设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1652|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    - T: c2 o4 j- k: D; i  V6 ^; S5 `& W4 Z+ o" `
    解释的不错
    ) [9 A+ L6 C) v  Y% L1 a" S( X' v/ `5 S9 ~- N+ _! W
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。$ p, |6 ^, L& V, r2 i

    ) S6 y' X4 M8 l1 q( `: A7 D 关键要素
    0 p- V; c! w) b9 @" M1. **基线条件(Base Case)**
    ; ]6 R0 G  q: U& X   - 递归终止的条件,防止无限循环: B" x, w- ]* L- b5 }2 A+ A4 O+ P( Z
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    4 ]- t6 P0 z: O( _+ Z+ Z) n1 |
    & R& s1 e( m5 a2. **递归条件(Recursive Case)**7 r' ~& R+ F( a( {5 T
       - 将原问题分解为更小的子问题
    ( X; ?8 V' `! l: L   - 例如:n! = n × (n-1)!1 Z) `: y2 {) s) l
    3 T  W1 ?$ G) x* k& F% q, j
    经典示例:计算阶乘
    " A7 A+ A* d; p. Z* |9 e& X+ Opython7 x  `' _& H! a6 M
    def factorial(n):
    9 e+ v8 J3 O5 W( ?3 C, ]2 V  U    if n == 0:        # 基线条件
    * I; @0 f- ?* b: R        return 12 S" E" T1 G; _  Q
        else:             # 递归条件; r: H9 H( N: s
            return n * factorial(n-1)
    - o; y' x1 n( h执行过程(以计算 3! 为例):/ ^& Y1 a0 g9 \" Q+ \  g  Z# g8 v, O
    factorial(3)6 F* ~7 X, z/ e# E5 k
    3 * factorial(2)9 L3 N* f" j3 k( r1 E9 r2 D
    3 * (2 * factorial(1))
    + J: H1 A3 r; E0 b1 b- A; J3 X3 * (2 * (1 * factorial(0)))
      @+ v! s) M$ E; h6 J3 * (2 * (1 * 1)) = 6, B7 n5 W! i" X% _

    9 K* s) r; ~$ K  w- V0 P 递归思维要点4 }9 `( F$ y9 f4 ^" B: |; w3 m
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑1 v4 Y9 o  I4 H9 y: k
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    + Z( u* D) E$ V+ j  H: ^4 q0 u3. **递推过程**:不断向下分解问题(递)
    % `$ A8 S4 T. _' L  @7 T6 @4. **回溯过程**:组合子问题结果返回(归)
    7 U6 {, s1 ~/ e/ K/ Z* _$ ?2 y" ?4 G) f9 J4 U/ W
    注意事项
    0 a: o9 Q" E3 C3 A7 d# f必须要有终止条件2 ]3 W  Q* h+ ^+ b) y6 b& o
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层), u) i  N! w7 u8 W  D7 W
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    5 ~$ d! x/ f- f5 ~尾递归优化可以提升效率(但Python不支持)( i$ Q1 U( v2 z
    6 P* t4 j# D$ h" @& B6 s. z
    递归 vs 迭代, y7 A# M% d2 d" {1 m
    |          | 递归                          | 迭代               |6 W" ^' m' q) N
    |----------|-----------------------------|------------------|
    2 _8 l, W% P/ S| 实现方式    | 函数自调用                        | 循环结构            |
    " c1 m- v! m2 j6 b- i; }6 H| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    & W0 H7 R: L2 q& z& I! D1 T| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |5 \* I/ X+ ], o3 f1 z6 b
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    : [5 u0 m. D4 L% ~: k
    * U5 l: J' [/ o% @# c 经典递归应用场景  B' u. H" l! x/ l2 c
    1. 文件系统遍历(目录树结构)
      S8 G8 d* R, p4 i5 H. r2. 快速排序/归并排序算法4 s0 ~5 [( J# y, l8 N
    3. 汉诺塔问题
    " [" y5 k$ ?$ K" O4. 二叉树遍历(前序/中序/后序)( L! K$ Z' i6 O, w) I
    5. 生成所有可能的组合(回溯算法)
    ; p# \4 H. F/ a- J$ k; {. j; j# K0 B6 ]) ]  e- d3 n
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    12 小时前
  • 签到天数: 3128 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,- p7 k/ \4 z7 M6 {3 H4 O. ^
    我推理机的核心算法应该是二叉树遍历的变种。5 }. l8 x& M6 @3 e( x7 o4 e
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    8 Q  f  W' W4 y; |% DKey Idea of Recursion
    % e7 l0 f* Z# |' a! O
    2 l/ C! G! I8 U: ]# S6 mA recursive function solves a problem by:
    + u7 }$ ^% Y+ g5 L1 B
    + c, A2 q* P1 h8 Q# v- E: s    Breaking the problem into smaller instances of the same problem.  K* _2 h- D5 p) J+ Z; }

