设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1094|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    5 u' G  x, o' h- W) k# G! A- F4 W4 z# l2 B: ]/ W+ k% f6 |
    解释的不错; L3 c/ n$ g0 A

    ( z0 H; e: `- V3 z递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    & ?2 Q  G+ E1 s" C* O+ h( w1 E* C% e) h
    关键要素
    4 ^! O! e- U' Q1. **基线条件(Base Case)**# V) m- ]0 C( _4 y% [# n6 [
       - 递归终止的条件,防止无限循环; b* u' f; {& m+ r
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    , M0 b9 Y" _- a& t& v2 }) o! [  P3 u8 |5 F* Q/ ?4 }) a0 v
    2. **递归条件(Recursive Case)**
    4 K9 }+ l+ m4 a$ z; H0 R( o& `+ Q   - 将原问题分解为更小的子问题+ w9 B0 w; w# t; \# _
       - 例如:n! = n × (n-1)!3 H1 i( Q* d1 B, P8 A" H: y
    * T; b1 k& H7 e$ ?  r/ Z1 [
    经典示例:计算阶乘+ P# q: T9 n! |9 c
    python
    . T: p4 w6 J; Y1 D0 K. udef factorial(n):
    9 `& \- w1 P, ]5 a( ^; h8 j, Z, P    if n == 0:        # 基线条件9 q; Z/ N: u, }/ A* g
            return 1
    . S) {* Q9 p& T    else:             # 递归条件& x" ^1 W* M3 X3 W7 I
            return n * factorial(n-1)6 |" `8 M, c( d# h3 c; `
    执行过程(以计算 3! 为例):
    ; G, U4 K; Q4 Z) v/ {1 ^factorial(3): q! I# I! J" m
    3 * factorial(2)
    " ^7 L  q; E6 U( T3 U3 * (2 * factorial(1))
    # C6 i1 O- x" r& w8 g! z3 * (2 * (1 * factorial(0)))! M$ p2 g" R+ a3 V
    3 * (2 * (1 * 1)) = 6
    5 C. N) o& T, n( Q. {; Y/ q
    : m; U# S. D! K$ Q5 P- q% G 递归思维要点
      u1 c0 s$ }9 C/ d# V2 S1. **信任递归**:假设子问题已经解决,专注当前层逻辑$ A2 n3 ?; g) Z; ~+ w( o
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)4 }( h% l, i2 y
    3. **递推过程**:不断向下分解问题(递)
    % _0 E, R6 q; H' M7 {& U$ b4. **回溯过程**:组合子问题结果返回(归)! L) A' ~* Q  t3 s% v: _

    , t8 a+ W0 `( d/ ^ 注意事项
    0 C1 [8 D9 z' c必须要有终止条件
    * F/ O: ?9 A8 s& B! R递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    ) V' o; u' K$ N; c: f$ `' s某些问题用递归更直观(如树遍历),但效率可能不如迭代2 ]8 d* k  P8 k7 v9 Q( D5 t
    尾递归优化可以提升效率(但Python不支持)1 o! i1 U- ]" @( o
      h: U! A7 N, y% P
    递归 vs 迭代
    1 Z. Q( ?" F7 ^0 P/ T  N! y4 s) _|          | 递归                          | 迭代               |
    ; B2 t2 s9 X$ Z, A7 A7 w% {|----------|-----------------------------|------------------|$ G* F' b" l; i% V& A: [
    | 实现方式    | 函数自调用                        | 循环结构            |
    6 j8 c. P! {5 v& E! Y" n| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |5 I; \. \2 k9 ?, R! K( A
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |! K) g$ n4 L- h1 J+ U9 C
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    . [9 G! x* l8 W. V9 i8 W3 n+ f1 F
    1 R- a2 A: T4 X6 J 经典递归应用场景  B: p- A; {! n- U
    1. 文件系统遍历(目录树结构)/ h  m3 W3 P9 v9 u) e$ R+ A
    2. 快速排序/归并排序算法) o4 R/ w# {( ]4 P( d' o
    3. 汉诺塔问题$ u, O" v3 L, F$ r( |) o
    4. 二叉树遍历(前序/中序/后序)
    ; X% F  o: w5 F' n* H, u5. 生成所有可能的组合(回溯算法)
    " Z/ E  f& k# O; i) V3 y6 e9 y8 H# j7 z* Z  X# X5 p8 e, `
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    9 小时前
  • 签到天数: 3096 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,, P1 D4 l" K# r
    我推理机的核心算法应该是二叉树遍历的变种。
    ; _2 }6 N' [$ C4 n5 X( m另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    & e6 H( \/ T7 q- o) r! l" C" GKey Idea of Recursion- Q  N. I: C: t6 W* Q

