设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1412|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 : C" O. K9 L1 x. N$ f* b1 N# L

    ; Y* U  V# {$ D- A0 _7 m解释的不错% ], i# q+ h3 m( Y
    , ^3 h: q& [7 u: y& z: B
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。+ p1 k8 V" e! H4 R! S, _9 {

    ( p* {0 h; i# o 关键要素
    . |3 Y4 ~5 W) {- U' s1. **基线条件(Base Case)**9 V" ~9 u+ d, K* D" |$ a
       - 递归终止的条件,防止无限循环8 A+ @/ |, h' D1 L
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1( a! }% c2 G7 P% T8 W" H: S/ v2 c

    , L" J  i# }' R: V! ~2 e2. **递归条件(Recursive Case)**: v* b/ _. G: _6 P
       - 将原问题分解为更小的子问题
    1 t2 v# |& d( A$ T   - 例如:n! = n × (n-1)!
    * u4 W3 y7 }& d4 V: k6 h, j2 ?- }" C/ n! ]  T4 @
    经典示例:计算阶乘3 y9 x  S5 q  }9 P
    python
    8 r/ _4 B" _' m0 ~; K. Qdef factorial(n):2 [' z# s) q, i  A# g2 u* O9 G
        if n == 0:        # 基线条件
    & T9 L" @& h: L        return 1
    ' A9 Z) D; N* |/ H    else:             # 递归条件2 }* r* f! D. f, n9 k7 e) e# P  O
            return n * factorial(n-1)! h% }* H0 }5 P  B
    执行过程(以计算 3! 为例):$ `* ~  \5 ^5 O- F
    factorial(3)4 e, s$ T# `& x  [, ^
    3 * factorial(2)  w0 o; Z+ h. X% U9 ]4 ^- u( K
    3 * (2 * factorial(1))5 B# M( [' A  y4 u$ i" [  L
    3 * (2 * (1 * factorial(0)))
    ! p% D* c& x: b4 L) M3 * (2 * (1 * 1)) = 63 _0 N9 `7 A0 Z7 o+ ?

    + b& R. s9 \- B5 x( C$ ^ 递归思维要点8 o7 {6 m# {0 U! @! D+ I- L' V
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑# o- }; Z7 }! p0 t4 n$ B
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    0 M/ r4 v4 x2 h4 f4 _; S* R* ]8 I$ {3. **递推过程**:不断向下分解问题(递)
    8 C# X7 ^9 G, Z7 j4. **回溯过程**:组合子问题结果返回(归)2 ^  p0 W7 ^; i# F
    , M/ G" C8 X4 `9 R5 K: t/ ~, g
    注意事项
    / O: o: w5 e9 G- P" b必须要有终止条件; J/ q/ Q/ `5 Y3 s* y& ~
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    3 p: }& m1 M) I- K4 `( Z某些问题用递归更直观(如树遍历),但效率可能不如迭代) S3 k& T3 f3 }: w# k, ]8 `
    尾递归优化可以提升效率(但Python不支持)7 H0 o- z9 c+ l' M9 }2 q( R
    3 x8 U/ J5 H2 m  H
    递归 vs 迭代9 ]* c* v# _& M) K& S
    |          | 递归                          | 迭代               |
    # {4 U9 A: S* I5 }0 J8 q( S2 J" O8 @% S|----------|-----------------------------|------------------|
    7 |, s+ Z! M  x7 f3 M' M| 实现方式    | 函数自调用                        | 循环结构            |
    9 u- o5 o; N. b| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    ) Q# e& D/ r4 I) `& i+ f| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |- l- b" d& m& b9 Y6 e6 X
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    . r1 X0 _3 Y' ?6 L( v# d
    - b2 u1 d1 \# f5 _5 _ 经典递归应用场景& Y# E+ t: {' I1 T/ R( S
    1. 文件系统遍历(目录树结构)
    - y2 N3 E! f& u6 H7 g. b2. 快速排序/归并排序算法" _3 |( ~) |! s8 v: z5 O6 P
    3. 汉诺塔问题4 {: ]6 y' F# C# y) Z/ O
    4. 二叉树遍历(前序/中序/后序)
    3 K' ]& w& Z& q$ u: B5. 生成所有可能的组合(回溯算法)
    9 z# ~5 p+ {* O% W# z: ?4 j9 x3 w8 G! `- Y
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    慵懒
    9 小时前
  • 签到天数: 3112 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    0 u5 ?  v# b7 V3 h4 F" r5 \我推理机的核心算法应该是二叉树遍历的变种。3 e7 b' ]$ ^$ Q, s' }  d( S& D' g
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    ( z% I0 w* V# PKey Idea of Recursion0 q- Z8 Y% S3 l3 E7 O