    9 m; n* _2 i- Z& u    Solving the smallest instance directly (base case).
    / f( K/ A- d5 G' R3 @
    9 q; w8 m$ T1 b- N8 {    Combining the results of smaller instances to solve the larger problem.
    2 U5 o9 e# N+ T
    ( X- O) j% W* l  p: t% x8 q/ mComponents of a Recursive Function
    ! {! F: p' e, U3 C  a0 V9 a0 S& V8 p2 V% r- i2 c
        Base Case:
    - Y0 G4 C3 L6 O' G1 {" N$ E* @- f5 c
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    9 c9 T2 X7 E" z! |2 O7 l# D# @
    5 j8 y6 [& J& l+ |* m6 U        It acts as the stopping condition to prevent infinite recursion.  p4 Q6 P+ p2 t* ~) `) e
    6 F- M- R; p0 U- }% ]7 ?- t7 E7 Z
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.: L# h) _: h# d6 h

    & X6 F" A6 V( @- L" I  X/ `    Recursive Case:
    8 t7 R( E: f6 I2 \# L7 c! o
    , n3 e( K9 K/ b8 N' L. Z        This is where the function calls itself with a smaller or simpler version of the problem.
    . D0 _+ ?, I/ ]6 m) j$ {( |' m( f: Z# O* R6 H
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    7 e! }6 I9 P$ J" c, ~# [
    8 B  r* C- O. b& K  k4 b& B% eExample: Factorial Calculation
    $ i; `1 ]+ Y0 C' o8 t* ?
    : V' H, X  `" g0 ]7 V  u# cThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:7 T, q& e- f6 e% y
    % ~6 F- C& N5 E% x+ q6 K
        Base case: 0! = 1
    / z8 t9 X( _! S0 K9 V7 @& Q$ M" u; J4 E
        Recursive case: n! = n * (n-1)!) c" X8 U. _+ q! U
    - I5 I7 ], L( ^' G+ E! T% O
    Here’s how it looks in code (Python):' y$ x, k1 Y+ T8 \7 p
    python
    % K+ M1 o6 k5 Z
    $ Q6 b% }4 h- k# \
    ! U' P1 Q1 ?, ]0 z2 b) udef factorial(n):7 y+ K3 c; o; f
        # Base case
    , o, u/ x$ O0 u' I, w5 R3 H% \    if n == 0:
    " g. t9 M' E: p0 |) x8 |5 o        return 1
    8 W7 s6 K* v0 u8 B, j( [    # Recursive case& ^: Q, [. C7 }5 h5 }
        else:. E1 |1 F5 m$ E$ k2 X1 l! @# j
            return n * factorial(n - 1)  g5 [9 X" M+ j8 @5 K" Z4 V) ]5 e

    4 \6 x' n+ t6 A+ ~# Example usage
    7 u, V9 L8 d0 q9 I# c+ Hprint(factorial(5))  # Output: 120
    $ j" N& s8 J9 Z) c7 O, o" o# f4 `, Z" G, C  B0 r" X
    How Recursion Works  c! q/ C% @, V. c' x. ^
    " J0 J% F/ T; ?# G
        The function keeps calling itself with smaller inputs until it reaches the base case.% \3 s7 b/ _+ w0 K6 Z/ }

    * T5 m. P- D. G- J9 t) ^/ u    Once the base case is reached, the function starts returning values back up the call stack.
    # A1 H( a& @7 U+ A- T: m4 ?! ]8 a% ]. P* D! ]4 L
        These returned values are combined to produce the final result.' V0 {# t1 W' ^

