设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1518|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    & `) D" z, N' f) A0 R( u5 [" ^, f) Y& b( d
    解释的不错
    8 R+ C9 x0 m3 z- l. J0 V# {6 R) e  i& P) l9 F8 ?( n+ v: X4 g
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    ! M" Q/ g; z" {6 A' k
    ' Q! R$ i2 m/ _1 A' d" b 关键要素
    $ Q4 h& O$ Z7 c/ e, j. `9 O+ h' x1. **基线条件(Base Case)**  J8 X! ?8 O) {5 O# ?& H
       - 递归终止的条件,防止无限循环9 H& M& V& ~! |3 |& s  }
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 14 E2 S4 Z1 }* z: W( {9 y
    : W1 Y2 k+ q3 o6 G: c% Q  L2 R4 Z4 G) N
    2. **递归条件(Recursive Case)**
    6 K- B- b0 u% O; u) g2 r# v( P   - 将原问题分解为更小的子问题
    ) s( \1 K8 W7 {# F   - 例如:n! = n × (n-1)!% K) k& v4 a- R0 ~0 D

    8 p# A; ]7 J( q+ M 经典示例:计算阶乘. |, \4 `6 j# @
    python
    ' w; {0 v- `4 _* jdef factorial(n):$ ^8 G, {/ ^# ?3 G
        if n == 0:        # 基线条件
    ! g: g6 x0 t" m( \- s/ ]; U6 ?3 F        return 15 F: M1 ~0 J$ J7 D$ P1 |
        else:             # 递归条件
    ' u. ~& R, e+ z. O7 u        return n * factorial(n-1)
    9 C+ D/ j* d. u: Y. Z2 k执行过程(以计算 3! 为例):' j2 Q8 z; u6 U  [: i6 d# T+ \. f
    factorial(3); f: x) i% e# l- Z% s. F
    3 * factorial(2)
    , ?- c$ [6 \: T' ]' {$ X3 * (2 * factorial(1))# [: h& C% x( ^  p/ s8 b6 b* U# ^
    3 * (2 * (1 * factorial(0)))- V" a/ X) ^6 m6 ~0 k
    3 * (2 * (1 * 1)) = 6! P/ h$ y# ~6 d- i
    ; V6 r5 X. S0 S# t& ?
    递归思维要点
    7 I4 u- `& q1 e- W1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    # x- h6 ~/ `# k: b0 v2. **栈结构**:每次调用都会创建新的栈帧(内存空间)0 ?) E5 w: B6 R2 P% c3 C% ^
    3. **递推过程**:不断向下分解问题(递)& \. _0 e1 O: a- A1 t) F( E) S* K% Q
    4. **回溯过程**:组合子问题结果返回(归)
    + D9 n4 i3 D& Q( a* U, N" I1 c1 P5 A; ]6 e4 P9 |# E' x. A
    注意事项
    ! t  v' |" q) M; S" W必须要有终止条件1 {; G/ _( m% [3 Z
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    ! N- ]# P' X; P' `+ f6 o某些问题用递归更直观(如树遍历),但效率可能不如迭代7 C, `2 L) q* b/ s# W9 Y9 T
    尾递归优化可以提升效率(但Python不支持)2 D  R3 G9 U9 S/ z0 U6 W' r
    # d# {6 x5 L* V4 u
    递归 vs 迭代% B+ H; P) X) s5 F8 c7 W
    |          | 递归                          | 迭代               |6 m6 t6 ^- S  O
    |----------|-----------------------------|------------------|
    / D: \7 Y" X8 O" q| 实现方式    | 函数自调用                        | 循环结构            |( J: E' t) ^3 w1 e
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |# V  Z( L8 U' v" v6 U$ P
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |: q4 u" Q0 F1 |8 Q8 ?/ B; [5 _0 N3 g
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    # Z+ M; h7 r1 l7 D/ `, {. I3 C" w# w: Z. v) H2 M
    经典递归应用场景
    ! w1 X9 ]* N  \1. 文件系统遍历(目录树结构)
    1 k: ]( Y$ n& T2. 快速排序/归并排序算法7 Q1 a  B% J5 Y) A7 v
    3. 汉诺塔问题5 R- L. s$ C9 N: f  K
    4. 二叉树遍历(前序/中序/后序), t8 W2 q! ]% Y( c& {
    5. 生成所有可能的组合(回溯算法)) V  G+ ~6 t! L7 t
    2 s6 A, }8 N+ Q- x& F' x$ K2 |
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    2 小时前
  • 签到天数: 3118 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,8 `6 Z4 S! _* ^$ n3 i
    我推理机的核心算法应该是二叉树遍历的变种。8 K1 A+ m/ v) h* S5 V
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    1 }! K5 M2 y$ z$ S3 Z) ]5 x( kKey Idea of Recursion$ |& e8 [& N9 A/ z2 e( {
    : e+ ~& r8 h% |
    A recursive function solves a problem by:2 j5 C6 D. S( z6 ?7 e( c# U8 r" U1 O0 q; d

