设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1130|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑   f- m* ]8 {/ f- d1 N& A( q: r
    6 I+ h2 S3 c0 |5 p1 S
    解释的不错' |* C+ y+ f8 g$ j8 ^

    0 i6 ?; t" f" T# _' w递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    & E, X8 B" J, ]: q8 O
    * @# m. ^' R: s6 w 关键要素0 N2 l* ~; z, ~! X2 ?
    1. **基线条件(Base Case)**' V: Y! B1 W  Y" n" I
       - 递归终止的条件,防止无限循环
    * f/ O6 @# M& d: E7 V; E) |2 f   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    . y( ]# [3 |2 x2 @0 }
    : v5 I. a. P* w) e* m/ B2. **递归条件(Recursive Case)**
    8 x0 |% ]3 c8 G' `1 }   - 将原问题分解为更小的子问题
    / q' c) a* j. `8 ^; `% I   - 例如:n! = n × (n-1)!1 {4 [9 H4 Z* D& E& a. L& O5 |7 E" U

    : S# k9 ]# |2 {* m! w 经典示例:计算阶乘4 E, m2 ^% W: X; ^
    python
    + l$ ?; K6 ^* @9 q* Mdef factorial(n):) \7 U8 X/ A8 d  ^' I7 \
        if n == 0:        # 基线条件3 f0 W5 ?/ G7 \" f! K
            return 1
    8 [7 g6 z) ?7 H, r! y    else:             # 递归条件
    9 m+ v+ `5 f2 D% X' B4 a+ h& F        return n * factorial(n-1)
    : p  v* o# g8 E3 J& `) i8 |0 X; Y执行过程(以计算 3! 为例):$ c3 h" @& S% `
    factorial(3); U% Q5 a, ~1 Q& q' y* U0 Q
    3 * factorial(2)+ D0 d% T% a! }: t( C  o9 i
    3 * (2 * factorial(1))" F# k! c0 U, @9 z8 j2 ^
    3 * (2 * (1 * factorial(0)))5 {5 \  W  o# _# z, }( s- T
    3 * (2 * (1 * 1)) = 68 Q' G; \+ E4 s& b
    ' v4 ]0 x9 S/ U2 Q- I+ B% ~2 j, S, Q
    递归思维要点) {# ?9 q' G5 k" U
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    / T- V0 F2 w/ M# J) u2. **栈结构**:每次调用都会创建新的栈帧(内存空间)- v0 S" z% O8 h' |; S
    3. **递推过程**:不断向下分解问题(递)
    ; i+ d) T2 d* f; A4. **回溯过程**:组合子问题结果返回(归)
    / }+ V3 H9 i3 [9 x7 d) B5 Y
    ! R8 H# r; H9 ^) I5 B" o 注意事项
    % m7 U8 Y% V4 N  n% I" Y& `必须要有终止条件
    # X) V2 ]0 K& I9 g1 \递归深度过大可能导致栈溢出(Python默认递归深度约1000层)) f$ K8 a0 m* ]
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    7 G" Y8 A& u6 P5 N, h尾递归优化可以提升效率(但Python不支持)
    7 e/ z9 y; Q  \1 Y
    / y0 p% f4 K6 }! [1 v 递归 vs 迭代
    " q+ F% e  `; n, a6 q4 q7 j|          | 递归                          | 迭代               |
    1 |) H0 c3 _7 ||----------|-----------------------------|------------------|% m$ ?9 O* @1 V. y7 d+ c
    | 实现方式    | 函数自调用                        | 循环结构            |
    4 d2 O% J! p9 o) L1 W; a| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    * f& a, _0 U; [2 {| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |9 ~  r$ Y0 w  ~6 {3 N* S
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |0 m8 p$ L: X2 W5 B+ v' n1 p% U

    0 N( K- ]9 R! g" t0 z 经典递归应用场景7 T6 j& U6 u6 }4 K
    1. 文件系统遍历(目录树结构)
    ) g" {& ]8 K3 g+ b) g" M2. 快速排序/归并排序算法6 X* Q& t" n$ B4 v! u. o( F
    3. 汉诺塔问题  i3 G$ k% K- d# I6 ?) g; w9 r
    4. 二叉树遍历(前序/中序/后序)
    $ p( L5 U: F+ d" r* }5. 生成所有可能的组合(回溯算法)
    1 [9 }' g' K$ H2 \* W# h2 S
    $ U) H3 s. r5 {( n7 C试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    郁闷
    9 小时前
  • 签到天数: 3100 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    , c/ |4 L( a% X& x. R+ Z3 n我推理机的核心算法应该是二叉树遍历的变种。% G: x4 s8 X6 i6 U& Y- c
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    " ]/ {6 R  x1 L1 OKey Idea of Recursion
    % l) J+ v5 P/ g; p* e8 p7 k6 O/ W
    A recursive function solves a problem by:2 z; R5 Z) |4 ?/ A9 W, a& C

