设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1333|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    ; Y% \: d8 a1 f1 B9 r/ Z8 S& ]( [& X  D- D$ N& N* Y3 S
    解释的不错! \2 |2 e: f& O4 r6 T- F

    4 f2 ]0 O; J/ W7 B递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。4 D6 ~4 Y: ~1 U6 _$ u7 G& `

    3 R4 H# j" h2 K 关键要素1 S7 I; T8 {0 k
    1. **基线条件(Base Case)**
    % o6 m+ Y# `, T! p$ d   - 递归终止的条件,防止无限循环
    : i% X7 c7 f  _: G- K: N9 P- l   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
      I$ {0 L% K% o( Z+ o
    , n# R$ A7 q! E  B2. **递归条件(Recursive Case)**
    * E2 Z+ b7 C, z" ?4 F1 w" |2 [# y& U   - 将原问题分解为更小的子问题0 u" `/ R; e8 ], u- ?
       - 例如:n! = n × (n-1)!
    6 f5 T5 B, `2 ?2 f% x/ @& D( D  F+ U( G6 z5 ?: ~$ |. k
    经典示例:计算阶乘9 |) x4 q0 n7 u% x: l
    python
      e0 u9 P- j! hdef factorial(n):
    7 x1 j& w  r1 Y. v    if n == 0:        # 基线条件/ X8 z0 q9 x% e3 J
            return 1
    " @: [/ r1 X  \$ m0 D' a6 T    else:             # 递归条件
    * G2 A; P8 e2 Z9 @  o" N        return n * factorial(n-1)7 X1 W: P% S7 Z
    执行过程(以计算 3! 为例):
    ! L6 h4 O' s* T3 Zfactorial(3)
    ; W% A5 Q. \% e( B& |* T% w3 * factorial(2), I, [; ~6 G* O% J/ y  Q
    3 * (2 * factorial(1))4 ~- p9 r5 Y( S, v6 y
    3 * (2 * (1 * factorial(0)))
    - u& E' E) X: v/ U6 F3 * (2 * (1 * 1)) = 6
    " b% Y5 x7 x! q: h- h+ F% k$ H" w
    7 k& L; L& _1 ?# @* K 递归思维要点# J& R9 Z% `5 p5 A# @2 o
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑5 w: M! s8 }9 [% H
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)6 k: j4 ]6 B/ ^' i) B2 P5 i
    3. **递推过程**:不断向下分解问题(递)
    & w0 c' c. h( A' U! o4. **回溯过程**:组合子问题结果返回(归)
    ; ]$ G/ T( {+ \+ L0 }  |' o# k2 }2 I2 u: H
    注意事项
    2 D# S; U: N6 O5 L# f8 Z" k必须要有终止条件6 Q! r$ q. t% F$ x* j/ ]; Z
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    / u9 R/ q* n; l1 R6 F6 B某些问题用递归更直观(如树遍历),但效率可能不如迭代
      _* {. c) c' k* c1 |$ Q. V尾递归优化可以提升效率(但Python不支持)
    6 `* c9 n2 k) V* @$ e; m: o1 v0 V+ v  E1 E9 |+ P8 S, ?" k
    递归 vs 迭代! i5 ~4 O7 ^1 g7 E
    |          | 递归                          | 迭代               |2 U! r6 K& W1 U% Y  K
    |----------|-----------------------------|------------------|
    $ L9 J5 q  M; E. f# h/ n* t| 实现方式    | 函数自调用                        | 循环结构            |
    0 j2 T. t" E0 ?9 [| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    : Z4 }' I0 n. Q| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    % w; A( E1 U( _. P$ m( x) ?6 ]| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    ( F6 h" X, G/ _- J
    8 o" W$ L2 t$ V/ L 经典递归应用场景
    ' q# d. C# c( t1. 文件系统遍历(目录树结构)7 h1 K/ N2 K: M# b- V$ P1 t5 i
    2. 快速排序/归并排序算法
    : X, u, W" q8 @& ~6 W. z3. 汉诺塔问题  T2 V7 y# X% A. x& ]$ l: o2 |
    4. 二叉树遍历(前序/中序/后序)
    $ x& n) ]- D* F. F/ s- M5. 生成所有可能的组合(回溯算法)) k  d- i& [, k

