限循环3 ]3 ?; D! [; r0 J5 q. \
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 10 G) ]5 @& Q# d8 A$ i. I
    8 r5 K' Z1 x% K. _( _) S
    2. **递归条件(Recursive Case)**6 S/ p7 [3 n" j1 r/ x4 Y0 b4 v5 ]9 _+ M
       - 将原问题分解为更小的子问题
    " Z7 a  F. _6 ~& U1 L1 Z   - 例如:n! = n × (n-1)!
    ; @3 ]$ I: W' Q
    6 f. Z% L% ~2 f' U' F' F8 |8 A 经典示例:计算阶乘
    ) ~* P- {2 N) n# F) v8 [python
    + q3 ^  E7 f3 K  W6 }% X# X, Idef factorial(n):& Y/ p5 _) d- P$ h" q+ m$ Q
        if n == 0:        # 基线条件
    : \; `& Q/ M& r2 d( F        return 1
    ( v# M9 S  B9 f/ b" c1 N8 I    else:             # 递归条件
    6 W; d- g4 R- u% m/ C( S# d        return n * factorial(n-1)
    ) R# q/ N; g, m4 J: e8 [/ v) M+ }执行过程(以计算 3! 为例):% j: Y* p/ b+ q3 ~- B2 r! g
    factorial(3)' H# T  e- ^; W2 z, G
    3 * factorial(2)/ |7 Y9 a. q& G2 L2 ~/ D
    3 * (2 * factorial(1))' Z1 {# S8 D7 [; ?$ E& _5 q! M
    3 * (2 * (1 * factorial(0)))0 ?3 `5 Z& K7 b: G6 q
    3 * (2 * (1 * 1)) = 6
    / E1 D; b0 y1 u8 X. n) [, u$ F
    - P$ [! `1 S. e  ~3 _ 递归思维要点
    9 o4 P5 C2 }4 f, ?, r1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    ; Q/ `) S, \6 O, U! c6 E. F, a/ o2 i2. **栈结构**:每次调用都会创建新的栈帧(内存空间)" s% W# \, k, v' v" }3 I6 f! ?
    3. **递推过程**:不断向下分解问题(递)( C% o' Q7 n* D" p+ u
    4. **回溯过程**:组合子问题结果返回(归)
      f! p$ c, Z. t, Y. a; @9 B" X
    ' h1 n- T# D4 _( G) | 注意事项/ y; P( D; Y8 z* V* ?# k
    必须要有终止条件/ U: ]9 ]3 M& l4 N0 {
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层): ^# L) Y1 ^. I  W% j, T; ]
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    & N+ O6 k2 R' N' `+ b尾递归优化可以提升效率(但Python不支持)$ S. N% F% k) L. Q( S

    1 L0 v+ l0 W# W; o# i  ^- [/ {. X! D8 e 递归 vs 迭代
    / w8 {! D' @* `( w|          | 递归                          | 迭代               |( a* s+ E4 |4 R; \5 f0 q& Y9 B2 k0 T
    |----------|-----------------------------|------------------|
    0 Z: J( a, o7 U| 实现方式    | 函数自调用                        | 循环结构            |; D, H. ?2 t! U6 O& B/ A
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    " Y2 u% A5 ]9 }  w6 o3 {| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |# D5 l2 |$ [. h* |1 {" i9 j
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |  ^; c: U/ v4 z, s! x; N

    / C5 }( l' ^) q/ e$ ]/ I5 e 经典递归应用场景
    7 _% K7 f. a* D/ r1 p1 M1. 文件系统遍历(目录树结构)
    6 s. Y& }: E3 J8 G2. 快速排序/归并排序算法4 s. ?% b3 k  f( W& U9 g7 B
    3. 汉诺塔问题" m9 N' x6 H& F& U
    4. 二叉树遍历(前序/中序/后序)- z# L7 L& L1 f& P
    5. 生成所有可能的组合(回溯算法)
    9 r" {/ H& F5 v( M, P0 m
    - o) u) W" n1 M, d+ B试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    难过
    昨天 07:29
  • 签到天数: 3106 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,2 r5 r/ }" L( W8 P9 Z. n8 [
    我推理机的核心算法应该是二叉树遍历的变种。9 E* ?5 F. t, P
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    " T% r+ f1 h. p8 l* o" c& l2 _Key Idea of Recursion" U$ q& w2 {9 L7 k/ K( t8 F, h
    7 {6 T: u9 `7 g2 q: Q9 {' ?0 t7 x/ n
    A recursive function solves a problem by:
    * X" U3 ^2 K8 f4 M$ V" j* W
      L9 g$ ]5 h; W4 ~/ G; [    Breaking the problem into smaller instances of the same problem.
    + b2 m* W/ v+ m" h
    9 }9 f0 t- C6 O    Solving the smallest instance directly (base case).  n( r2 t% x1 K( [% P; B