    $ j) s8 O2 ]& C/ w. Z+ B* n    Breaking the problem into smaller instances of the same problem.
    : @  z  d7 n: v1 o" h3 `
    # j; Q2 y# L  m/ Q    Solving the smallest instance directly (base case).( ~' t- ]6 O( p# W! _

    / h6 u% t. i6 b% o# W8 L- k    Combining the results of smaller instances to solve the larger problem.0 f' Q2 l6 N3 ]* }" L3 T0 U
    2 K- N; l! i6 Q7 j) y& P# y
    Components of a Recursive Function; ~+ k4 |+ j( U# W  I

    " t- n4 F5 b# _" X1 H- R) ~    Base Case:7 r( i: c/ D0 E" X! A, W$ }6 s- O

    / ~" v. A6 e' B6 O        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.8 B2 B: K. ]2 K0 @  Z8 L! I

    4 s- \  _6 _' h" r5 q& v6 ?        It acts as the stopping condition to prevent infinite recursion.. s* K5 N! r5 H0 j. M

    4 R  u# T* n9 E  E        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.  q% Q* k% k: i7 @. i& V

    ) C* m0 [: c( Z( h! t# a. ?    Recursive Case:
    ) C: A5 m2 \; I5 }9 J/ e2 I
    - A- ]3 W* w- @9 `7 C        This is where the function calls itself with a smaller or simpler version of the problem.$ v! z$ X: I" b5 X
    * @- V9 h' D' C! O
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    4 a4 `4 O7 V* a9 R! x9 w: e2 _+ V: ^# e5 ]& Y
    Example: Factorial Calculation
    / a4 y' j% D  o+ M; L$ m9 Y  R5 R1 A  S; q% Y
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:' W6 y9 |  A% J0 s* C
      z! [' J& `. w
        Base case: 0! = 1  C  ^! C" F, v+ {7 i, x

    " N) A# g' I' Q    Recursive case: n! = n * (n-1)!
    + `  Y, p( l; P; T7 |
    - r/ L; D# G5 g$ \3 _+ F& bHere’s how it looks in code (Python):
    : H% s! u7 G- R+ \; Spython+ w3 g  R8 p: h" n- t
    4 P+ y5 d5 X. `% v$ L/ R% d

    4 k7 x2 t4 [$ s  y& C1 |# X. Jdef factorial(n):5 ?- [' |( G7 b' P9 S5 y6 [6 S
        # Base case
    ! O3 D5 D/ }! Z' j( d/ F    if n == 0:
    ! P# A: ]- ~. V. @4 P. V: [        return 13 I+ H5 x" ]$ n4 W$ y* c7 c* u+ L
        # Recursive case6 L" x+ Q% |& V2 v- m
        else:1 w5 b7 e: M$ D) }% l' I2 ?
            return n * factorial(n - 1)5 L; {; @7 e! i$ H( u9 T

      ^' t" {- l' e; s6 [# Example usage3 ]0 W0 J9 n2 {4 v
    print(factorial(5))  # Output: 120( W" x9 ?* b7 c: I0 Z' A: Q0 V
    ! I5 J4 ]% H; }
    How Recursion Works
    - Q' V- V1 {3 U# @& v' `- V6 x5 Z1 g. {( @
        The function keeps calling itself with smaller inputs until it reaches the base case.0 @  C" B4 \1 G' K

    / E& y; ]: i/ Q* f    Once the base case is reached, the function starts returning values back up the call stack.7 f/ M+ Q7 y1 Z% V5 j9 Q