    7 u4 z) D0 g9 o: y7 aA recursive function solves a problem by:
    / X5 W1 t; |& N) F9 X! R/ b2 d& H9 t* C
        Breaking the problem into smaller instances of the same problem.  n8 z9 Y0 ^* o- C* D6 |
    1 ]. F9 a; y  t
        Solving the smallest instance directly (base case).
    ' }" G3 U3 n0 l2 x0 Q
    / C! E+ R0 }9 E: T0 G! U" i    Combining the results of smaller instances to solve the larger problem.+ o7 @5 Q1 o/ g, i5 _% v

    ( O6 z6 M# w+ [) J# NComponents of a Recursive Function
    " Y% |& c5 C' t& ?/ \, i8 d# y" `; z' @0 W5 f. h- Q+ P4 p
        Base Case:3 e6 H; @) F6 _0 Z% n7 J7 D, h' y  k
    ( `) g$ A3 }( ~4 V& V  i8 M; x
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    9 Z  B7 [+ H2 E/ j: @3 c0 h% \% V% v& b$ Q% g1 l  D
            It acts as the stopping condition to prevent infinite recursion.& X6 e; Y7 p; E3 p6 v- _5 b

    6 D- a! r& z! U9 T$ K3 f        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    % ~& s3 x; E8 M9 h3 r
    , l0 W- \! J/ }+ c3 W    Recursive Case:
    2 d0 X0 W& ]8 |  `: n8 S& [+ b' F# E# \
            This is where the function calls itself with a smaller or simpler version of the problem.
    " O2 C0 @% y$ E0 j
    8 I- t. s' T5 D) ~8 p" |        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).$ K4 ^, t: [' n/ D( N3 c" G2 X* [

    # b+ Z8 z: n8 V8 |+ Y2 x$ |9 kExample: Factorial Calculation* H9 }( u8 M+ P6 Y' p

    / ?0 W; E3 T2 V: }, v. I- bThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:9 P+ O/ b5 f3 k5 A
    3 ]. p' z1 ]7 B* `* j4 T4 ^
        Base case: 0! = 13 U" w' C/ C% \& U8 |9 G

    + x+ C! e1 S( @8 e! _+ o+ ]# M    Recursive case: n! = n * (n-1)!: A( B  Y: L& Y8 p, g0 R- P& F
    & A- F% Z6 ~: h% {$ P
    Here’s how it looks in code (Python):
    - F7 c  {+ o9 w7 |. g3 mpython
    ) `& ]: H$ u3 Q, K% B% P* A
    8 A. x) {. c" X, d4 @6 F" g& t7 g( n* \: e/ Y
    def factorial(n):& g- T% y! }1 L4 `2 k4 L
        # Base case& ]1 M" c3 W- V  j( u+ w- B2 s7 U' e
        if n == 0:' e4 s" X$ u, [- z( e# V2 _
            return 1
    9 m! M2 A; E7 `# n1 ?    # Recursive case
    # m" a  u; N( T" X7 g9 @% ]7 p$ }    else:% o& u- @0 u5 f, f1 d8 y
            return n * factorial(n - 1)
    % v# S- X7 d% d2 L7 v. V- d4 f. P/ q7 X7 H  `; \( V) }) V- B& s
    # Example usage
    * l1 o9 [# X5 D6 {9 T$ L" aprint(factorial(5))  # Output: 120
    1 j$ M- B+ b6 I" T! f2 H9 @. H4 {  ~
    . z2 X. g- Q, _% t" L2 IHow Recursion Works
    $ B4 R( J# |4 E9 _4 g
    - A; Z, i, X" b2 u$ d- |/ E1 w    The function keeps calling itself with smaller inputs until it reaches the base case./ K1 B8 [$ g5 x) ^
    ! T; m; M0 u9 W) m. s: a& G) ^: H
        Once the base case is reached, the function starts returning values back up the call stack.
    . O1 V+ e% @: n* N. ?( K4 k; ]2 T5 i/ E/ p5 V- O
        These returned values are combined to produce the final result.
    2 o: A4 i1 I" {2 u  E  q% }7 g3 L9 J
    For factorial(5):( d! p9 t# l' [: r8 ]
    / a2 A% S- I0 F4 B' B" |