    , c: G( @0 I2 W$ ]+ t$ Q试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    昨天 11:23
  • 签到天数: 3108 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    1 I- t- r6 U5 P我推理机的核心算法应该是二叉树遍历的变种。
    , ?9 f1 A; A: X0 X另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:/ _3 H8 T  `( p) a# Q( f
    Key Idea of Recursion
    9 E3 f8 G7 k' ?5 D: ?% k- d$ {2 p! F3 p5 H
    A recursive function solves a problem by:
    $ i, F6 T* X+ j( g! e. Y; u# p7 e  M5 ^1 H& W# h8 {
        Breaking the problem into smaller instances of the same problem.( m+ H/ y% u6 ]; M* |
    * s5 N) @  H  A5 a8 z
        Solving the smallest instance directly (base case).1 r/ U# L1 s/ H' c9 W& E( x
    # G' R; x0 t8 `- ^9 ~
        Combining the results of smaller instances to solve the larger problem.7 M9 ~  @, m' X
    / {3 L3 j7 O# \- Y; w7 O
    Components of a Recursive Function
    9 Y. M" R( m/ O" ^, m/ y# V4 N8 g( ?: G& b2 _/ x- P' R1 Z
        Base Case:' v% N/ b# @$ H8 X

    2 z# ^. O; m* Z" x        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.  l9 ~9 e( }5 Y
    : o$ {; R2 k: a  ^
            It acts as the stopping condition to prevent infinite recursion.
    , B; ?, u; Q. M. V7 u. w( H5 d) D+ }
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    ' Z7 i  b% T1 ~( o- k1 u$ ]: D. Z+ D4 [0 ?( H
        Recursive Case:: |8 d7 j5 D4 v) n

    - Y" g( V- s. ?* V- }        This is where the function calls itself with a smaller or simpler version of the problem.( w& J9 H3 x- E: e# K, y
    + ?% Q9 w6 ~. E0 @' M- w  U" W" E% H- q
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).  @& t; ~  o8 i. v
    + p3 p+ c- f: h( g5 `- u
    Example: Factorial Calculation
      Z. z0 S& }- \# K7 x+ ~
    ) L+ l* O2 M; PThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:- f" m- h: R, z

    - ?/ D/ N9 {4 x/ Z7 e3 s# X    Base case: 0! = 1! ]. U. s2 X" Q% n# L  f' t

    3 S: q  G5 v( G$ M; ?, Z' P5 ]    Recursive case: n! = n * (n-1)!- p/ }7 Z  _( n/ ?
    , p  \6 k) O: t" O  M
    Here’s how it looks in code (Python):/ V( T  `+ A. k; S- t
    python4 B8 ~0 h" N% ^2 ?2 G  K4 r
    ; O7 e- C; @: t
    # d0 K! ]3 ?0 ]% J- w+ n% M
    def factorial(n):% A5 G' _) r: v  T
        # Base case
    # b; Z: w/ k: j# \, h& C# m8 A6 E    if n == 0:  ]" n( E0 [( e6 n  U% H
            return 1
    ) n0 a( h& w& y3 V: d" ?    # Recursive case
    * F) M! I% Q; x$ L    else:6 q. G/ B0 d9 E5 n* D% g  f+ Q
            return n * factorial(n - 1)4 ^) K7 a6 ^0 t& {, Q* y  g4 ?7 r

    9 p& i' V5 ~9 m$ b* }# Example usage
    2 M% `  D1 H* {  K+ c5 qprint(factorial(5))  # Output: 120
    3 M& _+ B# R5 m: f
    * r+ n  ~8 n9 r% q5 QHow Recursion Works9 j+ V" A0 Q+ i4 _) N, [& k
    9 c1 x7 N0 Y7 R2 ?
        The function keeps calling itself with smaller inputs until it reaches the base case.
    6 U4 H( D1 s( P6 K# M# J$ {  |5 E- f7 ^
        Once the base case is reached, the function starts returning values back up the call stack.
    1 _" R. W& H0 H6 ], \; Q  g7 g; x
    1 o5 e4 Y: V  w( N5 m    These returned values are combined to produce the final result.
    * ^" o0 p+ b5 Q/ |$ Z3 J
    " z# [- o( q% \) f& b1 r7 ^For factorial(5):
    8 h- w, j' z6 x% A& I9 `* b0 W7 i
    % c  D1 P' n: n9 t3 i( _
    $ K! p; A) r4 a3 F. o/ z. _factorial(5) = 5 * factorial(4)9 _- G9 j6 j0 O4 l- f
    factorial(4) = 4 * factorial(3), f- ^3 O& `+ R# d: b4 y
    factorial(3) = 3 * factorial(2)3 A+ N* r. |/ K
    factorial(2) = 2 * factorial(1)
    7 U- `  T! `' K" c) s2 F8 T3 Gfactorial(1) = 1 * factorial(0)) Z- n+ c0 B# R, J- V1 m; G
    factorial(0) = 1  # Base case* P! W0 H7 H0 a; Q  V" j