    + n0 ?; @7 j/ s7 O; [" }A recursive function solves a problem by:0 u  H7 Y% J+ g, R( B& x$ E

    0 l8 K( i9 L" X2 z  \    Breaking the problem into smaller instances of the same problem.
    , {6 E7 [$ ^6 `- `8 s, n- C  i, {6 R) J! t7 l. D
        Solving the smallest instance directly (base case).$ j# R2 J: c& ?* y$ K# p# I
    9 N5 ]* B# O+ Z4 D1 K+ E1 c
        Combining the results of smaller instances to solve the larger problem.
    & X: Z9 L8 d' C  }8 i* n8 a0 K
    ' l. A  h9 I9 ]- fComponents of a Recursive Function
    , r6 ^+ s8 i, c- k5 ?; H0 z8 A4 K, L' T; N7 Y+ u! m6 k' [& Z# {! U
        Base Case:2 n3 z" d2 L' j

    / Y" g* c8 k5 ^1 L2 `/ _& a        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.- r. g/ c8 d3 s3 A, V
    8 |; E  y- H# Z2 x- a
            It acts as the stopping condition to prevent infinite recursion.+ a: O4 D' J4 J& B* |& P+ ?
    ! j5 A  M& V' l: @* W, v4 u
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    $ Q" f: n$ _. w* [* V6 m- q. v+ q
    ! _" d8 h% z" a" {; g3 f    Recursive Case:6 g& G) d: a- Q" F# _* l1 o$ O

    4 g8 l7 q7 R$ n& k        This is where the function calls itself with a smaller or simpler version of the problem.
    . R; X8 u/ t& H; Q8 A
      `9 L- M* O) ~3 E) q        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).7 Z: X" @/ B  u, W$ Y! `
    $ y# I9 G0 }, `. Q. l" O% }* _' c( g
    Example: Factorial Calculation+ ^* L3 h# g$ Q1 q

    4 b. K- J: Z, J, p' |) cThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:& j0 j5 v; \& k0 a7 U

    " I6 g% R2 u: ^: l" k    Base case: 0! = 1
    , g1 T6 \5 ~' B! v& K9 s  Z: d7 l" {4 w  ]  c
        Recursive case: n! = n * (n-1)!- B+ Z+ @3 x8 ?; k

    7 u; j, w& A7 f/ k% P* L$ X* ^# NHere’s how it looks in code (Python):
    ! y2 o2 J* x- c& f7 i7 lpython
    6 y- _( j0 y4 [, \8 c6 B" X: ?. ?' B4 s$ W9 N
    8 j  y) ^$ p  j( k" F  W0 R( ~
    def factorial(n):
    8 i5 i1 y1 |& {0 D: [! h7 r( S) `" j    # Base case0 H) z) g; {2 i
        if n == 0:
    # @  Y, a! F4 m, }9 V2 @        return 1' d& V& c, m6 Z1 n4 Y: A
        # Recursive case8 Z& b0 `: ~# q. J# G, c% |9 ?- E
        else:
    5 T. A6 P4 |2 O+ q# Q# S        return n * factorial(n - 1). S9 v2 w- Y* y, y# N

    * j! ]! r, i& O# Example usage) P4 \+ W1 t# L1 f. @8 \, b" y
    print(factorial(5))  # Output: 120, m# b3 I) i5 k7 e

    # d- h5 T/ a* c2 W0 k6 HHow Recursion Works
    ; e) k# _4 I3 c7 F+ T
    : ~/ X/ y3 l! o  c    The function keeps calling itself with smaller inputs until it reaches the base case.' I6 z& A* q. a- G. j. n1 |# `
    * e& h- n; S) @: k( h. g. |
        Once the base case is reached, the function starts returning values back up the call stack.& ^* T. E. d' N9 g- J
    7 Y1 u2 @) R- I1 E4 N
        These returned values are combined to produce the final result.
    / [4 V0 |7 C- A% V6 b: t0 D
    * r# w: f2 j" g$ v* xFor factorial(5):8 R2 v+ x4 x9 E6 d

