设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1778|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    - t* v+ y% O) M" `
    8 E3 G) }* u/ E8 q解释的不错
    / C& h. k  O, h7 O: v+ Q! x  Y8 \
    : n( d# I$ o2 o* `递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。+ d9 {9 ]$ I3 ?! o; B, ^
    $ M% G1 ~. p$ [) E$ j; K) L9 K
    关键要素
    7 x1 R: p' u2 S; [) [3 R1. **基线条件(Base Case)**
    5 x9 g+ \$ ]! ~: A, p   - 递归终止的条件,防止无限循环+ J" K/ @7 d2 B2 F' v
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    " @4 u- d- s, L: ?. w5 x, ^6 o! W9 U/ B9 J# _5 n
    2. **递归条件(Recursive Case)**
    7 m" h' n9 l# i+ k- m  j" n4 }: Z   - 将原问题分解为更小的子问题
    ! I+ B# \2 `$ A) R" k   - 例如:n! = n × (n-1)!
    9 N6 E9 K  K& m3 T( J5 t* I1 d) c$ V
    经典示例:计算阶乘/ g1 [( ^2 \2 u# b& c( R* ?
    python4 ~% g  s$ A* N) ]+ c# R" H
    def factorial(n):
    4 n- W7 W+ O% H6 l% A: [    if n == 0:        # 基线条件
    , i% ~+ Y! z3 t, M: I6 }4 x        return 1
    3 H8 R9 ^0 h2 c. [9 t    else:             # 递归条件4 j. t7 ]* ?& l& |1 U4 g
            return n * factorial(n-1)
    ; x5 M3 z. O8 W0 F) L% y* c执行过程(以计算 3! 为例):
    $ I- i6 z. X7 r% ]factorial(3)
    ! i' d$ S4 U+ a% B" w3 * factorial(2)  T% c% P3 y6 [  R* L
    3 * (2 * factorial(1))
    : X) Q. J! ~+ z5 z3 * (2 * (1 * factorial(0)))/ ]9 d0 L0 d7 W0 w" N
    3 * (2 * (1 * 1)) = 6
    & I$ H6 A2 z2 P& ]+ i* K1 Y8 n2 [# m. ^2 G: U; f
    递归思维要点2 ~' U% A* U: U6 C+ I. ~
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    . Q" m: L8 z" X* E- n/ u( N2. **栈结构**:每次调用都会创建新的栈帧(内存空间), O0 z) e! h' _( Y2 {7 z9 e
    3. **递推过程**:不断向下分解问题(递)
    ! s; N" N) G- R0 w; `" i; P4. **回溯过程**:组合子问题结果返回(归)
    , q7 O- [* u0 f0 S. ?& c
    # w3 g% R3 S4 ^ 注意事项
    $ @) R6 P6 F, Q5 W( R8 {必须要有终止条件
    ; G' K9 j2 `- F- Y1 G5 x递归深度过大可能导致栈溢出(Python默认递归深度约1000层): ~! C( x+ C. w8 i% ?% B4 u
    某些问题用递归更直观(如树遍历),但效率可能不如迭代6 g4 g1 M" {0 e
    尾递归优化可以提升效率(但Python不支持)
    5 h' d( u* E! h6 [0 y' V' q7 J) c% y) n8 V* F9 g4 f
    递归 vs 迭代2 D2 R; [( B9 Q/ f  N
    |          | 递归                          | 迭代               |
    . t, M9 L" j; t|----------|-----------------------------|------------------|. z( T* ?, g& y* c5 S* K3 ~
    | 实现方式    | 函数自调用                        | 循环结构            |# q" i) X% I. v3 J! v
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    5 k; v: Y1 r4 o, x* i/ @| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    3 x4 q6 E1 U. j+ _# y| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    5 {+ o) e* g; N4 `7 y8 J) M1 i# g& }8 {3 M1 ?& ~" u. J0 r- u) h, x
    经典递归应用场景& m  O) {2 K0 `% t2 p0 P6 W+ G
    1. 文件系统遍历(目录树结构)1 p/ P0 c. u2 u1 B& S5 M. f- y: `
    2. 快速排序/归并排序算法
    - ^2 l6 z/ M2 s1 D3. 汉诺塔问题! P3 K, C4 i# D
    4. 二叉树遍历(前序/中序/后序)( t0 \" C. i' C5 W: j+ _+ @
    5. 生成所有可能的组合(回溯算法)
    / w" s5 O% s6 c4 g2 z3 m( W/ D7 j# F  B9 i6 [' i
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    开心
    10 小时前
  • 签到天数: 3143 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,0 F; `7 b  u! V, E& i
    我推理机的核心算法应该是二叉树遍历的变种。
    2 R, j5 B; ~! O9 D另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    + f) N/ E( Y6 [% k: D9 ?+ m: PKey Idea of Recursion
    $ n) x3 [9 D8 r( ~7 j8 u, j7 G' c! Y+ _$ b6 o- x9 ]. z. ?# X
    A recursive function solves a problem by:& B1 j" |& n* ]( c1 d  R