    1 s$ n9 _( n4 u$ O5 ]& {Then, the results are combined:
    / T7 O, ?$ L( H% l4 E( m4 K5 H5 l! m9 G& Y

      V. ^5 E; N7 U# G$ t: mfactorial(1) = 1 * 1 = 1
    3 B+ M5 N+ K" ?. B; Pfactorial(2) = 2 * 1 = 2
    5 ]' e4 p' B; O6 ^5 tfactorial(3) = 3 * 2 = 6
    9 B) k  z" {' bfactorial(4) = 4 * 6 = 24
    & X, N( N2 U4 Vfactorial(5) = 5 * 24 = 120
    , T; i, g6 ?6 V* B7 O0 t" x% ]% K: P) ?3 Z6 }$ ]& ^
    Advantages of Recursion  \6 k6 J0 G. c) e

    $ }# [: I' @+ c3 u    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    , z3 m  R7 `( i$ X# X3 n/ W# E/ O8 U( ?! C% O7 J* h
        Readability: Recursive code can be more readable and concise compared to iterative solutions./ J2 s+ J+ K7 |' G$ v
    5 u* M# y/ P' ^% l. x7 N" S
    Disadvantages of Recursion' z- V! ~; Q: a3 P# ~% a

    6 v1 z0 \2 C% m0 d    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion." n! Y8 s" V4 K4 e) R
    5 j8 o% T& `) s* J5 j; b' a
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).# R) C+ N- x% m1 ^& y7 x3 h2 d. s$ L
    9 a$ O$ o4 c( z7 S
    When to Use Recursion4 Z9 r7 s" A, {" L, L% D. k) C
    - w1 g$ Y' j4 I. O' s
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    * F& z) s' `8 |5 x# _* t
    ( z' B: w  d  n3 ]+ B# Q$ V6 F& G) |    Problems with a clear base case and recursive case.' Y- b+ N/ J) |4 x. e  {0 s" V) n' v
    & E9 G' t+ }6 I3 [/ M/ P
    Example: Fibonacci Sequence
    - C1 f& ], z; S# k; s/ p+ A' x  ~; b. A1 P8 [3 p
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:& C* J5 b- X% \% H2 Y# a" d# m

    9 s2 b6 g/ T% q" ]) v- q( Y    Base case: fib(0) = 0, fib(1) = 1- @8 q) _2 T% _

    $ w2 q( ]9 m& y    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    ( V& L: [( y- p
    ; o8 ^- L) A) i: Cpython0 E: [7 u3 T) ]6 @# p
    8 D; g, C, q0 g$ F8 I
    % ]6 H" _/ r  N
    def fibonacci(n):- g1 ^; K9 `1 n2 @
        # Base cases% ]* @$ b  ~8 C1 ~
        if n == 0:
    # H' W  T" h6 T. Y        return 0% i5 F8 g7 r& V% f
        elif n == 1:
    ! [! Z8 P1 ]- ?. G* g" ^4 W' F        return 1
    3 a; e# K  ^. h% W" s8 l    # Recursive case
    " s; w3 j4 h) s0 r- l    else:/ H% }- u5 W8 f3 e
            return fibonacci(n - 1) + fibonacci(n - 2)1 I7 O  x8 P2 K) ~
    8 v9 U! @" }. \. G+ G% `' w
    # Example usage
    & q7 j: H( l, ~# I% J; e" dprint(fibonacci(6))  # Output: 8
    9 t# n1 F0 |' h
    ' }: ]; M" o5 r" q* fTail Recursion
    1 L' v2 D( `4 P- w" K/ o3 C4 i& M8 J5 g8 L2 y: Q% R! l4 N" |. j6 ]
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).! A8 D2 @+ u+ }9 Q6 `- t

    : G% E& v; m4 _! {8 e& w4 BIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-5 01:03 , Processed in 0.033147 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表