设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1929|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
      Z/ e) _; Z! b
    8 S. b" {' U+ k: K7 W& g9 V, C解释的不错% S8 r9 X' s& U4 R  Q
    % a0 d9 D% v* p. ]
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    4 U& d& a" T# ~0 K) o; s5 M/ P1 k- l" L- ~( j- D: P4 \
    关键要素
    ; R  ^. D6 g. C- C! c9 F0 x9 t1. **基线条件(Base Case)**
    % d6 P4 @+ M& @7 ]$ n9 a  H  N   - 递归终止的条件,防止无限循环2 p2 ]  p: E  E% h; j
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    ( U, ~6 l+ l6 R/ W  D2 Z- }8 v9 V  H( Y
    2. **递归条件(Recursive Case)**
    , a( ]" Y5 z& X" b: v   - 将原问题分解为更小的子问题
    5 j2 {% @6 B* R   - 例如:n! = n × (n-1)!
    6 p2 r* b+ q7 j4 m5 L) X/ I# k: G  {* ]8 @
    经典示例:计算阶乘( t- @  j7 |1 O# [5 D+ b
    python% x4 \5 Z1 K. \7 E6 o
    def factorial(n):
    , H6 o- O; D# y" T    if n == 0:        # 基线条件+ ^6 U" p7 q/ \2 Z+ f) v' g
            return 1% y; ?' b: j  f2 e7 ~
        else:             # 递归条件
    + ~! y) I: q4 c( Z# |; k- s1 X8 ^3 I        return n * factorial(n-1)
    ( D5 t7 o8 V: g执行过程(以计算 3! 为例):
    5 Q7 Z0 n& Y% X7 ^factorial(3)
    0 W0 H) c) |4 G8 L; W6 Q; q3 * factorial(2), k: _; R! O7 q" V
    3 * (2 * factorial(1))
    ( U- @. U6 X% `3 * (2 * (1 * factorial(0)))! }/ ~4 c4 p% C/ s1 Y" H5 e
    3 * (2 * (1 * 1)) = 66 v- ?5 v1 m6 {4 E' Y& f# b
    3 a% h0 G+ k/ w/ E7 V
    递归思维要点9 m5 T1 g) F1 X2 p0 h
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑! w5 h& B' P/ @2 t8 H# I5 O# H
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    9 L/ l1 A7 @( t" R6 k: h# z3. **递推过程**:不断向下分解问题(递): f4 Q) a1 M0 O( j6 K; {
    4. **回溯过程**:组合子问题结果返回(归). b0 p# q+ N5 v$ Y+ f9 C: R1 |

    8 L* s: G4 H) x+ b2 d7 t9 } 注意事项" a1 N" O- f7 v! b
    必须要有终止条件. y8 g. A% c0 q( a
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    2 e* a2 ^! o7 @, p6 t某些问题用递归更直观(如树遍历),但效率可能不如迭代2 K. P" J$ Q. X' Y
    尾递归优化可以提升效率(但Python不支持)4 l" F9 @. P1 o5 \! {

    - v6 J) y& Q8 {4 d) Z2 ^$ k 递归 vs 迭代8 y. y1 ]' H( D( q2 X: u
    |          | 递归                          | 迭代               |
      m- Y5 ?# D6 g|----------|-----------------------------|------------------|6 c( _$ q5 i1 e; J' {! k6 [# ]
    | 实现方式    | 函数自调用                        | 循环结构            |0 D/ @$ _  U, C, R
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |* b+ N/ v& n' r. \/ U  A: H+ S) j% @
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |- G+ ?! z4 x  v% Y1 m
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    7 s# A5 ~7 ^, f* `5 I. ~5 I- n! h  J
    经典递归应用场景
    4 q$ @0 s9 ?: |. I. |1. 文件系统遍历(目录树结构)
    ! T0 U0 e3 C0 h' T2. 快速排序/归并排序算法
    2 P1 o6 L5 }  _' [- O3. 汉诺塔问题
    % c! d. O: [  D2 N4. 二叉树遍历(前序/中序/后序)
    ! R: A) T: G$ S) [' R8 z8 N5. 生成所有可能的组合(回溯算法)
    4 a' g" k, d0 @0 x% u# t2 ~9 M+ U
    " Z# i# B6 E' L% j/ U' ]; ^试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    郁闷
    12 小时前
  • 签到天数: 3152 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    ( g* ?& T1 p5 Z, ]6 u  `我推理机的核心算法应该是二叉树遍历的变种。! ?8 X( j& r  s: ^
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:* \/ s6 h/ p0 z5 F+ D- {
    Key Idea of Recursion
    3 A& Z( g( t% S- x" R- z0 W
    $ z/ I! K, V; {6 NA recursive function solves a problem by:$ t  e6 e: Q- D* H" ^( a
    ' F. m: d, D* L: K6 w
        Breaking the problem into smaller instances of the same problem.. K' q. L2 [. g9 C! p
    : l' y% h$ @0 J2 j, d# D
        Solving the smallest instance directly (base case).
    7 W5 C' j  m  y% p+ m1 a# |: p! t6 A3 P% W. B+ G4 w9 k6 A
        Combining the results of smaller instances to solve the larger problem./ c5 u8 T/ Y2 F! K. V. O