      W0 }- T0 j' y: K% h% Q$ c    Combining the results of smaller instances to solve the larger problem.
    + f) n/ @1 P/ b7 Y/ U, C. J5 {- R# i( H6 J
    Components of a Recursive Function
    - S2 a( L' c- e" `% L" y0 @5 ^
    % m3 r. f* G6 i' i% Y8 h* o( D* j    Base Case:
    + j: I4 ]" _0 z% G# M% S7 T$ V- s7 y& P' h
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    2 S2 Q  P" J# i$ x7 @$ D* v. h5 c7 U& L
            It acts as the stopping condition to prevent infinite recursion.
    : h) s& Z5 E1 S: E& ^* _* s$ k2 ~
    1 q8 O0 C7 n! n7 ?6 a% m0 M        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.; r  u( F/ \  s
    ' I+ K9 i0 K/ I  t& H
        Recursive Case:
    $ @6 I5 Q0 B  m  K2 }3 e# h& O/ V1 H
            This is where the function calls itself with a smaller or simpler version of the problem.; G) y6 A7 u# C: M
    5 \3 {! L; {! \! L
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    4 z& j6 |% z4 D# w- A: ], _9 N) e% T3 A  Y- k+ c" X4 i
    Example: Factorial Calculation% R. n; d# M9 ^+ h% _
      U  _9 {0 s( [' a: U  w. X7 M
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:( [! s0 {3 |) M( A* y  [3 e

    ( x( x5 L$ t3 l3 `    Base case: 0! = 12 l1 s* B1 v! q& C& c: y; a

    : L5 E' B* i6 ^# A$ e  Z9 ~3 i$ A    Recursive case: n! = n * (n-1)!# F# D) M1 ~) A, r# q- d5 W

    # S" I) x2 U6 v( h4 o9 y7 ^7 oHere’s how it looks in code (Python):
    6 ]. x. S2 [; }4 H- Zpython+ l0 {4 q, X, d1 j0 G5 F" i2 G, V
    4 y5 E9 p+ X5 G) I4 z, b
      O& f4 U* P: Z: L, W
    def factorial(n):% V" \  k4 C7 Q2 S- N
        # Base case9 P" J# T, \5 ~$ Q. C3 W: v! m
        if n == 0:
    ; h  B% B! C/ K# S2 [, S        return 12 U( a$ Y) L6 c
        # Recursive case$ e* x* s% M& a$ Z! c
        else:
    2 [# @. E& \/ u' l. x( i- `& Q8 j        return n * factorial(n - 1)' v! G* s4 l: Y" }0 o
    7 n7 _2 I1 y4 C! P  c- K
    # Example usage- M1 ~; D4 _8 S+ @
    print(factorial(5))  # Output: 120
    + s6 |* [( A6 d/ e$ Y) M
    6 m& D# Y9 l: g/ |7 d! e! U/ V- EHow Recursion Works2 p9 O% \) \; M" h3 A# B
    - Z( @$ ~6 y; e% }; x) u
        The function keeps calling itself with smaller inputs until it reaches the base case.( |  }2 m: T7 s$ h, ]
    # J  W$ _+ I/ h2 J  w/ U  ^
        Once the base case is reached, the function starts returning values back up the call stack.
    2 f: u+ `5 R2 a
    $ g: D4 X4 ]! R' o3 a) Q    These returned values are combined to produce the final result.9 F0 t; z/ t4 X5 W& j% L

