设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1469|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 $ R, v" n7 h- G
    + P4 ^: g; N9 d% T0 v' o% J
    解释的不错' J5 B, `8 J' H' {  b

    / n# Z7 ?4 _5 _& f3 @4 u) v5 L7 O递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    8 q7 _. `) H- S# V% g  f4 p5 r
    7 q, _1 j* e( u) K6 n+ W) O& J 关键要素9 f" \+ J, _+ `) q; j1 n
    1. **基线条件(Base Case)**, c0 R' |( j, K3 `; A
       - 递归终止的条件,防止无限循环
    - _4 V2 n. u2 I5 n5 m' L4 V   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1+ j, h6 l' Q7 T
    3 R; i: ~* G  k% [+ w
    2. **递归条件(Recursive Case)**% G: |9 b9 _3 O5 Z$ p
       - 将原问题分解为更小的子问题
    % L8 t, g* J* X& \  M% I7 E   - 例如:n! = n × (n-1)!9 ^. \6 W8 u6 v/ ^: A

      ?+ _3 U7 l- {4 z9 F 经典示例:计算阶乘
    / t/ w; _- a7 ^  i; gpython3 d! R" h" u  i: d
    def factorial(n):# i5 j2 ~% i3 g
        if n == 0:        # 基线条件
    ( I' y' t: w$ z5 x4 y4 ]        return 1
    ( H: e4 N) [) b0 s" {    else:             # 递归条件
    : M4 D1 n* s1 C! _        return n * factorial(n-1)8 ~2 ~% Z! f% C
    执行过程(以计算 3! 为例):
    - n. U( X2 v9 G8 K* c. _factorial(3)' z2 S9 I0 u0 {* P: ]& o" |# R" k
    3 * factorial(2); k: r5 F9 d' U
    3 * (2 * factorial(1))3 h. A2 N' t! J$ j/ o5 l
    3 * (2 * (1 * factorial(0)))( j* b4 q5 d  c& y/ f
    3 * (2 * (1 * 1)) = 6: I; J$ X; _* Q& {  [. B

    5 r* F4 M) C* [5 g. _ 递归思维要点
    2 t- e8 t/ [9 \1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    . z5 j4 ~/ J9 ?2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    / P* t5 D& [4 {' \: r3 w3. **递推过程**:不断向下分解问题(递)
    0 s" }& X8 R1 r9 \) V4. **回溯过程**:组合子问题结果返回(归)2 d6 p! P" \/ H  X, Z- S

    0 Z( v) U; U+ E$ u3 ?% d" s 注意事项1 F9 K8 I5 m: s8 S6 X7 v
    必须要有终止条件# `2 h% H1 {! e% K0 o7 @  K+ _
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    + [' p! S# Y, L; `某些问题用递归更直观(如树遍历),但效率可能不如迭代9 b9 T; F, x7 o0 O  J
    尾递归优化可以提升效率(但Python不支持)
    0 r& G6 Z1 `6 W1 S
    4 V4 a  n- y& p. H- m, B5 h 递归 vs 迭代
      d! c! ], d! I  U/ W|          | 递归                          | 迭代               |
    5 o  r. C& N1 I, T1 r% q|----------|-----------------------------|------------------|
    ! B# @6 S! R, n6 t  z2 v' e| 实现方式    | 函数自调用                        | 循环结构            |& n" q- o3 {$ [" X/ g7 L
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |: K  }! M; M0 K/ D. k& A! f
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |+ ^6 }& v, `+ G) K! r
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    ! y! r0 V& b9 F& D" Q+ \5 Z, q% w% R7 ]6 k- Q. b% A- g9 }
    经典递归应用场景; P4 r* O) f  ~* ^
    1. 文件系统遍历(目录树结构)
    ! j% V' c/ N9 n; t  l' K) q2. 快速排序/归并排序算法3 k6 j) Z; U* b7 h' t8 E- \5 B& ~
    3. 汉诺塔问题
    1 p( r- n- i' x4. 二叉树遍历(前序/中序/后序), k& B3 r2 k- ]$ k2 k/ i
    5. 生成所有可能的组合(回溯算法)
    5 W0 t, Z4 b, S2 Z( ~3 F4 `& f+ `% K. v8 D; D) `/ ~2 A
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    开心
    14 小时前
  • 签到天数: 3115 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,4 J: ]+ ?7 Q. S  ]
    我推理机的核心算法应该是二叉树遍历的变种。( |' s8 p3 B- X9 h, t$ r" ^
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    1 t4 L" F3 M" Q4 d+ a- K( I0 XKey Idea of Recursion6 x- ?5 B% h& U' b& ~" _
    , X8 M! O- F/ d: [6 P( b3 Y* Y
    A recursive function solves a problem by:+ W% w3 e+ O3 `7 U+ O( w* W: o- I

