设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1101|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 * [6 T: f8 L+ Y1 l0 U' b: R5 K
    9 l4 X) y; Q9 e) w& o) X
    解释的不错
    + ~' s/ H7 K) j& t5 o  h( o( t; w0 D/ {3 G
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。; W7 l  A9 i( s. E; W7 O
    ' ^6 u/ i$ V% J4 k8 M
    关键要素2 K3 N2 V( m5 ?. g
    1. **基线条件(Base Case)**8 Z1 |- Z# ]8 l. m" ^7 T
       - 递归终止的条件,防止无限循环. l2 n1 o: U( I9 O4 S! C
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    , A9 g- ~8 A- }5 ~' o' J2 T. \" s+ L) [* w
    2. **递归条件(Recursive Case)**4 T2 t. H- X! z1 ?
       - 将原问题分解为更小的子问题- k! Y: D5 n# e) `, ^
       - 例如:n! = n × (n-1)!% l" U$ R$ V( I' P! S2 W
    0 N6 K: t" I0 r" @. B2 b
    经典示例:计算阶乘
    , E9 X* r4 ~2 _+ n% y) t! M4 Qpython
    1 a! \1 L# {" [9 ]1 Kdef factorial(n):. z- h* W: y* S( u- R, `0 ]" K, O
        if n == 0:        # 基线条件
    ) C4 E- v8 n) @/ L* _1 }) ~        return 1
    # A+ R5 m, r# S& \7 m- I( q    else:             # 递归条件3 V( \9 L' Y  j8 T
            return n * factorial(n-1)7 P- A1 b* F( {( {( p1 U
    执行过程(以计算 3! 为例):
    $ v4 j- ?' ^1 {) c- z5 H: jfactorial(3)2 c. n, w! o: _, S' r8 ~( N
    3 * factorial(2)# Z$ S' U; P$ Y! Z9 a) Z7 p3 Z
    3 * (2 * factorial(1))
    7 E7 C0 F9 S, j' k3 * (2 * (1 * factorial(0)))
    & F  b3 H! F. V$ }8 M7 n9 U3 * (2 * (1 * 1)) = 67 G+ i+ F0 A( {( s' @
    * ^- I0 J/ c3 t+ p  ^
    递归思维要点4 h/ e/ q8 D: N" G) r4 K
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑& v4 |; R2 A1 p% t
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
      b0 ~. s1 ]1 o8 o3. **递推过程**:不断向下分解问题(递)
    4 T9 c0 m& `# _, p+ c4. **回溯过程**:组合子问题结果返回(归)3 {  L3 D# o4 p: I3 ^2 K6 d
    . V5 N1 `6 U* e/ \6 N2 j: Q+ W
    注意事项
    ( V, O% |  D8 v  F5 z必须要有终止条件
    . {/ i; S6 E6 U0 B- Q递归深度过大可能导致栈溢出(Python默认递归深度约1000层)- D& p4 Y! R5 }/ i* {6 Y
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    0 d9 y7 o+ v  L7 c0 Z尾递归优化可以提升效率(但Python不支持), `' ?$ u4 X7 O( t$ x/ n

    ' {' ]; v1 ]8 Y9 [% H3 S 递归 vs 迭代
    / H7 O% J$ Y) a4 R6 C: {3 q( ^|          | 递归                          | 迭代               |
    ( o8 x5 ^0 k3 b2 Z! [|----------|-----------------------------|------------------|$ n0 u1 ?3 [' q/ r0 }& T/ r
    | 实现方式    | 函数自调用                        | 循环结构            |
    : F% }2 ?# Y& M# L2 n- E| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |; R" \8 p4 r, U+ K
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    4 a. Y1 E, x/ f5 F, D# R, f- d| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    / k% ?0 K' ]* ~/ `* N2 c% n. Y* t+ y- x$ q% _3 l: J6 D
    经典递归应用场景3 ]0 L! u1 r' G1 t* N( N
    1. 文件系统遍历(目录树结构)
    $ T: v1 f( t" K$ C2. 快速排序/归并排序算法3 G" ?9 Z: O& _, m" g) @* @) T
    3. 汉诺塔问题. A$ r8 j* ~+ f% l) m& X- W% S
    4. 二叉树遍历(前序/中序/后序)
    1 Q$ N/ a: G- m$ P" r4 j0 Y$ j5. 生成所有可能的组合(回溯算法)% c3 P0 G% Q& o( g$ r

