设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1865|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 / c! g- ^0 j, Z' [9 {$ [& r) L
    8 k0 X! U2 s  X) ~3 z
    解释的不错
    9 x3 J& l7 y2 M( c0 b3 N& q! S( i
    0 J& r9 A& P3 ?. \递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    + G! T: S( S& c* o6 \
    4 o+ F! a! I0 A# d/ O% I/ S 关键要素' D4 K. e' U+ L  ~
    1. **基线条件(Base Case)**5 n9 G4 t: F" @6 C
       - 递归终止的条件,防止无限循环* V: s. u+ Z* A. a
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    ; N2 n- h$ Y( U; z- `* O  I# l( g! g( D
    2. **递归条件(Recursive Case)**2 ^5 V9 U4 ~1 Q
       - 将原问题分解为更小的子问题3 D, \% R. E2 r% T
       - 例如:n! = n × (n-1)!1 x# h% k! f! R1 Q2 H2 R' d

    ! S! ^3 Z/ k* R2 V( r+ `& R 经典示例:计算阶乘# R6 f  Y+ `3 I3 N: D
    python4 Y+ g. {5 k" R4 e
    def factorial(n):1 }/ M* g. D+ }8 A* D8 h. c+ V3 A3 \
        if n == 0:        # 基线条件+ T: p' k' c2 X
            return 15 o8 K+ J8 m2 _2 X% E- r5 f- w; m- v
        else:             # 递归条件
    4 O' i- Z2 a4 h: q1 c        return n * factorial(n-1)) p9 \. u9 q6 k3 q* a# W
    执行过程(以计算 3! 为例):
    9 v7 f$ X& }0 Z) f' G( Tfactorial(3)
    + w6 ?3 t$ K& E/ S2 Y3 * factorial(2)
    7 [; o1 |  _" b2 P2 l. K! ]3 * (2 * factorial(1))% F2 H8 B" P) i4 T/ d6 e8 w
    3 * (2 * (1 * factorial(0)))
    8 p) G% e9 m/ y* V8 Z3 * (2 * (1 * 1)) = 6
    . ?7 D2 V. @$ I, f% H% D4 D
    9 g, C+ ^8 \0 R4 a) w 递归思维要点
    7 x2 D% P7 }% j1 S2 n9 i# B1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    ( ], c1 O' h4 B0 j& E2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    . U; n& u8 \9 Y9 B! X3. **递推过程**:不断向下分解问题(递)- G% |7 P9 R7 V& g* `, x
    4. **回溯过程**:组合子问题结果返回(归)' y  P. H! \4 U3 e" A

    % D. K" Z% F. }- s# G0 v. m' z2 b 注意事项. q* R6 ?% k6 c$ p
    必须要有终止条件. ], E2 u5 `* T( s* x1 R
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)3 A. s0 f# d" Q; u* r/ {$ H' u
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    " Z/ v9 `. I$ y" e9 r尾递归优化可以提升效率(但Python不支持)
    " j: |( y  Q% D% [7 i) `
    ) N4 h+ y3 R: @( S+ k 递归 vs 迭代- t' J1 u3 ]8 |9 U6 i1 J+ b
    |          | 递归                          | 迭代               |! d3 s, I, p+ M$ [4 Q( S
    |----------|-----------------------------|------------------|
    0 E$ A( E, }6 x/ F! D| 实现方式    | 函数自调用                        | 循环结构            |
    $ \& m2 ~( f1 M9 K| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |/ v) Y! T+ @' d8 n9 `2 ]. D+ j
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |$ T  w' L% T, V
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    * K/ |& w/ u/ @6 P0 Z8 o4 ^3 z5 {7 |. v% ]' a+ L
    经典递归应用场景+ I& _/ w% ^8 W
    1. 文件系统遍历(目录树结构)1 T5 M5 v$ Z' B" B6 Z0 k# E
    2. 快速排序/归并排序算法
    ) e3 H$ x$ o/ A+ H$ B3. 汉诺塔问题
    1 Z/ {! g8 {( K$ z4. 二叉树遍历(前序/中序/后序)
    - b) ~- C, @* A6 W+ K" z5 h5. 生成所有可能的组合(回溯算法)
    ; x! K: y* G# L" a! U
    % ^* y4 N4 D9 B, y) \$ L试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    2 小时前
  • 签到天数: 3147 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,+ p5 u9 e. l; Z6 ]& `6 ?$ t! s6 Q
    我推理机的核心算法应该是二叉树遍历的变种。$ O* j, v2 g6 }6 V
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:" {# P1 v- [6 ~3 s- t( \
    Key Idea of Recursion8 e/ m; R  p4 L
    4 x! ^* r! z( B8 V8 V# d
    A recursive function solves a problem by:
    . L' r5 W& Z8 ^3 M$ s3 l/ n. p9 u, l# E' `/ n
        Breaking the problem into smaller instances of the same problem./ C4 d; A! t% Q. ]
      ^' x1 R# \) i- j! ]
        Solving the smallest instance directly (base case).
    + a* p0 [0 H  @( U* n& L
    7 J, U, c% A. L( T! z    Combining the results of smaller instances to solve the larger problem.) x. {. L! N7 M9 U+ e9 N
    ) W- h7 X9 d" A! O& S" e
    Components of a Recursive Function
    9 c- k1 i1 D" ^4 A! ]- t! y
    1 R8 w0 {% ]' M4 I1 O) i    Base Case:
    3 @3 F; ~' A) @6 I3 g% ?, l3 l! o, F4 D) g
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    , w! U1 q* a6 i( g% J7 {8 _  o6 }" k
            It acts as the stopping condition to prevent infinite recursion.; B, f+ `2 m& f5 f& W, X2 J# m& g