    # v# \. ~5 Z8 c5 A1 ?) K+ B# o3 t
    $ `0 A9 L: ]3 d( O% r. p, |. y1 gfactorial(5) = 5 * factorial(4)# [; J3 i! m! A& M6 \( T9 |6 L
    factorial(4) = 4 * factorial(3)+ \$ n- N( _2 h& a
    factorial(3) = 3 * factorial(2)4 L" @$ [, _2 U+ x; P9 J
    factorial(2) = 2 * factorial(1)% a! Y# Z5 P* C) `- v* D7 x' `; T1 r
    factorial(1) = 1 * factorial(0)
    3 |" E4 P/ y4 V# {/ [factorial(0) = 1  # Base case" u  K; t( f' d" c
    5 ^5 N$ a: I& @7 {% A. ?3 |
    Then, the results are combined:
    & r' O2 M! k: T8 B. z+ N5 a
    ! a- D8 `" q* P  l" ?% f8 H8 p) Z5 i. o) v. z/ K: _+ Y
    factorial(1) = 1 * 1 = 1
    1 j0 w& `0 g; {factorial(2) = 2 * 1 = 2
    - @; ?( d$ b0 q9 y, Wfactorial(3) = 3 * 2 = 6
    - Z% \8 T  z, T8 lfactorial(4) = 4 * 6 = 24# q* l4 K# ^  ]2 s, t- M
    factorial(5) = 5 * 24 = 120; D0 X: c- Y. D- b. ?8 y! c
    1 y0 I2 U: I) u7 j7 C2 J- \
    Advantages of Recursion
    4 ~* L1 r8 j7 Y8 t& q3 e+ _* ?
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).+ w, p, O* [5 T
    ' p+ f/ I  b: f
        Readability: Recursive code can be more readable and concise compared to iterative solutions.* a* y4 t/ Q, V& k1 @

    4 a' P$ o) r3 o/ R% `6 ^7 j1 oDisadvantages of Recursion4 J& c) \0 i6 [2 v7 r) V1 L4 ~& J

    # r% B. u! K$ s3 S4 X    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    & o3 u8 S. M; i4 W, F& q3 y3 M! A) C$ P8 a: d' N! Q! C3 [
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).4 n$ M: M) ], F- l1 _
    ! t1 `$ D. \' @; K0 S" B& c& u  U
    When to Use Recursion
    : e$ p( J* u4 b- t7 |. z+ O
    + y# N' L7 P$ e; x4 o( y    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    : V$ W3 K5 }7 {) T/ `, V  ~9 u7 o7 V; Z9 [# j9 L) |0 V/ F
        Problems with a clear base case and recursive case.; K7 p( Z" A" {
    ' O5 R7 X4 ^7 `: e( m
    Example: Fibonacci Sequence" F" }$ b6 k6 p4 c4 Z, h

    4 ?& j; j" g* L3 f8 NThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:2 o6 m5 e1 I; J+ n- d9 d* ~# m

    ) v( t% L% [/ V" u+ Q    Base case: fib(0) = 0, fib(1) = 1
    : u8 W# e6 p4 L& ^1 @0 D0 ]. E
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    0 Z& F9 O; P( `7 B% B- e( r+ w, v
      w& z% A4 P' Q6 n" ?python* N* b# F" f8 z8 Y1 j" Q
    9 I  ^6 F7 {4 P* ~9 v

    / e6 O0 L) g& Y  S5 Vdef fibonacci(n):
    2 u+ h2 d* K2 ]2 M& R7 S2 _# t9 j    # Base cases- r2 |' ]. M# j" Q0 r' k( b
        if n == 0:
    ) U  k8 m2 D% v. @8 x+ d  J        return 0
    - c/ T( j9 u, ^    elif n == 1:
    8 B0 ^* n: |7 t( G4 }2 k. \3 V        return 1
    5 A+ x) i' ^* _    # Recursive case9 E" h$ m1 E4 P# R0 u
        else:0 V& t6 Q" F0 u4 D: U5 g7 u/ O/ v, T0 x
            return fibonacci(n - 1) + fibonacci(n - 2)
    + c  k! d+ ~6 n, I- T. U/ H& K+ [- O8 O2 T: R  K3 H' p
    # Example usage4 U# W, g5 A! H7 r
    print(fibonacci(6))  # Output: 8
    : n- L. u0 {' R8 A& L
    / {( ~- Z+ `: k' mTail Recursion
    % T5 j: h& [( z5 h$ p+ p( m& C5 U
    " B: l- v; o. yTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    8 S3 B5 e% Y: |: M& x: j( Z3 l0 U+ F
    2 L6 b" c& x8 N8 F; kIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-19 16:59 , Processed in 0.034958 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表