    0 p: J$ x3 Y% [4 Z# K9 V试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    5 小时前
  • 签到天数: 3097 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    3 U7 r$ P0 E3 {7 _) ^我推理机的核心算法应该是二叉树遍历的变种。
    - J3 j' r' v/ h/ X' A" Q另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:4 z2 W, w1 C) Z6 N7 C% {- @8 c) H
    Key Idea of Recursion
    ) _$ E, h/ q8 L2 e
    " r* P/ o/ u# P- ^4 Z' tA recursive function solves a problem by:
    . y' x! z, W& ]4 t( d* t* f3 B, O, N* e
        Breaking the problem into smaller instances of the same problem.( O' w) `  E  R" G$ q3 D1 R6 j
    % {- ]$ J( i; b2 c1 F
        Solving the smallest instance directly (base case).
    6 G( B. d" \! v6 P- n0 F: Q7 v% Z/ l- @* x3 q( J, q9 B! m( A* D& u. t  |4 u  F
        Combining the results of smaller instances to solve the larger problem.
    ) c. I) ]$ s3 G( J, e; X
    4 D' |5 ~' p, CComponents of a Recursive Function
    6 m7 m: ~" ]/ ?9 m8 T& s( V( c) s/ Y% u- T+ A& _
        Base Case:
    & p2 F( y, Y/ |0 S( S& n
    $ I8 K) ?, L& \* q        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.) P6 Z/ i/ Y- u
    1 r6 Y$ Y: |+ V# B7 o$ @
            It acts as the stopping condition to prevent infinite recursion./ U% l5 Q* G( E5 y! Z; ?

    7 M* Z- ~* I1 T6 N1 a8 U5 r" i        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.& @( W+ |0 L% _9 `* ^' t1 D
    3 u3 ^4 Q5 U* _$ e; k6 a% H
        Recursive Case:
    3 p4 Y$ U+ y# C+ r* u1 ]3 B' I  U9 f2 ^1 P- s
            This is where the function calls itself with a smaller or simpler version of the problem.
    9 L  {) [" F& r, g
    ) Y" N/ c) k' H, [+ m' e        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).% j$ j/ I/ f2 |

    2 j2 o# F/ M$ yExample: Factorial Calculation
    5 w' ]9 ~' d+ W- Z' O
    ( C# E2 Y, z# x( Q: x9 `9 bThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    - R; B& @) R4 H4 S9 y2 r6 j  a% `8 d/ G2 E  R
        Base case: 0! = 1
    ( M7 R- }2 B  q* _, O
    8 R0 E% O& i1 [/ C' K# I    Recursive case: n! = n * (n-1)!" K. r2 ~5 s* ]2 F

    2 I( a  _* ?' W% t# g( q# l: LHere’s how it looks in code (Python):% }2 N3 M% \3 w' N5 i/ Z0 r/ x) T8 E) n
    python
    ; p! c5 e& Z9 H3 U+ I* Z4 P, s
    7 d3 u1 q- g3 c% d. X$ H
    " @; E4 V& }' z0 w: Wdef factorial(n):% J0 W  D! r" n1 w7 J) _" V9 f: W
        # Base case, _6 ~2 |' N5 s& d
        if n == 0:5 k6 J5 c$ i- ]9 T. u
            return 19 U" P; \2 I4 D9 q" H8 w
        # Recursive case  F& V6 x3 B6 p. S! X0 Z# P
        else:5 z& N; I+ s: c6 N
            return n * factorial(n - 1)9 c- t9 O, a" H# X5 ~# I9 ~! ^

    $ o& T( O  D" a# Example usage
    0 s1 h. k& D4 Iprint(factorial(5))  # Output: 120; D/ E. v5 L9 b, E
    6 U% h+ B" f* ?' n" x* _
    How Recursion Works
    # w( \9 q, W) V3 W
    % i) B* s, X* E" H4 ]- O$ a    The function keeps calling itself with smaller inputs until it reaches the base case.: [& y+ E% B/ B1 a2 f: ~3 v
    4 V* }+ u8 c  f( |4 j4 o5 n
        Once the base case is reached, the function starts returning values back up the call stack.; K8 F9 G7 F' I5 A% L8 r

