设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1899|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 + b9 j. |/ H: c( {* m; s% H/ w

    3 D! `7 H  Q/ D9 e  |6 `解释的不错
    $ G9 y/ {* l& i& {, }" y" T
    & v% I: |4 h$ y3 ~3 r. U递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。0 S* v( {" J. b- P% V+ F

    + s- ^- o. C7 p2 C+ R, N 关键要素
    ; c% k3 |0 \+ L/ R, h& |1. **基线条件(Base Case)**' d9 w% j; k1 ^( k( I7 x  ~
       - 递归终止的条件,防止无限循环
    / n- m' `& p! b   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1& c& l2 z  G: G2 d9 V) G1 Z

    & i8 l8 N; d/ R; V) Y" X, E2. **递归条件(Recursive Case)**
    5 @  z* H9 [  e+ U   - 将原问题分解为更小的子问题
    2 z& ?- z6 Y# h) M$ r   - 例如:n! = n × (n-1)!) ~; @4 X2 [3 U# H
    / z! k# d2 x9 V5 r6 d2 y
    经典示例:计算阶乘
    ' _, V+ m% M! g' P& M$ _3 Qpython
    0 ]: x6 e/ c7 R# _def factorial(n):
    6 I5 ?. D3 V- x* A: S1 @+ o$ S    if n == 0:        # 基线条件0 d0 j+ D7 _2 f* K
            return 1$ o! G9 l, ], G8 \7 Q. Z
        else:             # 递归条件
    ' }, K0 Z' y  W        return n * factorial(n-1)
    7 R- V: m4 R" X5 p执行过程(以计算 3! 为例):
    2 P5 ~6 O. X. xfactorial(3)
    8 e  I" h9 U  |' w$ D5 m3 * factorial(2)
    / [% A% {! u% S1 U3 * (2 * factorial(1))
    : K$ }$ G2 K, n  Q9 e3 * (2 * (1 * factorial(0)))
    * n% @+ e9 u7 }: S* n' \3 * (2 * (1 * 1)) = 67 l$ [" @# Y+ p
    3 b* L* E6 A+ U! p; q
    递归思维要点/ I0 c- q( K) v# A
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑9 b4 d+ a+ i8 F9 ?; v9 s8 X
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    : F3 x6 J/ J+ ]( f3. **递推过程**:不断向下分解问题(递)5 F' A( b5 j% @# d0 L7 K
    4. **回溯过程**:组合子问题结果返回(归)5 ^6 o7 d4 k  `) S

      B* {; w7 J% ?! N0 j0 D8 @$ _# U 注意事项+ P; c6 b& @! v" Z- n" G3 R
    必须要有终止条件
    # {' N2 t9 x$ b: l' D8 G递归深度过大可能导致栈溢出(Python默认递归深度约1000层); t1 l0 E6 V/ K3 h9 \" `' w; O2 C
    某些问题用递归更直观(如树遍历),但效率可能不如迭代. Y# M# q7 q4 w6 B3 X) i' o
    尾递归优化可以提升效率(但Python不支持)
    . N8 {7 v$ \. l4 W- }
    6 Q8 ]8 A- s1 q7 V3 Q! Y5 D 递归 vs 迭代
    - C$ `- f8 w) [) e; C|          | 递归                          | 迭代               |
    # W: G4 ?1 u! N( Z2 x, ]|----------|-----------------------------|------------------|  N* G- N! j# A
    | 实现方式    | 函数自调用                        | 循环结构            |  j5 W+ g9 H7 }& d
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    ; _9 @9 R* d! A+ Q4 @6 C& J| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |+ F8 K) P: [5 i. n
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    / e" z: V: X2 x
    ; p& n7 r$ O8 z3 k2 c 经典递归应用场景
    3 S) b, X/ n/ Z2 v& B$ m1. 文件系统遍历(目录树结构)
    & B3 `* O5 L* b- N% f2. 快速排序/归并排序算法
    6 {3 O6 D5 Z) \3 ?! C3. 汉诺塔问题% C! I1 V( B* _
    4. 二叉树遍历(前序/中序/后序)6 q4 c6 `7 |1 Z& ]; a, v6 i7 s
    5. 生成所有可能的组合(回溯算法)
    . [: J5 T0 ~% J( r* @3 j9 y. g7 d$ l5 \
    & O% Q$ }, I2 V8 C5 a# K- M9 F) x试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    昨天 07:11
  • 签到天数: 3150 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,( Y8 ~5 w) _  f7 f% \' x
    我推理机的核心算法应该是二叉树遍历的变种。$ N+ ]- B- U/ `
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:; M2 v& a$ ?9 z- {$ S' S7 e
    Key Idea of Recursion+ h: M3 I( P( ~5 Y
    ) s- b$ F, _% G& Y: e/ k
    A recursive function solves a problem by:
    * ]6 |* Z7 P9 W5 b% q* G: U" I8 i# t5 V9 A8 Z8 M  p
        Breaking the problem into smaller instances of the same problem.
    ( v! \% h( f, |* S. }) c2 E0 K* m& }
        Solving the smallest instance directly (base case).0 X2 ]- h0 O; _# x4 `5 k# {! ?7 Y/ A
    6 c8 T1 i2 j  J* }; ?
        Combining the results of smaller instances to solve the larger problem.$ Q5 |1 B+ U8 x& k
    & M. U7 P( [& c# C1 B% M+ b, `
    Components of a Recursive Function
    * j. I6 }+ ^4 u& j: C) @; S) H# s7 Y. {
        Base Case:0 @! i7 h3 j$ ]# j9 I* Y