    * q8 D; o8 c1 A+ U$ J+ y; t& i        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    ' i# A. e  s8 o! M$ X( \3 X6 I% W6 f6 V2 |1 S
        Recursive Case:
    9 _3 `8 H  r/ h9 k2 J0 _& D7 ]4 [# |4 y
            This is where the function calls itself with a smaller or simpler version of the problem.
    7 ?5 Z+ ~9 e% Z+ a7 J3 S3 A  W, ^( B. E- C( v
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    % p* ?" a7 k4 L) W/ {: `* P* k! R( E& t& ^- F0 `% s
    Example: Factorial Calculation
    ' D5 p; T; I/ @+ s* u% M1 B1 h8 n  M7 u: A2 S& K+ w. @  y1 z, h
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:9 d+ B8 U; x1 Z2 T
    * T& Z; c; L+ E  F
        Base case: 0! = 1
    / n/ d. w3 z7 b9 k# H) B2 p: {8 T) j3 [  R0 i4 e
        Recursive case: n! = n * (n-1)!
    5 v# n' |9 G7 D- z  p9 H8 v
    : t; s; h* n4 s: G% O( N! V; \1 O: ~9 yHere’s how it looks in code (Python):
    0 G, X' v. L: ~: o  _, Hpython
    # J; S) q& K: ~0 t' W1 o9 X
    & \. T7 V. L$ v3 B6 V) i  C2 r2 Z$ a. D, c
    def factorial(n):
    2 {( _9 U9 d2 ?  }) t+ s$ i    # Base case3 K* V  Q9 z  v
        if n == 0:
    6 j( r2 n3 v$ ]8 O* {% j& J        return 1
    7 K/ _' H: H3 D1 Q2 d8 a    # Recursive case, u* e, _4 v. i2 t' ~4 [
        else:
    - ?6 Y& k* P0 G6 z& u. {        return n * factorial(n - 1). H& e9 S" N) u- X  }7 |  W
    . e  v5 f' f/ ~$ f
    # Example usage8 z0 F7 g3 R9 F1 y! ~* J& k$ k/ M
    print(factorial(5))  # Output: 120
    9 D9 N* L& c; i, N' ?$ t) x. \& T$ ]1 ?$ w2 {
    How Recursion Works
    % c( c- l: U7 D5 Z' m! j
    0 s1 x5 q* |+ K8 h' Q2 z2 w    The function keeps calling itself with smaller inputs until it reaches the base case.
    - v# F# b+ i) e* }7 b
      }8 H5 a, M# b    Once the base case is reached, the function starts returning values back up the call stack.
    8 q& k6 m7 Z7 M. f$ o8 v- e& T. E( E6 e/ c2 u  y# |+ |- f2 d
        These returned values are combined to produce the final result.  @! P. J% F3 i2 o, n, P5 @
    # _# ?" D$ Z" w2 S
    For factorial(5):
    ' e7 ^& V, r& d: e& x0 o+ H6 x! P/ ~
    6 I& \, o5 \2 V9 M- g: ^+ S8 X6 g, q1 M" k* t5 j* b; L- o
    factorial(5) = 5 * factorial(4)# |/ [5 K0 w; u: h  Q, q
    factorial(4) = 4 * factorial(3)! l' b9 W( r/ @5 Z" N
    factorial(3) = 3 * factorial(2)8 g% ?( A. }- ]3 p7 N) K
    factorial(2) = 2 * factorial(1)
    * _5 R2 m* _8 T# d  Q, F: rfactorial(1) = 1 * factorial(0)" C3 B' |" j/ ]; C- u8 v" ~
    factorial(0) = 1  # Base case
    ; [: l; m% x9 e2 a
    : T. e2 n# Z8 L2 _! F( V- ~; p$ F8 YThen, the results are combined:
    : M: [& ?  a5 J+ |- D  j
    - y; \+ k) Q$ D0 M* i; z) l- Q; a" L8 W- e. u; @* {; F  G$ I
    factorial(1) = 1 * 1 = 1
    ; N1 P  d8 P# ]  B6 a# D! c& V3 gfactorial(2) = 2 * 1 = 2
    & Y+ z( I# g' m4 S/ \/ U' ufactorial(3) = 3 * 2 = 6
    ' c1 h8 {+ v6 ^& s2 _2 Efactorial(4) = 4 * 6 = 24
    $ m* ]  R% m0 N" ^- {* W% }factorial(5) = 5 * 24 = 120
    % n* |1 _# }4 W" t, ]/ Z% Y" H0 e/ k, ]& i, \7 y) V: n+ `# l
    Advantages of Recursion- [' s. Y8 `# r; E+ _+ Y, V