    + z' j) J# S! V9 z/ ?( d& F. V& I    Breaking the problem into smaller instances of the same problem.2 Q( G5 }' ~( ?. e1 M
    ' v/ [+ ~: a% s
        Solving the smallest instance directly (base case).
    " Z7 s4 e4 {5 ^+ B- ]! u& s$ U4 N/ m7 A- e) e# g
        Combining the results of smaller instances to solve the larger problem.
    2 q; r$ R! x) e% h+ R" s  b# H, I7 ~- U4 [$ f
    Components of a Recursive Function
    # Y4 f+ D- n4 U% v5 r4 [' [. r) m$ E) L5 Z$ z( f
        Base Case:. c! E1 @! E) S) r& b

    - i% K6 _/ F8 h7 c: d7 w        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.1 n3 u, ~5 q2 G  f% ~, G
    ( {! Q9 ~! X' o+ h3 }* D. T! S2 H
            It acts as the stopping condition to prevent infinite recursion.& x4 U! f- n) l5 P1 I

    % Y6 W6 f5 e: R4 N, I# L% L- ]7 S) |        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    9 T7 ^6 Z( c9 Q% e: F
    - j2 i) T( ?$ J$ F$ ^    Recursive Case:# W/ g6 ?* h/ C& |7 F. i
      y/ [$ S" A2 \8 O
            This is where the function calls itself with a smaller or simpler version of the problem." }6 F" ]5 X# b/ j( A
    . @2 C- Y- f+ y1 t$ I/ y, o
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).( b4 c8 d, @$ q% W4 ^& h

    2 X/ f8 I+ F: I& Z' Q9 k3 RExample: Factorial Calculation
    , C7 ]6 W2 U+ Y7 X$ Z$ ~7 l4 G3 ]( K5 D8 A8 _
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    & Y! I; ?' G/ e' u5 p( `3 _5 \' r* G  Y2 y! O
        Base case: 0! = 1
    1 Q. o1 W  B3 f* F- k% p, h& b
    + ~# E" h$ [. g7 N) |; i    Recursive case: n! = n * (n-1)!
    & S+ ~9 ~1 i  C  V
    6 S6 y" e7 E' oHere’s how it looks in code (Python):
    0 W- c& N+ Q0 e# tpython
    6 y+ }; j* r+ S1 |
    7 H! c% W+ O" [
    - U8 {" o% E$ r& m# h; C! x0 hdef factorial(n):
    1 W3 g% t5 {1 Q& z1 b    # Base case
    $ v: |: Q* S2 _2 r    if n == 0:/ L/ p8 k4 |* m+ r2 u5 J; i  ~
            return 1
    , ^; j, G0 t; u, f9 W    # Recursive case. d/ r9 \" ~$ u) p6 T
        else:) V5 R8 X; ]- V6 |
            return n * factorial(n - 1)4 L( P) v: a; U9 T$ D& Q
    ( I8 L" W9 x& A6 b8 I3 {; K
    # Example usage7 \$ m7 U, J7 M9 q0 H# S9 P7 ?
    print(factorial(5))  # Output: 120  e# H' l" C# @8 z* }/ L+ d6 w  F
    , Y9 M5 [! C: S5 C
    How Recursion Works
    9 V! n6 G0 l6 S& d  ^4 I. m/ x& w+ i% t: j
        The function keeps calling itself with smaller inputs until it reaches the base case.
    , A5 x. a$ `: V# ~  s" E& |. B! Q. |, \1 {
        Once the base case is reached, the function starts returning values back up the call stack.. t4 `6 a- y8 G! Y1 \& v( y

    , n' M) H9 X" j9 Q) `    These returned values are combined to produce the final result.
    / ]$ J, N+ Q7 J, b: ^6 ~* _3 j6 @, Q# o1 t
    For factorial(5):
    ) s& a6 ^" l  p' W  C* i; M8 S0 ~0 M$ _  P& k% |$ Z; }
    8 G% \/ e6 M3 z" N
    factorial(5) = 5 * factorial(4), S; C8 S. S+ p# h6 \
    factorial(4) = 4 * factorial(3)  m' Q7 u3 [# d# c8 X  }- w
    factorial(3) = 3 * factorial(2)0 u% Z+ ^. g3 m( g
    factorial(2) = 2 * factorial(1)
    + q1 a# I+ \1 _factorial(1) = 1 * factorial(0)4 A; g  C' h, h- U# V4 X- o
    factorial(0) = 1  # Base case, W$ x' ]; @' H. v7 s: ^