    - F+ {) \+ b- i7 f        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    " E& M) _* f3 F
    2 `/ ~, d( N0 N# q, ^        It acts as the stopping condition to prevent infinite recursion.0 [' f! W: i5 _3 n
    ) c8 F/ G  ^1 J9 }% T
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    2 T* Z2 `: D- ~) g- ]1 ^9 l; y5 U$ F2 b0 N$ \+ m
        Recursive Case:
    5 B  h+ `5 J. h  |- E2 i/ \: t9 w/ B* ?+ g4 `, J& q1 P  T2 j- y" W. G
            This is where the function calls itself with a smaller or simpler version of the problem.$ w$ g; P- T, F( s
    ' |# q1 G0 X/ N
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    % N0 A% e  `7 Z5 v: i& ^  ?; j: [3 I: f+ R+ E( |& Y+ P4 L
    Example: Factorial Calculation6 O* G# _! f6 c% V0 \- j. M

    3 N3 j$ S0 X+ f6 x  `5 ]The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    0 G: e$ w( V& L5 q- u% K" O" b% T* _9 v5 T5 r  {4 D0 N
        Base case: 0! = 1
    4 m" E/ m- E9 r: @, V2 ^& n+ ]4 Z2 g4 K# b8 F3 k% c
        Recursive case: n! = n * (n-1)!
    / P0 l, o' s$ m% {3 x0 D  p; ?
    2 x) }4 ^' S, k( ?$ `8 k- qHere’s how it looks in code (Python):
    % [+ n  |# H2 zpython" X3 t- r' l/ q8 f3 m- j1 l
    + M+ b/ J3 _8 A6 k* D) T3 R5 S0 O
    8 X9 g3 V# T4 u& M  d' y/ I% |. l
    def factorial(n):
    4 V- j. O+ e  I, w# r7 H    # Base case/ G1 Y& F0 [. ]9 J( Z% Z1 [
        if n == 0:; h- m: k: ^2 Z: i8 f
            return 1( N. g3 w. X" |5 C3 f3 s1 O. f
        # Recursive case8 w* b9 j  a/ V. j; W
        else:
    ! C! {$ ?. o/ Z" k* G! P        return n * factorial(n - 1)
    4 D+ Q5 Y6 @# _+ U* G5 }7 q/ j* R; M
    # Example usage
    4 G, G0 c6 R' _/ oprint(factorial(5))  # Output: 120
    3 H% J! y/ |% b4 d3 v6 l8 d3 u8 G( E7 t) ]
    How Recursion Works
    * _( I$ b, Y/ w! e
    2 u8 Z, M$ m4 b  x    The function keeps calling itself with smaller inputs until it reaches the base case.
    ! [8 ^8 g" S. k$ Y1 Q: r( V; m% f9 |7 A" F% R# x  M
        Once the base case is reached, the function starts returning values back up the call stack.  z- ?( Z- _1 `/ z% I