    + E7 k& M& u$ P% z7 r$ W! Q    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).$ W1 _2 @2 K, }% p/ b
    # t1 s+ M6 x7 S# x- l
        Readability: Recursive code can be more readable and concise compared to iterative solutions.! P2 G4 F3 ?8 c* V/ e

    5 \  b& O4 b6 u  fDisadvantages of Recursion% Z- ]* Y1 S8 U" L

      L, z0 [: Q4 v    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    + Z6 x' ]) b- w. S) q  L# t
    + i* k# X  l2 b! }. o" q    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    + B. v) K% u& P: I/ @
    7 g- K- y7 \2 p1 g! R0 K% K1 B2 iWhen to Use Recursion. P2 c3 q  F4 Y5 B& E
    " G" x/ E% F/ E3 B6 T! Z" S+ e7 n
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    4 ]! L. j+ m  t4 b% s) B
    2 r+ o; G  z1 N" n% a, v1 s" h& }; y    Problems with a clear base case and recursive case.$ g4 z! x4 o3 H

    0 b+ p# D* z$ D4 a$ YExample: Fibonacci Sequence8 R* D* x+ p8 O9 j  H. a
    8 E+ f/ `/ s7 e
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:5 C6 v1 G2 q9 _+ b/ v. Y
    ; p, S& B' `/ y' Q$ A5 a9 F
        Base case: fib(0) = 0, fib(1) = 1
    : A% {" V; T1 B* [) y$ z0 C+ T! L" w- c0 \; D/ D% h; ~% @
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    # f3 w' _. g9 w6 u6 a
    ( M; l" O! ~; p) t' x) p' Qpython
    3 n9 O( p! u- x- C* B! j  J/ S0 o6 V% N% R. V
    - n3 A; @) N7 X  W6 S7 {7 f: v
    def fibonacci(n):
    % Y, n3 B1 I% }4 H3 t& Y: {    # Base cases
    ; w; R9 a, _( ~# l, A( v    if n == 0:
      e, a: B1 D' R9 y0 s5 q- L        return 0' k1 B: _% D. h" h. O+ R2 P2 e
        elif n == 1:4 |9 I; j* p) _. w$ {7 W
            return 13 I8 \* H: d/ L
        # Recursive case
    3 x" j2 ?! L6 ~  p    else:: T9 u* o: A! k4 \: B5 Q
            return fibonacci(n - 1) + fibonacci(n - 2)
    . u0 k7 Y) ?0 D2 t- n% E; z4 _& \/ L+ S, |  x' J
    # Example usage2 X7 x. H( }0 X: L6 C' w* _8 B
    print(fibonacci(6))  # Output: 89 }, T9 |8 l' h& r
    # m$ j% n. K( K) Q9 \  ~% R' Q
    Tail Recursion
    8 g: t6 j: E( `- c* j! Y; ]! Q. V6 C: Q8 L* n% l
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    / X4 q, o  A' l$ t9 y
    # [  F$ y0 ?0 \8 |/ p8 Z( dIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-17 08:29 , Processed in 0.034087 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表