设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1653|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    4 |  H9 Q% ^0 r9 Y3 q
    2 C; y9 `) A7 v' i5 q8 K0 o解释的不错
    " l$ k4 G$ r4 R( t- h# s+ i; l9 _. Z
    ) ]& f; Z: ]/ P. V递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。6 t4 z! a1 i) C, ~* S- p

    - b& _+ j; I2 H2 `! P- Z3 T9 K7 j 关键要素
    / }' R' p5 K7 q: x# r& M1. **基线条件(Base Case)**5 Z8 y6 x% v7 d' k
       - 递归终止的条件,防止无限循环
    + H$ g& e8 s8 e7 q/ ?   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1  u! ~& ~+ Z1 x! t# N6 R

    6 ^9 ]" t. e8 A$ c2. **递归条件(Recursive Case)**
    3 N! K- f) F9 n3 s   - 将原问题分解为更小的子问题& f: A  s* Y+ r1 w2 i) w  ~
       - 例如:n! = n × (n-1)!* h$ @, F2 S9 o+ R2 p1 y

    # v7 K  ^  n' k6 K( I2 Q 经典示例:计算阶乘* t0 V; w: `; Z9 U/ g
    python; ]8 [4 S2 x3 n, v
    def factorial(n):# V! {  u( Q6 W
        if n == 0:        # 基线条件8 ^* W8 n& u( g$ b9 D( z
            return 10 Q0 j+ a' p( @6 {$ ^
        else:             # 递归条件
    * H, G- ]6 r7 Y* t8 S. M        return n * factorial(n-1)
    + q( _: p" q, e5 R执行过程(以计算 3! 为例):
    5 X9 U) m$ ]2 Z7 @factorial(3): `* \) J5 H! I* p, E
    3 * factorial(2)
    4 K" u  e8 K3 c% ?3 * (2 * factorial(1))1 w% ]; ~: r* e9 r8 x
    3 * (2 * (1 * factorial(0)))9 d7 ]  H8 S9 ^3 N
    3 * (2 * (1 * 1)) = 6
    ( ]. s$ l( B  d9 b, F, u, i* X
    - N  V8 P4 w8 s* g- t' Q 递归思维要点
    / x! N  d) i) N& {+ ?1. **信任递归**:假设子问题已经解决,专注当前层逻辑: p) m; J* T; C4 w& O
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)/ G; D  u1 S3 n9 R  l) F  z
    3. **递推过程**:不断向下分解问题(递)9 M# H* }) b6 N
    4. **回溯过程**:组合子问题结果返回(归)
    ' D9 i: _5 b! [$ M
    : }1 f" d# R3 H+ W5 A; S+ n* i 注意事项
    ( X9 p, ~, I/ {. w' h必须要有终止条件( }9 E. e* ]# L/ F1 r
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)0 \3 n- v2 A2 y) y* Z& C' L- I
    某些问题用递归更直观(如树遍历),但效率可能不如迭代' O4 W6 x( u; b' H; y7 y7 y' B
    尾递归优化可以提升效率(但Python不支持)
    # W7 D5 i- A: G$ O& O+ R
    / K6 V  M- K" V; n' G 递归 vs 迭代
    , b4 u, P. p3 Z' ?5 ^|          | 递归                          | 迭代               |; O0 b& Y/ A% F  H9 Z* u9 h/ ~; @
    |----------|-----------------------------|------------------|
    $ r! B7 M8 B7 D# y7 H| 实现方式    | 函数自调用                        | 循环结构            |0 g. _$ ~8 Z" W. |
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |+ h( I3 F4 A8 U% E
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |* S+ b0 K% U+ f* P3 D( X
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    , F! H3 W: y# q" g3 B+ G  p1 g& S. H3 o3 {
    经典递归应用场景
    8 y) s# v& z, l) Q# I0 {: s1 R6 P1. 文件系统遍历(目录树结构)( D. q- o! g( y4 k; Q7 z0 E
    2. 快速排序/归并排序算法
    0 U" ]# S# z* w) S  q3. 汉诺塔问题4 m% o& }+ S% d% U' |
    4. 二叉树遍历(前序/中序/后序)$ f* {" A. @: e/ n! C6 R% _% O
    5. 生成所有可能的组合(回溯算法)& a& F6 C7 _9 k: h$ R
    / c$ s# c% I# N+ k
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    15 小时前
  • 签到天数: 3128 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    5 D7 r( [+ Q: L1 @* y" R我推理机的核心算法应该是二叉树遍历的变种。
    5 E4 l7 p* y* w3 X# ]/ f另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:% z! ^. j* d4 s' c
    Key Idea of Recursion
    7 [. P, l+ t2 p4 i. V8 C8 `! @: q9 K7 {: S' l" k
    A recursive function solves a problem by:
    ) t/ O3 K9 O7 N6 {$ M
    % d; U, O- {  |1 U- R* ]    Breaking the problem into smaller instances of the same problem.+ ]7 B/ V+ R+ W