    0 ]* l# V1 w/ Z& @+ w$ H    Breaking the problem into smaller instances of the same problem.: L8 `3 s' D5 l2 q5 N. b1 }
    ( z$ W4 x  |" ]1 P7 e; K- j/ `( S1 X; a
        Solving the smallest instance directly (base case).
    - U0 W$ Y* m2 {2 d+ }' ?
    8 |' ?3 g! D/ i; o2 [& w$ N! d    Combining the results of smaller instances to solve the larger problem.
    3 A1 e' M- T% U4 V7 M7 {& k8 |+ r3 L) |' }
    Components of a Recursive Function
    . c2 U1 Y4 y+ X8 u; S0 R
    9 ?8 k7 y& d5 L" K2 P    Base Case:
    ( ]! R# N# [( q2 j0 p" I2 z' S1 t. @' d3 q9 z9 N
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    ; u0 E7 C  x/ I) Y& @7 F3 _$ ^8 |) o2 H2 U7 r* N4 E2 @$ U
            It acts as the stopping condition to prevent infinite recursion.
    , p5 [' V  ?. R8 \
    7 J0 k+ V7 R- O9 n2 B7 n6 D$ g+ z        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.; P! M- R1 c( V# t- P& f

    ; d7 b2 e/ Z+ g' @9 H  i    Recursive Case:2 x* O; K  k5 J' U; N/ p

    7 l" I' K0 ~% n/ t, Y9 M        This is where the function calls itself with a smaller or simpler version of the problem.$ I. [4 b  x4 G* k$ j3 `6 |
    + l% O' U3 D8 ?. m% M4 E
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1)., z3 \- o& ?7 H" U$ z2 D3 A

    & E. a6 \% k$ i1 I1 R$ z+ N4 s8 `Example: Factorial Calculation
    * h/ @6 ~; V* G! R3 @8 }4 @9 D
    - h7 v- h; J, t  E6 bThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:* @) @& f: d' R* R3 ]8 o8 s1 R% I! @
    % O" X9 d: W, M6 {
        Base case: 0! = 1
    / f9 r# R& W& Q2 i; }) n; V
    0 W$ [* k( l+ x; H4 J' \" ]; h    Recursive case: n! = n * (n-1)!- ?. ?' B7 c9 u2 {
    / `& }  A0 d8 w0 u; B
    Here’s how it looks in code (Python):+ P# x. X% Y, @. X) `. v' S
    python
    $ W: S6 R" z5 r# H3 G; S8 J# B% ^( }7 ~) T

    6 k& _9 `( d$ t- A7 L. K9 Ldef factorial(n):
    6 D8 _7 i: X  S2 G    # Base case/ X( Q3 C( [' \" ^3 d3 a/ R
        if n == 0:
    8 ^- }. q/ l3 B- B6 K2 T, |        return 1
    6 K; t% v; t) T# k" N8 W    # Recursive case
      S, q; o- r( q, p    else:4 T4 ]. t7 D4 a) [
            return n * factorial(n - 1)
    # R; N( A& }6 ^+ j8 ]& W% c" z3 ~* B" n3 N3 g5 g) q
    # Example usage
    8 P, M; ?) q# w( mprint(factorial(5))  # Output: 120
    * v5 Z( i8 |# Q1 ?6 T
    , O% p! @* K( l/ HHow Recursion Works
    0 a* z1 g" X3 `, V" K* y5 N6 m" k9 P9 r3 k4 u& Q/ V/ @9 H: Z2 }
        The function keeps calling itself with smaller inputs until it reaches the base case.# ^) g! G! A9 t- l6 q8 W

    6 f! h$ A. }0 F" R7 X& X    Once the base case is reached, the function starts returning values back up the call stack.
    % H' s8 y5 ]. r) p3 x. z- S0 t3 s& y: ^0 S6 A4 T4 U6 Q
        These returned values are combined to produce the final result.
    $ t$ N# E/ x4 A
    6 B' J+ |, |% w$ B% W2 P' [. aFor factorial(5):
    % z, I, P/ p- `% w9 \/ `
    ( m% K! w4 a* S6 O$ X. Y8 ?0 W
    + \% T& {$ a! o/ p' c; W8 |factorial(5) = 5 * factorial(4)8 l) Y, T2 G4 F  B
    factorial(4) = 4 * factorial(3)& \9 K2 }- Q- m. d! i
    factorial(3) = 3 * factorial(2)+ b2 u8 c( K! Z) c
    factorial(2) = 2 * factorial(1)3 N: a  q4 g& X/ g6 G
    factorial(1) = 1 * factorial(0)
    , a0 A) p. G9 G8 K+ g8 k+ T9 J; efactorial(0) = 1  # Base case+ k8 T$ N2 e" a( F0 z& U& K7 Y! r
    2 M! f/ ]0 [  T
    Then, the results are combined:9 i) z' d4 _+ J# C9 a, m