    * T  {# o5 Q2 l) m4 f& ^    Breaking the problem into smaller instances of the same problem.
    - K- y* D* ~8 y+ [$ D/ R6 p/ ]- h* N: O( j
        Solving the smallest instance directly (base case).
    : Q0 s$ r' V7 r6 l. @
    7 b" K6 G3 x0 {    Combining the results of smaller instances to solve the larger problem.
    3 H- Q5 R" y6 {  w7 y
    % w5 t1 s, W+ g; W4 Q( k; n# HComponents of a Recursive Function
    6 p# c/ [/ y3 O  j9 Q6 p9 q' I# {# C0 Y0 X% \
        Base Case:
    6 u% n+ r+ M9 Q8 Y  K' [% g  f9 |6 g  e, `
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    3 S/ m5 F; g/ }- B, @2 K. u. R- y1 O
            It acts as the stopping condition to prevent infinite recursion.: _9 e/ N8 K1 I+ T. _( V
    $ k! J6 |+ z0 J% ^4 t& g
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    ( U% _/ o4 _( t7 j/ a  m; H! e& i. g$ C' Q7 B2 t0 P
        Recursive Case:9 |5 s! @2 Z7 O: G) a  E

    3 y! e9 C' x3 W3 V1 z        This is where the function calls itself with a smaller or simpler version of the problem.
    # k# i' r2 |) Q9 d4 t7 L3 P3 V
    % {9 w8 K  X4 o* n9 C        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).1 i- P4 j+ s0 ~% @* s: T
    & s, n2 ]% v1 }4 Q& t! G5 @
    Example: Factorial Calculation% V3 G+ K' T/ ^6 g8 A3 [/ h4 J

    8 b) r4 G: V* T! IThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    ! s8 C& j7 Z) ?! G6 E
    : y6 q3 I+ D: j1 [% I0 D    Base case: 0! = 16 P% C6 Z+ X6 J6 F: j! M3 v5 ]
    $ I& B" H! S3 }0 o+ U5 N
        Recursive case: n! = n * (n-1)!; H5 v' x3 R+ [8 K

    % O2 Y# q9 M3 B% AHere’s how it looks in code (Python):
    ! u' d! v/ Z+ o2 o: x4 c) Npython
    " t7 I. I0 ?) M, v0 X0 @* @
    4 U+ ^% U$ W* [; C' J7 Q3 A( M1 T& h5 i4 X( H& W6 y, f) j, A
    def factorial(n):! c+ k9 w- R# J7 w7 D; k
        # Base case- x9 m: e) R/ o) L# e. H* x) T
        if n == 0:9 S) v2 R8 ^% e3 C" d
            return 1+ W4 ^, s# v, R* M1 k! Y- I+ R% O
        # Recursive case+ h( A- i! ?" U/ v( H4 ~
        else:
    1 v- t7 L( w5 W- M) i  M) J        return n * factorial(n - 1)
    3 F3 b- A- U5 \" }3 A6 G: p9 m: ~) v  l+ e
    # Example usage) @, Y1 ~( f: M( l8 T- J. P- u
    print(factorial(5))  # Output: 120& \  C+ t$ B3 ?5 B) k9 V. C

    ' b! y% q; e* C, W' F2 J3 PHow Recursion Works7 V3 Y4 x& {6 G
    & N8 N9 h% H/ b
        The function keeps calling itself with smaller inputs until it reaches the base case., N1 n0 f& Z9 }/ D$ Y: H- ^
    0 k9 D* w6 M; P3 I
        Once the base case is reached, the function starts returning values back up the call stack.: ^: L+ M& Q; ]# S* d: I
    . o  A2 V- O* P/ p
        These returned values are combined to produce the final result.
    ! ^" Q2 h2 X5 L& y3 X4 \& R' M0 r. O& x" y
    For factorial(5):8 _! j1 q" U: u: \! X# a7 B