    3 b# c5 }9 X% G4 ~    These returned values are combined to produce the final result.( l% |: m5 `! ]* @: v! j' X
    + E, k7 ?# V* Z/ d) l$ V2 f& X, Y! x3 m# Z
    For factorial(5):
    4 @+ ^, `8 u: B0 B; s  f  }' d. h& s; K6 ^  f
    # B( C2 s) E4 o4 P( N* {, d
    factorial(5) = 5 * factorial(4)
    $ p5 j9 t, g0 l. }" j  Ofactorial(4) = 4 * factorial(3)0 v0 c# f" |  S  p
    factorial(3) = 3 * factorial(2)
    / D+ {- A' J. ^% _8 f/ o/ kfactorial(2) = 2 * factorial(1); ?) O- d5 c, M% K, Y1 `- t
    factorial(1) = 1 * factorial(0)  _, U; T( @" m! a+ j, O* h" [( b
    factorial(0) = 1  # Base case
    $ U! r# M4 z3 C7 e/ N
    ' h" U) W5 m" m) c/ e* G7 @Then, the results are combined:
    + o/ N8 t7 g; s% `0 o  v$ L, n3 S- v& _( \

    / ?3 y7 `' k& @* Y0 q8 |factorial(1) = 1 * 1 = 1
    + |' r* U& p- ~) ^factorial(2) = 2 * 1 = 2* u3 @3 J& v9 s: d* K
    factorial(3) = 3 * 2 = 6# z9 ~4 V, @* @* e) C+ N; Y
    factorial(4) = 4 * 6 = 24
    & W+ \" _& Q( k# H9 ~factorial(5) = 5 * 24 = 1203 d  A- {4 T( K' M, b; R
    ) m' i' Y. b( P4 ~7 t3 M  `8 z
    Advantages of Recursion
    1 @* k2 y% h- V6 Y0 d
    ) @" V- d1 |& x! \( o    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    7 s; k. Q% h; H5 U& d
    2 L- o* y8 A) N! s* }/ B    Readability: Recursive code can be more readable and concise compared to iterative solutions.* c7 K$ d: p8 _& R8 _9 Q4 F4 [4 Q

    6 \" D) f3 a' zDisadvantages of Recursion
    6 V* S: u7 Z- V/ Q
    ' |3 D# U3 g0 t    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.$ c; P+ S& ~2 e9 j5 e
    4 ?3 y7 g0 W! M$ p
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization)., B" m" X' d$ f: k& u1 O& X
    ( U( G! @9 H( g. B7 M2 k& C
    When to Use Recursion
    & V+ J/ S9 C* |2 b; w; e( y& J8 r" w9 V; s9 |
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    - s0 m7 S/ Q) {/ G/ Q8 N$ @8 J! h& h; N- G+ B9 `
        Problems with a clear base case and recursive case.
    9 A- P, O/ H; L, o, O
    % R( @7 y2 B. H  OExample: Fibonacci Sequence' I! W9 l. m$ @0 P

    ! B4 |/ K1 k5 @  q8 ZThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:! L% m# ?# Y* r  r5 T3 d  W
    9 [$ a* p* H$ I8 Z+ m! ~
        Base case: fib(0) = 0, fib(1) = 1
    & E3 g) l& W0 C. b( G: I+ ]1 `& E7 q/ n
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    ; R" y, _8 t9 c6 H* Y9 v9 z0 r
    3 U9 k0 J; k4 D  U. tpython
    & V% B8 I2 e& d4 w7 B) j/ q- H* _5 d, `
    - c9 S1 B# g* Q, P2 E
    def fibonacci(n):
    , i  H. s* y# y  b& V9 Q    # Base cases0 b& l: c( A, ~
        if n == 0:
    8 E% }' m% ~# A6 T7 A' u6 `        return 0; g! ?, M# G6 r+ R  R
        elif n == 1:
    ' {4 o  |6 L1 x' L        return 1; v5 S3 m7 I: Y6 f1 f  Y
        # Recursive case
    . W3 l5 j( o1 p8 f    else:4 r1 N# |7 v5 M' |9 d/ t; f
            return fibonacci(n - 1) + fibonacci(n - 2)
    6 C2 c" {9 c5 e! p$ o) K0 h' X$ w7 C4 M5 s/ j9 [3 k
    # Example usage
    0 y; d1 @4 h' vprint(fibonacci(6))  # Output: 8
    $ E: z! D& m3 \+ {9 D- J3 Z) R& H( }0 ^, z1 k% g/ c
    Tail Recursion' E. ?# W. g9 b+ L- B. X; Q
      q. U7 j# E. _; ]# J. N. d
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    + Q" h7 p/ f, h% o
    8 b2 Z: H* v/ Y) A5 `In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-20 12:23 , Processed in 0.030923 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表