    + o  ?0 q( C. G2 r    Solving the smallest instance directly (base case).. d  Q  x3 {; j- q6 j5 I5 i
    : w6 d7 Y6 v. N2 c' s) n
        Combining the results of smaller instances to solve the larger problem.
    + N' d# J$ e/ @0 t4 N  ?' m& _- m) i* ~1 z
    Components of a Recursive Function/ {% _+ ]8 ?9 o$ m4 P2 j
    , c7 {, B. {+ {4 U
        Base Case:7 Y9 b$ e) z1 S, ]* o) L0 }
    + B( T0 W  X9 C: n3 O
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.+ F* s) s5 ]8 n6 I( v+ n
    % Z! ]" y! ^6 j+ ^1 k: M
            It acts as the stopping condition to prevent infinite recursion.' y% b- e& \; F2 _0 a
    % b3 B% \' s$ s3 ?: S1 y2 C( L
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.! }- ?# i$ W2 Y) l1 L; s' M
    ' r1 g& a% ]; ?: G4 ]1 i) |
        Recursive Case:) c0 ~/ Z6 u) t# V6 @: U  f# ^6 n

    " l" ?5 ]( ^5 J+ u4 f4 @4 i% G1 Q/ t        This is where the function calls itself with a smaller or simpler version of the problem.
    8 `& c. t+ o/ O  a( [
    / a. x. X$ [6 C) k; q, h* h        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    # n, H) s8 B+ F5 `2 H
    $ q7 W! S) N# Z- L: r% TExample: Factorial Calculation' M* i8 d1 H, o, j: P3 X
    ' l! U, @5 s8 E0 ~2 W9 M
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    % c% |, W$ ?% D" Q4 a0 j2 j3 m" {7 [, B8 f# j8 T* P' y" @( Y+ Y
        Base case: 0! = 15 W3 o) r4 J2 w
    , ^+ ]- W/ p' Q+ x; W
        Recursive case: n! = n * (n-1)!
    0 \( o3 ~2 R5 l( w% B" D& b; D/ e) Y& N; o1 J( x
    Here’s how it looks in code (Python):  y3 v* C$ I4 y' R1 ]7 M; `1 z
    python: k, d- S- J$ A+ s$ `3 [
    # S& i3 R) b$ K2 P4 w' ~- G2 o- U
    2 ~! i% A8 V/ z- O" M8 @* d
    def factorial(n):
    ) y5 t) V; v$ b9 l5 F1 n8 E    # Base case
    ( X# Y7 {) r0 X! P    if n == 0:" n6 Y7 a, _: W0 i2 M7 i! k+ R
            return 1
    * `1 C! r! v# ]$ G* q5 g0 t* B( A    # Recursive case
    4 I  m" y+ D7 _4 b    else:
    % _( ^; M4 H: b$ R8 i: i/ Q: D        return n * factorial(n - 1), C5 U# J& j7 k/ Z! ^0 B
    , y  F/ i7 @9 ?5 v. P3 G
    # Example usage3 j! i* ?: |4 z% x: \. L: T# l
    print(factorial(5))  # Output: 120
    % n% L! n5 H5 t, l: V! z/ A5 F4 L$ [* {
    How Recursion Works' \. u2 |9 ?1 b; _
    / \/ N3 w! m% _% o- F# N& J' s/ V
        The function keeps calling itself with smaller inputs until it reaches the base case.+ ]9 K) C1 T6 f' ~' Z
    4 K7 a+ v% F! y# P. E
        Once the base case is reached, the function starts returning values back up the call stack.
    $ Y2 D9 D# r2 O6 C7 v! r
    3 _/ K3 y- ?, O7 m6 ~$ u1 O1 `& S* U" \    These returned values are combined to produce the final result.
    + h  o5 k, U1 f9 `9 z- v- a4 A3 P' i/ H0 |/ j' f8 M+ I
    For factorial(5):5 U# s: H8 r/ s# O) s+ m