    ( D3 ^! `8 K1 i! D. S( W/ Z. k+ M9 R1 K( p
    factorial(5) = 5 * factorial(4): h; P" [4 `* k- b9 i1 I6 ~
    factorial(4) = 4 * factorial(3)
    $ }6 [+ y! i. @4 J  }factorial(3) = 3 * factorial(2)8 q7 _1 G! K$ T7 {: c. S6 M
    factorial(2) = 2 * factorial(1)4 r% z& f/ E8 Q# v, l" p
    factorial(1) = 1 * factorial(0)
    5 A/ z" `3 u  j- D" \  Ifactorial(0) = 1  # Base case. c, N% ~7 f. g! k" C9 A

    5 g9 Z, O! m+ F% o! E/ [3 @8 tThen, the results are combined:
    2 n+ W& L6 C' `9 D
    0 m6 n0 k9 S  D4 e% \( }2 R3 F# Q+ e4 `) G$ `) `5 Y* }0 U. d' v
    factorial(1) = 1 * 1 = 12 g' d7 H9 p3 d6 K* B" X5 T/ t  h- t' T
    factorial(2) = 2 * 1 = 2
    ( W: [+ U0 t% A; ?8 ~& [factorial(3) = 3 * 2 = 6
    & I' s/ r& {0 u5 r3 f0 ^factorial(4) = 4 * 6 = 24$ H' D  x# _3 I/ W0 X" P% r
    factorial(5) = 5 * 24 = 120
    $ \) r& h4 U; r7 z0 n5 ?. n1 t( q7 L( _/ i/ ~
    Advantages of Recursion
    % a: p. G. }+ J! Y# s7 u$ O
    5 I5 @) k: N; B6 {) A& L    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).3 a2 S" F+ k2 C- Y
    7 ~7 e9 f' m% _& Y! z
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    , h( C( E2 ?$ {1 g' s' ~! I+ r
    : L; s& u: }- n9 \2 IDisadvantages of Recursion
    4 m& _: r. b* O: `) d% H* E- O! P
    ' h1 ~9 ]& j* d4 r( \; m    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.9 P. J  _! v) m: G5 F* V5 u0 X
    / W( W' S- L1 z2 S. r: b1 q# O
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    ; {8 E# S6 Z% p
    : F; i' ~3 ^0 \" I3 V% aWhen to Use Recursion1 q0 @9 a% |6 j6 f9 F9 |
    ) X" n9 q" r- ^
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    0 x5 j, i$ ]2 w  j5 H
    3 S, ]' V' |, j    Problems with a clear base case and recursive case.
    + c) |+ r! K/ m
    % |$ U2 t. d8 WExample: Fibonacci Sequence- ~/ {% E5 B$ o- T, V8 m

    3 l9 ~9 `# b" u4 k  {& |The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:  u9 I# h, ~2 t9 z9 t2 N1 `- f

    6 S+ x: r+ u- u$ I    Base case: fib(0) = 0, fib(1) = 1
    ; q5 C7 N- L, w' x( g9 X: Z9 T2 Y4 G8 b% H1 e
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    * N0 y$ L* e, I9 p8 P4 W2 H- b: y* U7 k1 Q' a$ D5 J2 y* r; W
    python
    ) w7 h6 k  [4 Z& G3 m' n# M* t
    & q- X. @8 |8 A9 e! Y) a& q
    2 h/ t: S  j, r- R0 Ndef fibonacci(n):
    - b6 Z! h7 Q4 Z' S    # Base cases" ^' t1 G; q( c& d
        if n == 0:' _  t! W- O8 _
            return 0
    " D+ y; L6 I) q" l7 U    elif n == 1:
    ! ]) W) w3 v: z* T; q' @' Y        return 1
    4 }2 F; a( ?2 D3 b/ e8 u7 Q    # Recursive case* y' ~' [2 L. R6 p2 }
        else:) b8 u  O$ D2 \" v9 t4 H# x* G
            return fibonacci(n - 1) + fibonacci(n - 2)
    - B6 n7 C# b& e* P" ^1 n
      m# l- s) a- I' w# Example usage
    , A# ?, k4 T5 t; M$ O; C& Y( Cprint(fibonacci(6))  # Output: 82 F" o: J- m4 F
    & K; O& q# v7 T. J/ {: a" _# v
    Tail Recursion$ v# m( X8 _, J4 u) R: l% Q
    5 j1 }# n" f3 S% B2 m
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).3 C' K, M5 X$ q$ G/ |: t3 J
    6 F4 e, s0 k7 ]: o; F/ B
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-23 09:40 , Processed in 0.077041 second(s), 22 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表