    1 {: i: j% X4 p! \3 D5 ]: s6 [For factorial(5):& q! _& s& g7 w8 F: h- ?, c

    , d: E* U1 R2 z4 N% e
    / d$ j4 j3 E3 d# {7 ~0 A, \* v- hfactorial(5) = 5 * factorial(4)+ X. E% G( h( f
    factorial(4) = 4 * factorial(3)
    ) x6 r6 N4 W9 x! y8 _  }+ [factorial(3) = 3 * factorial(2)
    : z- m- J# s+ C% C- F" hfactorial(2) = 2 * factorial(1)
    3 S* F! d9 |2 u, Kfactorial(1) = 1 * factorial(0)+ G+ t3 \5 g/ F# W  \; f
    factorial(0) = 1  # Base case7 ^' C  _" y9 Q% r; G2 s- P

      q7 X/ y6 U& F$ l) G. o7 D& SThen, the results are combined:
    8 N. I6 j$ D& U% D2 T' y7 ^* k
    ' P! v/ D/ g/ @) U
    1 W1 O* z; h, p% ]/ e" O* O3 bfactorial(1) = 1 * 1 = 1  H5 c5 {6 a$ y: ^/ ~- C
    factorial(2) = 2 * 1 = 2
    4 O5 V3 A; M% e4 \factorial(3) = 3 * 2 = 6  h8 v& h7 P& [- [4 g4 |
    factorial(4) = 4 * 6 = 24* K. f' |# S4 H  R6 ~/ t) N
    factorial(5) = 5 * 24 = 120
    : q" y$ B1 h  S# `$ _5 X! M, [
    & Z7 V- o$ J* ^( Q# {$ m& b9 HAdvantages of Recursion, E* X. D  A+ T

    & n7 l- y8 o) s    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).% ~0 b! Y  r+ C7 |3 F! [% t! d
    9 M  K  b  `7 Q+ F! w
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    . t4 @0 U7 X8 t* \/ f
    ( P' q8 ]& F$ \9 b9 Y0 e& K9 mDisadvantages of Recursion
    , d: T) k7 p9 u6 \/ ?- s
    : G7 m) w7 @( M2 L% E0 _    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    7 }- k5 U% A* u5 z* n& }! p$ g7 r( k0 O
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    . b1 z; I7 C9 ]* }+ w
    ; P1 t, s% a! e6 p6 h. i8 B# HWhen to Use Recursion
    1 s3 Y) u- o8 E& V% h
    1 H8 w+ n4 [) c9 J* }    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).! {; @5 q) `7 n0 ?) d6 a
    % [  C* e# r& q
        Problems with a clear base case and recursive case.
    5 y* R& q' `6 P% I- R$ S8 K* x$ b1 _
    * F! a: i4 m8 N/ k- G8 Y. FExample: Fibonacci Sequence/ Q' L: R  |# [* U$ Q

    8 ~/ _6 D; o: Z) I3 }5 SThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:/ l9 I- q% W) ^8 F9 O' i
    % D2 ?2 y" W6 F2 l! x7 L+ d
        Base case: fib(0) = 0, fib(1) = 1
      F$ R' n9 x# _1 E# ~: x  J
    6 [4 O. k2 }0 B% h    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    $ o! S$ e: @3 ~% O3 y! C/ b. t5 h6 |
    python
    % w+ y+ H" i  L; d# a$ n! H; o- h; g& {2 u$ [& [% ?6 y

    9 W8 D7 \, t* z/ `& p# ~# m% c" Idef fibonacci(n):  v' u7 r) m( |" ]- x
        # Base cases# y- s* C$ P& }2 [
        if n == 0:- p2 y5 V- m9 I- ~- s
            return 0
    4 \5 [8 |( j6 L( m$ J    elif n == 1:% u8 B9 J. M2 ?: \5 S& I+ F) T1 X
            return 1( m1 C3 ?* ^2 x' y. ~
        # Recursive case) J1 b- A+ _1 @1 ?! m
        else:
    7 {- O3 ?6 O$ c' e8 n        return fibonacci(n - 1) + fibonacci(n - 2)+ \8 a' B7 G; V" S: n* x% e9 v

    , I" W- |% U3 ^" W$ \# Example usage# H0 h7 S, A9 w% U, ~) H* X( E9 h
    print(fibonacci(6))  # Output: 8
    3 H* u( ?3 U# s! s, G9 w, x) `) U( |" T: b" p1 z0 R
    Tail Recursion
    6 }0 q* L. Y; _: s% y( ^/ s5 T4 D: r9 ?! R2 E
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).: e: ~1 b: w/ y  Y& R3 B
    ' [$ M  z) L( Z+ \5 }
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-3 06:10 , Processed in 0.030289 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表