    + G5 L6 I9 k8 ?# E- j; `- {7 IThen, the results are combined:' p9 x: E# @/ f9 T' ~
    : a  i: w$ g& m9 ^8 e2 F

    * t- e" L; V) W$ j" \: vfactorial(1) = 1 * 1 = 1. p! f& |) @- i* Q  e, U' e
    factorial(2) = 2 * 1 = 2
    0 N: W# b2 p' j9 q0 Yfactorial(3) = 3 * 2 = 6; C% q9 Z! Y+ f3 K" w( t( r+ S
    factorial(4) = 4 * 6 = 24
    ' M5 x" S4 c( E% T5 }factorial(5) = 5 * 24 = 120
    . }5 R+ y/ y4 j) T+ g+ D" ]2 m/ V& z3 M# d/ D* g
    Advantages of Recursion
    * b4 n8 }2 r7 J8 S1 D1 K8 J
    2 f$ |, T. G+ e/ X    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    + l4 j: |0 S6 d* [" k4 W# X, f
    9 a" I! S" D% b! v( }! M5 j    Readability: Recursive code can be more readable and concise compared to iterative solutions.8 Y; I7 b: f5 M6 s1 p  m# q0 H

    7 J- [/ i2 ?0 c9 i/ ^& o% rDisadvantages of Recursion: \1 k$ p$ X, E9 w! r: w( a% Z. O

    ! C* J. g  {5 _5 w4 g3 M# O' a    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.9 D- L4 @% k8 a( q9 H3 }4 |: g

    # S9 o7 w/ Q$ \9 d9 N    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).4 \0 y5 Q% R6 m6 d2 t5 o

    0 @3 B' S* j' HWhen to Use Recursion
    9 J" u( c7 s3 u9 s  P
    & v" U! z0 l5 z6 x    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    1 l; a: Y6 I+ X  V. o% D; r9 f; Z1 _/ Z
        Problems with a clear base case and recursive case.
    2 {$ e! P. T2 n2 i( N' q% G6 e: ?! w( |
    Example: Fibonacci Sequence$ `; p6 l" M  y. }: k3 T% ~

    * _- e/ \* V' E- j* wThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    + I" s5 f0 S1 b* d7 i  E  L2 M0 I# V& p
        Base case: fib(0) = 0, fib(1) = 1- w/ |" V! Q# f5 N8 o% O( t( M0 j; o

    % e& n  x3 V2 a* C0 V8 Z; p    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    ( \' d4 }& g$ o& [* `6 X
    $ T' W9 q7 G8 m$ d7 ?5 h! B9 y% \python$ T$ X# U1 ?) L5 ?& e! V

    $ B  G0 z' p5 I% Q+ h; }( X& t" f& y1 \% e% q8 ^4 Q- y
    def fibonacci(n):
    7 ^3 E: Q( z9 D" S    # Base cases
    + ]+ x  {% c6 @/ B& S6 y" ?: [    if n == 0:" w5 [8 m& Y7 ^, d1 T
            return 0/ `+ F" ?5 n2 H+ d/ {4 h
        elif n == 1:
    - v- z" ~# e, V2 e& w8 U" A3 Y        return 1( A+ Z. }/ V% u( d' J. V
        # Recursive case% J# E1 T, a3 u# w3 R* I$ F4 |; t
        else:- s) ~" V4 M" D8 O1 l! C) X4 T
            return fibonacci(n - 1) + fibonacci(n - 2)
    8 z/ p: M& u8 V; m" D8 [) l1 `9 v3 U+ b2 ^, i8 p: U/ v0 J
    # Example usage
    ! |, E8 v2 A! r. H# oprint(fibonacci(6))  # Output: 8
    ' q8 z+ |2 Y+ B. A5 g$ k# {
    , ]7 V3 K1 e7 q2 f+ ]' x* O7 lTail Recursion
    + T4 ~3 c: O- ]0 w, K% P9 y) x
    + R3 @* C: t& o, x# `- }: pTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    / G3 K' w- M3 S6 a* W
    2 m" q+ {2 I, `/ a# M, p: |In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-11 17:48 , Processed in 0.030694 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表