    / D( B. p2 U, MComponents of a Recursive Function( t$ o. E) O0 N& [" M$ b7 C. J

    ) `7 L0 e; A9 @7 B/ t    Base Case:' C9 M6 j& x- `) b! u
    2 `  |1 ^8 \# J0 S0 s. o( p1 f
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.6 }8 s! l: U$ D/ ^* ]  a6 [3 U/ y
    , m% P& B% R  a% I4 c0 N/ I( L: H
            It acts as the stopping condition to prevent infinite recursion.
    3 ^. ?" ]  b0 b6 E
    ( V. k$ v7 b+ z9 c/ Z' U) i        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    ! P! c% |( \% [) V9 Q/ C+ h8 m/ u* A0 D' b, T
        Recursive Case:
    ! `: T. b. Y" D7 [+ T, u* x" u( n+ r6 ?- v" [# A# M; z3 v2 u( Q
            This is where the function calls itself with a smaller or simpler version of the problem.# R. o9 J( v3 b1 d9 q

    & W, l0 x2 w0 ?) w& Q% f        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    2 C4 g( `4 K1 S0 S3 c0 u. y; r, Y  q$ O4 N/ F
    Example: Factorial Calculation4 f. C7 C  k( V) @3 N3 c

    4 a* J- h7 k0 E. RThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:9 l+ v' A7 w* y' K* E0 [6 F% f
    * v! W- o; _& M* L
        Base case: 0! = 14 q4 [* s& \  C5 B9 n

    / s( R8 ~8 q7 M' y' C2 @0 r6 }) G    Recursive case: n! = n * (n-1)!- M. H" B; l8 w
    & ~4 i) @1 k7 ?1 T- e% y
    Here’s how it looks in code (Python):& a2 q' \) L0 Y
    python
    ; i5 w1 a+ ^9 e: I
    ' X2 J7 w8 X% P' o8 ]- N4 d' i/ y: b$ M; N/ f( o8 y
    def factorial(n):& ^2 W" j* Z+ ]; y- B; e3 y% t
        # Base case# ~+ n) I: d; E6 t5 Y( a% z! t
        if n == 0:( x# y$ Y& q5 c2 n/ o; s4 A
            return 1) v8 K1 r$ a# A$ [- u
        # Recursive case" W: c% K# L( A7 y0 B8 O% t9 e
        else:, t& @6 O, i; }* F7 A: z! P
            return n * factorial(n - 1)
    2 _; E9 T" g  R. p) z$ O' h
    $ u: z+ x) m% h: W6 w# Example usage" D, `. U7 g$ f
    print(factorial(5))  # Output: 120
    : F5 o* Q1 K3 a
    ' l# B, ]1 P- aHow Recursion Works
    + l: S3 M2 d5 u+ Y2 p7 z/ ?& d% ?8 h* L1 g
        The function keeps calling itself with smaller inputs until it reaches the base case.
    / p( J. d5 M$ D% ]' }/ ~$ e* M0 A( S% y+ C/ @) b( k
        Once the base case is reached, the function starts returning values back up the call stack.2 q" b- b* s$ I; }/ Y! R( o

    6 i: u$ K8 f2 P) T  ^    These returned values are combined to produce the final result.! v0 {  l1 O- p" x* T! X