    % k6 g* ~1 M- u) J* ^
    & J/ y9 |% `0 Z1 R5 c. lfactorial(5) = 5 * factorial(4)
    * A2 K8 x  e, Z2 F3 J5 f  I9 j) Yfactorial(4) = 4 * factorial(3)
    4 D; u& J$ T- ~3 H* {factorial(3) = 3 * factorial(2)
    ' q6 x+ ^' X* D8 Xfactorial(2) = 2 * factorial(1)4 O4 l! A' u( T, {0 U* ~
    factorial(1) = 1 * factorial(0)
    + l, `9 G8 V- @& K( k. Rfactorial(0) = 1  # Base case3 X8 Y: h$ i- X# ]$ ~

    % S2 X: }; U1 EThen, the results are combined:, }/ N4 j7 i6 {/ R- p4 C) c

    / k, f: c9 C2 W
    2 ?" ~" l4 l: i- S" ifactorial(1) = 1 * 1 = 1
    ( V, q+ e  i% v+ jfactorial(2) = 2 * 1 = 2
    : I1 v/ w4 b/ i$ G3 A+ kfactorial(3) = 3 * 2 = 6
    / X% X) }  B+ t( _# w$ lfactorial(4) = 4 * 6 = 24* |1 }2 E/ f/ e! b, N! \
    factorial(5) = 5 * 24 = 120
    . Q8 |8 h9 e+ ^- x" D5 F1 {6 L; O9 ]& W6 p) Y! O+ b
    Advantages of Recursion
    + M# M. W- d/ ^
    : k* _5 `5 Y6 g+ M* A" S4 E    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).+ D! E* K- g5 e

    3 M3 l% t8 N* i5 z2 \    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    " |) o7 P. D; `: V- H
    , Q. f7 R, b: cDisadvantages of Recursion
    # ~0 y. x  }4 j4 [& |0 g8 a+ i( e: b9 A
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
      _# F' N5 k" m" p! h( r0 E, y8 r* O6 y
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization)." ?5 b: b- n4 u# Z6 @3 [* M
    + v# q1 r  N3 H1 M! m/ E
    When to Use Recursion
    # e, T7 P/ |/ ^% d" C  K/ L- B7 L# B1 f9 U; F7 X4 f' S
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort)./ H; n7 B, p% B4 Z4 `

    $ T, a! U! J" \5 e    Problems with a clear base case and recursive case.! ?' ], ?2 H0 J9 A! Q

    0 o/ z7 ^2 K! a  R. TExample: Fibonacci Sequence4 J; n1 w" f7 h* }, x0 K5 C
    ) U: D4 P5 S! _. g* v  T
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    , z% }/ p, I5 g/ ]1 _
    5 W8 C" y; |: f4 ]    Base case: fib(0) = 0, fib(1) = 1
    / K  U6 ^5 ]8 S( g5 j! [
    # h) s+ ^4 `! H( I$ R8 l    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    3 }3 F( T" D1 ^+ C: i' U. r% A9 @+ ]. y& Y+ }" z( h, n: m( {' B
    python
    ) q# {# F% m* Q1 f0 f5 O, t3 ~6 @
    # s/ ^2 K! h7 Y8 k) F) A. C9 u' T# v$ j$ J: E7 u0 |: h
    def fibonacci(n):* t1 I- j& A6 r6 l& s0 Y
        # Base cases
    5 V( F, z8 K2 S9 w$ n  `! v: b    if n == 0:
    . {# q2 @: _: N3 ?        return 0# P' L1 Q  L; B& T' x
        elif n == 1:* E, _! r) N) l0 `2 }
            return 1
    / ]. |5 g# I) d& k9 d9 K    # Recursive case
    3 b% j8 ~2 Q, o( a" q    else:
    & `$ I7 O2 r6 M        return fibonacci(n - 1) + fibonacci(n - 2)5 ]! j5 U. R6 f6 u. B

    ' g& M% S4 I* [7 X; D# Example usage9 V  @$ p+ J- L6 r
    print(fibonacci(6))  # Output: 84 c* K" L4 `4 T- E! J

    2 o& j1 u2 s$ j% xTail Recursion
    / ~6 P. q3 R# B: x" `  b/ g) T5 F% ^7 a7 R; `* m& j
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    $ y+ R" l$ e! u2 A- z) I. V5 Z  u7 r% ~
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-26 22:54 , Processed in 0.029944 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表