    2 g- ~1 Q& \  [8 [) @
    $ z- W$ y3 v, b0 O: O+ }' ^factorial(1) = 1 * 1 = 1' z# N# q( P2 H+ {6 l" l  T7 I2 ^8 q" D
    factorial(2) = 2 * 1 = 2$ C% D' x! {- x" u$ [8 E2 _1 Q/ w
    factorial(3) = 3 * 2 = 6
    ! ^' O$ i& U& X5 G# u% `( `factorial(4) = 4 * 6 = 24
    5 p/ R! V$ d( Z6 N/ G' y/ R9 A0 cfactorial(5) = 5 * 24 = 120
    7 q" E; }  u. O, E6 b7 x$ }) }4 u. E
    * ]+ q/ V8 O; R' mAdvantages of Recursion+ E% S0 i  E) O! \% K( s7 F$ V3 m. R6 H

    # D  Z* h6 v# z7 ]  ?7 ~( p    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms)." \& z5 F. d5 V2 H4 O& E

    & H* I! z% |# [# g8 T# ]    Readability: Recursive code can be more readable and concise compared to iterative solutions.$ o7 b4 k: R& ~; ^( R% z' z

    ; G  R! m5 o* X" M* r$ dDisadvantages of Recursion, R$ W" _8 [9 K8 u3 n$ l1 Q

    8 }. _! N' C: C6 D( s. ^% Y    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    1 b- q1 y7 c% T& v2 p4 A0 r! `+ E
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    ( b, [' W  ?8 Z% }( F* Y- W: ~! j6 o! J) M
    When to Use Recursion* `! K# c% e6 W( Y- R5 a2 u7 U* |
    2 k- x+ }. Z4 E5 ]
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).! ?+ }, N# t; ^  h/ r
    5 P; t7 c' y, x
        Problems with a clear base case and recursive case.
    . b- g' f; V& e9 G+ K2 i6 O
    5 `3 c) N8 H6 K( Q! u9 p; BExample: Fibonacci Sequence
    # V% U1 l, M: B) K: [, ~6 F
    8 V# D2 k/ V0 n: v. I+ s" F1 OThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:# Q7 u7 ?6 K- p: F0 ]* |
    . i! d. j( p  h
        Base case: fib(0) = 0, fib(1) = 1
    ! S8 X1 M( D0 _& \# B: K% s/ O1 N
        Recursive case: fib(n) = fib(n-1) + fib(n-2)7 p1 t2 X+ W; F7 w. I
    ( D6 z# Y7 M- `3 J  F
    python' L6 U6 B3 p" A. y; j
    . H3 c; [: @) K( R

    9 ~9 v. y) t2 \5 {, ]/ K- Vdef fibonacci(n):
    $ z0 `2 x9 L0 Q! \2 m' G/ K3 T    # Base cases- @5 X; x  H, n
        if n == 0:" W, i' b* l. c
            return 0
    ( `0 g. h7 i3 G6 S+ J2 J- B    elif n == 1:
    9 w8 _* b& x( ?6 W( z4 ?4 u        return 1
    # Z( ?+ M; {, e  ~: W. ?$ p" S& k5 {    # Recursive case
    4 u/ h7 \/ M( u+ g" A) ?: m    else:7 V; g' D6 a0 N0 B% b$ w" O
            return fibonacci(n - 1) + fibonacci(n - 2)% J( e/ u  E6 s$ z; i

    3 a; F6 M" E. p! y9 i$ q# Example usage
    1 W5 |; Y( K* V8 y+ kprint(fibonacci(6))  # Output: 8
    / I1 M' j' f/ x  }3 x+ `
    . c$ v/ H/ T# ^6 ?+ fTail Recursion- H7 E' ^" l* Y6 P* {/ N% }
    1 ?' `8 L9 a& ]4 Z% \; p9 C4 t
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).& x7 L% k- t2 a8 J

    - @4 L9 g2 B& q$ k5 {* HIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-11 15:52 , Processed in 0.035128 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表