    ( k0 K0 e( T  P: U4 s  Q; j) @factorial(5) = 5 * factorial(4)
    ( J$ w5 M% y% J; Yfactorial(4) = 4 * factorial(3)
    5 J( A' R! E4 M, O- }factorial(3) = 3 * factorial(2)
    & ?) P% h# u5 g4 d" Ofactorial(2) = 2 * factorial(1); V  y% K; z7 ]8 H2 V
    factorial(1) = 1 * factorial(0)9 ^& i# |( S' D7 ^) t
    factorial(0) = 1  # Base case& e1 y, a% H  b& Q* p
    6 [1 y. ^3 {) G4 d3 b: {
    Then, the results are combined:1 M' N: U! z8 Y8 ?. J* y5 x0 X

      _& M6 Y7 Q' c6 b! j$ {
    : [0 u7 }" ]( Lfactorial(1) = 1 * 1 = 1+ d8 r/ C7 k/ f% u7 f  s
    factorial(2) = 2 * 1 = 2: ^; K6 Z& R; j3 |! {. A
    factorial(3) = 3 * 2 = 69 s% K" `0 o3 ~" {/ O- T" T
    factorial(4) = 4 * 6 = 24' ?$ S5 I/ }; A, g+ _, G; G; @  {
    factorial(5) = 5 * 24 = 120
    6 q4 }: M$ \+ s% A* w% s5 h2 U6 ^5 ]/ _% ]) S, i" d8 N0 N
    Advantages of Recursion3 A5 F9 [1 }0 O# k% \- b
    ' z# N' ~8 r7 v: `( X) N$ a5 R
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).6 |3 B& b1 H- S! t' `8 O
    # d  z( p$ g% m  R1 n! _
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    6 _: P6 ~; P- i7 S0 |
    3 v# J# O" w8 O" p, {Disadvantages of Recursion
    9 O% t2 |: w2 ?9 N* G+ ?4 ?: V- R/ ?/ z2 O+ ^
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.7 \& w1 s1 B) M

    5 {& E' z: v% n/ k& `( R% }/ B    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).! K9 T- w7 m9 _/ ]5 w" `6 ]

    % p' b( f% M( F; b4 }When to Use Recursion) y, _( b/ R$ ]# n  x9 x+ r3 D. G

    / u& B/ C' b- S; v9 c. D    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ) c  Z+ P* k& K$ ]9 A
    2 E) {- C  _, L5 W# a% A    Problems with a clear base case and recursive case.. M: g* g* L& ^0 ?

    * P: D. W( `+ p$ n6 SExample: Fibonacci Sequence
    / i" o* ^# x! E( F# l" ~. c
    & g5 {  O6 {, D# d4 YThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:* H* p+ k1 Z- r" Y. E' h1 S2 P
    7 ]1 Y" F9 W: ~* N- N9 z# G
        Base case: fib(0) = 0, fib(1) = 1+ z; B- s; ?4 U3 ?

    " m0 X6 G- t& [, w4 c- j    Recursive case: fib(n) = fib(n-1) + fib(n-2); I9 A% I% v; `
    . I/ o; Z2 C+ a- u
    python
    , ]: D2 E/ V6 v* ^, h
    4 Z, _, K$ z8 r- `; y  n1 p- P( x( d; A2 o3 O& m5 d1 J. o. Z
    def fibonacci(n):; i1 x7 y2 x7 e& r2 h, X8 J
        # Base cases5 _8 A$ d7 a4 E
        if n == 0:
    6 ]2 h" `# s. S& q        return 0
    5 @: X. `+ q! Y+ U    elif n == 1:
    + G  R# G, y$ N: k( S) v2 C        return 1
    3 s- x) V- n( s$ B' S+ N  H    # Recursive case
    ) G' ~! k6 J. w& p9 A4 {; Y    else:
    , d1 `* R* y7 N# `0 R4 n; D  j" N, t        return fibonacci(n - 1) + fibonacci(n - 2)
    / _$ X4 F" v0 b+ f: t
    5 Q/ p) s- r) Z. `2 j# Example usage4 B( ?5 T- d( F
    print(fibonacci(6))  # Output: 8
    6 m" r1 u0 X( u1 k/ t- E! x1 {+ X7 X# f1 v3 @& o! g
    Tail Recursion& Z- b. D" Y" y6 C  s
    * ?" Q( d1 e; Z  J$ y9 O
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    7 o( j7 ^0 L6 `3 ?% x1 g
    2 X  P: U! t1 d# D! a1 A9 \$ S# mIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-8 16:27 , Processed in 0.033727 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表