    5 |- H4 }1 k+ P1 ?( o& H    These returned values are combined to produce the final result.
    $ v0 n' B) ]( w( z: d) `0 @; s$ q, D: v, k0 Q3 t8 v& ?
    For factorial(5):
    ! C1 K- e: v$ {2 r
    0 G# K$ r8 i  k* h
    4 F" k" g- E9 P( w; U8 Y5 Tfactorial(5) = 5 * factorial(4)3 _1 n9 f2 Y% M) o+ W" j2 T
    factorial(4) = 4 * factorial(3)
    + b0 @" b" x  [factorial(3) = 3 * factorial(2)/ _8 H4 B2 G- g( Q5 m* {* V) D
    factorial(2) = 2 * factorial(1)
    + Y* E' B+ v% H+ Ffactorial(1) = 1 * factorial(0)
    4 E6 n8 x6 V  @  g1 g  I2 |factorial(0) = 1  # Base case
    $ z: M3 e# U/ d% q7 ~# n
    $ m( @% R  I; x1 B6 [. @0 O9 FThen, the results are combined:0 I* {, x: l3 M' o3 s

    1 _- [. Y9 S  Q  }, H
    : X  {% C. X. p: K& g) P8 Qfactorial(1) = 1 * 1 = 1" Q& A( Z) R4 ~
    factorial(2) = 2 * 1 = 2
    - m$ @7 G* G7 j1 nfactorial(3) = 3 * 2 = 6. o2 A8 M+ f& n" I% a$ N
    factorial(4) = 4 * 6 = 24
    ) l8 Z1 A: N' @6 }factorial(5) = 5 * 24 = 1203 i% q& z- f9 O7 Q. \- d

    7 c: M5 D* M- O" k$ @Advantages of Recursion% H# v. q6 ^8 l

    / f* I4 ]+ V  o    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms)./ ?% C: {6 I/ t! o
    0 b8 C! _# G2 X
        Readability: Recursive code can be more readable and concise compared to iterative solutions./ L6 x5 N1 K, u6 p
    / q/ ~. R4 D2 Z! X1 T& I
    Disadvantages of Recursion
    0 o4 c: ^- V. P0 \! J. \0 J) t' K2 ~9 a; c5 W% Q* O& h
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.3 S9 _& s2 v8 G
    * t# r, j0 n9 F
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    ' K, _# t  v6 Q# ]
    * o8 h2 a) C: b1 P$ B; {When to Use Recursion6 X& q, H( G- ~% e0 q9 @. D
    ' ?* K, s9 X" h" w% {2 b* m
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    2 Y$ k" O7 R0 X8 x; [( l. R- z4 M( Q; B, }( g
        Problems with a clear base case and recursive case.
    # H& {' g& q- F8 U$ y# I; Y# `* S* ]7 U6 z+ ]
    Example: Fibonacci Sequence
    ) g* E  ^9 K" [% S7 i- U1 l$ T
    2 W) D* Q! K5 i& [5 ~1 u( WThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:. B* l1 p7 u' \1 ?# E( y/ T$ }
    ; o: k% W$ i7 h% y* s
        Base case: fib(0) = 0, fib(1) = 1$ }' Y" j( n# m$ H; @1 X- F* ^
    & a& N! Y& M- t8 ~+ `
        Recursive case: fib(n) = fib(n-1) + fib(n-2). J2 E: U2 V$ \8 @2 n1 x; f
    - A' U" D2 r, a) ?4 D. z. O) T
    python
    9 \+ T2 g2 K9 E1 @: r7 [9 t0 J# y. y
    ) p0 n0 i4 _$ k5 V6 ?( W& ?2 Y; u* N
    def fibonacci(n):
    , w# N5 Q0 H3 K    # Base cases
      r0 T3 T1 T* E    if n == 0:8 m& U3 s  S% A2 r/ r# }) p# ~
            return 0
    0 V) ~2 f: m/ y% j* p9 g$ I    elif n == 1:- T3 U) ?  }" E7 n/ L
            return 1
    ) C$ A" R- N8 q( S    # Recursive case
    / m. s# r3 ?8 F    else:: }: @; S0 g" @
            return fibonacci(n - 1) + fibonacci(n - 2)
    $ M  N' }3 s6 k+ {% G. L  ~# j( V( a" @* e
    # Example usage
    1 U. |9 C7 ]4 U7 V: Wprint(fibonacci(6))  # Output: 8% f! W. W* z/ x$ K3 _
    ; s' F( D) o; V0 Q# h" O! H
    Tail Recursion! T; a* u0 Z2 H5 d4 Q3 v

    3 p! ~; n8 N" m( I$ wTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    + Q+ a6 d8 w1 f& O
    7 _7 }# e  W+ ?  I+ d9 @In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-21 00:01 , Processed in 0.059598 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表