    ! S) Y5 f8 i) ^. q! Q2 F# W6 DFor factorial(5):; E+ v1 x) |, Z8 s% A# k

    ) _5 L' a; M7 N! _
    0 f5 o8 I. W# k" ~factorial(5) = 5 * factorial(4)" p1 Y; n# F! F
    factorial(4) = 4 * factorial(3)3 Z  S4 E* p, n, s% E
    factorial(3) = 3 * factorial(2)
    6 g" T) H. L0 f, I- N- Sfactorial(2) = 2 * factorial(1)
      b" {( J! r- l# I, k9 Efactorial(1) = 1 * factorial(0)
    ) g  F: F/ h! K/ N: f0 bfactorial(0) = 1  # Base case7 y1 a/ i" z) S1 {' ?: c
    + S5 u' ~# w0 B4 |
    Then, the results are combined:3 J2 T9 \% @, F# j4 c
    2 k. `! n2 ^7 k' R' m, I

    0 B% w2 a1 x/ [' q& ^factorial(1) = 1 * 1 = 1
    ( I& v: E$ S/ _) Z( v+ v! Bfactorial(2) = 2 * 1 = 2
      x) \# }$ P. t) }5 f9 nfactorial(3) = 3 * 2 = 6. q6 p% L# N& D( q1 N' h2 ~
    factorial(4) = 4 * 6 = 24! ]+ C7 M) X0 `& k$ u
    factorial(5) = 5 * 24 = 120
    ) I/ q" i8 ]% e* M0 @& N& {- g  n8 S: ^( A6 |  }
    Advantages of Recursion
    4 t6 F7 ?  N8 O- L( E
    , b+ O  A; I# P; S+ G9 ]2 L# v& j    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    5 n; ^) ?6 z! Z  j% e# N; ?  P
    3 a# L$ w. q' @8 k, @8 |    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    & C; T# d" J& S8 R
    2 e1 g2 L3 b$ |0 ]Disadvantages of Recursion
    . A/ E  Y% o3 ]# P' e( M
    ; l( I! C' s1 d& F: A, w( o5 r7 }    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.& H" g# [9 L+ ?4 x# E

    ' I) ]& q6 ]$ e! C8 n3 M# L6 q    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).3 y) T( z: o' k) W; n! a/ L4 t
      _# _7 T1 S5 Y2 J
    When to Use Recursion& p3 e2 r" J" q( f
    5 x9 K1 Q5 U+ l) N$ A0 t4 H
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ( ?$ W$ T. _8 g* H, Q, o( O* h( {1 ~% U! ^- g0 {7 v# L" ^
        Problems with a clear base case and recursive case.8 v# J  P- f$ f  C
    2 c8 E% U* h6 D) U* s5 w" G
    Example: Fibonacci Sequence
    ! r8 I/ A- ?+ N7 w% F9 T8 d2 ]3 h" S1 L8 i% w( R# V6 t* c
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    ; ]( v& o4 a/ ?7 f1 m- f3 o  W* O2 D, D) G6 f
        Base case: fib(0) = 0, fib(1) = 1
    " [, M8 Z) i1 s4 e+ x. `" ~, n$ i! U1 Z
        Recursive case: fib(n) = fib(n-1) + fib(n-2)2 P) {$ v! w. R

    ! L; u! P( A! I' e5 O" ~2 m* Ppython
    # Z) U. P$ o8 y! R* B/ k
    ( T2 S8 w7 B  H6 O7 F0 e2 b
    7 n5 t( L/ o7 K; m& j8 Jdef fibonacci(n):+ S. r9 g- t8 M/ `0 m5 l
        # Base cases
    ; d5 M; N& Z: Q& W" I1 l2 a% I    if n == 0:
    # m. l% _7 _% B: h; q& d0 j        return 0
    ' u/ t5 B4 G9 h. t) D- d' {/ W    elif n == 1:; D6 H1 U, j! K, E+ v
            return 1+ l4 c8 M6 J% A  ?* J0 I! u
        # Recursive case
    " O# @/ ^" j% J8 g) T    else:9 E; Z4 M$ `) z: x4 j7 P
            return fibonacci(n - 1) + fibonacci(n - 2)
    + p% ]" V: B! _! g% L0 I% `( M9 b+ R( j3 P* g  N
    # Example usage6 Z0 l2 v" f) K
    print(fibonacci(6))  # Output: 8
    " F) X+ n3 R& G- z9 N8 u& B7 E: v0 c& u
    Tail Recursion  K8 X) j; q6 e4 a
    6 a, v5 x& [8 @. d$ `6 p
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).3 t# n! B  V- b1 e. L8 Q: Q

      Y& P" O  m. A3 {; Y( h# k8 O) I* oIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-23 19:36 , Processed in 0.055893 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表