    4 D" p! b& c5 [For factorial(5):
    3 w; M9 M* z( _- M8 U  L; M
    . K9 L8 Q! R5 v! x( Q4 O: d7 `4 e! ^. O" `& Z7 t1 h5 N* t7 ?
    factorial(5) = 5 * factorial(4)& v: \3 z1 u  G. Q
    factorial(4) = 4 * factorial(3)7 Z2 f# h& z* h8 O
    factorial(3) = 3 * factorial(2)
    2 Y5 t/ r0 Y3 n; p2 U+ i: |factorial(2) = 2 * factorial(1): l! ?$ [  X. p
    factorial(1) = 1 * factorial(0)
    + p% |" n( ^2 Ifactorial(0) = 1  # Base case1 d* a) g: L' E+ e( C
    ! D5 v& ?( @, l
    Then, the results are combined:" B. a/ Y; T( d* Y% ]
    * i. x3 a' {$ T0 p

    & k5 A$ T+ o$ ]/ [9 _3 R. Tfactorial(1) = 1 * 1 = 1
    , w& [5 J/ y' Q/ q. `factorial(2) = 2 * 1 = 2) }# _3 t# T- g/ X7 Z/ n, D
    factorial(3) = 3 * 2 = 6. g) a7 u* o+ ]$ `' P4 L
    factorial(4) = 4 * 6 = 24& t# j. e. Y& P
    factorial(5) = 5 * 24 = 120
    # @' Q0 C) S" D. u# p# \1 B6 L; B! O: ?. m) }; V) N
    Advantages of Recursion2 F+ Y0 ?  _  a% n: k! A- H
    # L$ ]3 y( w0 j  p" I% C
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    2 h( Q* [7 w* b$ y0 e2 U+ L3 @3 @5 y+ y3 L
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    + K6 g. O9 H: y4 X! {1 l0 P: V. w) ~( h" E4 u# k
    Disadvantages of Recursion
    : S+ {2 U2 y- P% M6 m, _
    : _& R, [# O- N( F) v    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    7 c  ?' ?' P, V% S& h! F7 G" R4 g2 z9 D0 A5 L3 h. D5 t4 L8 x/ b( o- Z
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).3 `3 W$ b- O% A! M( [0 s3 _
    : G2 D* j5 F" S& t7 z" K) j5 Y
    When to Use Recursion8 L7 z5 s8 R% Y5 R. d- [

    3 ]! j! s! I* C) i8 C) W1 j* [8 c/ }    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).2 p% i- N! I7 A1 r

    # Q/ N0 u7 n$ F6 C3 P3 y    Problems with a clear base case and recursive case.
      f' q+ I4 t: W9 u5 i! l7 g: J5 L4 V
    Example: Fibonacci Sequence
    - R( p: j- F# j; n/ X' b) }% t4 J/ Y; G3 |" W; M3 p
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    6 T1 N. v4 |% d$ g' Y# ~1 Z$ J* E4 i) T( ]* ^
        Base case: fib(0) = 0, fib(1) = 1' J4 \. ~" s- N* j* r% x

    ! ~3 }! z; Y, e! @' z! |1 [    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    5 x7 z. @$ y! ?" I3 x
    * {0 o: V, H2 p# S% t, \9 i6 w4 zpython" \5 F) z  c! s6 @7 v2 A
    7 \" l3 d: L; e0 Y8 _# V

    0 B0 W, W! Z; r. P( y; u: gdef fibonacci(n):; t  y# d7 C! o& \$ N9 N) G$ V
        # Base cases# B) w" B9 A. F
        if n == 0:
    9 f  }9 Q# l9 c4 O: c* Y        return 0
    " T0 C1 B1 {% d2 r8 m4 K    elif n == 1:* i, i. ]  f. g; w( p
            return 14 j- O6 \6 j* h* P
        # Recursive case/ i) k* e# y9 ]. V8 P; g' W. E
        else:7 j# w' p, S3 D# G
            return fibonacci(n - 1) + fibonacci(n - 2)- k# G) I5 ~# B7 k6 l

    ' g5 l5 \0 L& i9 p  u# Example usage  m: F6 l- ?4 b/ K, ]$ P
    print(fibonacci(6))  # Output: 8
    # N5 }  h) S  S, M/ v( J, N
    ' \; v. T5 Q" {" L( ZTail Recursion
    4 P! F" W, w! J" S/ g9 B  @. M3 W" n) n! q7 r( Q+ D
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion)." w3 I0 o9 z2 B; {) \) @

    9 \+ a3 L% }7 t6 n2 xIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-26 19:50 , Processed in 0.032308 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表