    5 [8 ~: U* N% v8 A* s( @    These returned values are combined to produce the final result.) @! w; ^4 Q* r6 ]: g

      `8 P0 f( F' W+ GFor factorial(5):4 ~" P( }3 m9 i4 F) p  Q5 C
    / J5 S- M; c9 }5 G" {" S! N

    ! x* t+ B! \! A: N! |factorial(5) = 5 * factorial(4)
      `" o/ Q% g- bfactorial(4) = 4 * factorial(3)$ [2 c9 M' r3 ?/ s' j7 M% I8 N
    factorial(3) = 3 * factorial(2). {# }" b" J9 e
    factorial(2) = 2 * factorial(1); D7 ~1 t  R, R! d  c# J) _
    factorial(1) = 1 * factorial(0)9 \* P/ E/ r: q2 f  i* D5 y
    factorial(0) = 1  # Base case
    ' ~, K) w$ V, ?7 a6 g7 M
    0 m6 c9 T% K6 B. b' \. X% l- K9 OThen, the results are combined:' O0 I8 q- @& v2 b+ `
    % C( R4 f6 V, Q0 I  y

    9 k$ h! M  B& T8 ]factorial(1) = 1 * 1 = 15 f; D6 d0 c7 U
    factorial(2) = 2 * 1 = 24 |6 e5 W% l; l" a
    factorial(3) = 3 * 2 = 6
    , {* r) y( `: v% c6 I! E6 @, jfactorial(4) = 4 * 6 = 24
    / A) n* Y7 x4 H/ e4 G  A1 P& _# ufactorial(5) = 5 * 24 = 120
      T+ x% E+ G+ E" s" u' c; D1 P, z% {
    Advantages of Recursion
    7 ]/ l" k* m" q4 t" O; N  ~' Z3 C' F3 F$ a9 P
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).. V2 {1 q, W" j" t
    " r. z: r: |0 Z, U2 a% \
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    % D* w+ W9 Y5 }% W4 ~+ ]) p% ^# l, w9 i3 e2 F+ L$ P
    Disadvantages of Recursion: s- p3 q- Z7 v/ \$ m# j% ]

    ! m: u+ F3 S$ d- @6 y9 c* H6 n    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    ; Q% Z! M) O& P) h; w% x% ~
    / k3 t/ ^, W1 m9 Z- v8 `6 ?3 Z    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    4 ~3 G6 \; R4 V3 {, r. Y9 ]6 h+ b4 r" h! c2 K* R9 a; ^( f: |
    When to Use Recursion
    2 l9 m7 l, O( o' g( @  S' |' |+ ~* a
    * T! q+ f3 ^% e    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).+ u! F$ @% T7 G. W9 P
    : A3 m) `* C- c* ]
        Problems with a clear base case and recursive case.0 \4 ~- }# C' r! x; {  O' M6 N

      @$ l+ w4 L7 d% a& H  JExample: Fibonacci Sequence
    5 g0 Y" `) G/ ?
    # m, X7 ]0 q  BThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:- o% T+ f* X" n1 X- A+ z* z* d

    4 v- f% ^0 I- X3 I* o    Base case: fib(0) = 0, fib(1) = 1
    / |4 l0 @1 t% k5 p  B2 q
    $ \) _( w- \; R    Recursive case: fib(n) = fib(n-1) + fib(n-2)7 n1 O1 Y0 A7 c, n% R( `

    2 U; h& ^0 H1 l  ~( C2 e8 z2 Apython
    ! U6 B1 d( L; i+ w" C0 E' ^+ b6 M8 B8 Y& e9 h5 ^- [* F

    - n9 x7 \( m3 c: xdef fibonacci(n):2 I4 E# \9 _/ F% A* y
        # Base cases
    6 K+ J) |2 w, z) b1 [    if n == 0:
    7 N" G9 t5 ?- q9 Z: ?) r4 m        return 0
    * ]( S: |* L) y2 |5 _% u    elif n == 1:
    . s( V* e% l- w        return 15 F3 s, _6 B) _' y2 q
        # Recursive case% r  \0 }' X+ X/ S1 v3 ?) R" \9 l: n- ?
        else:
    ) u0 R  o$ ^8 O- T+ V' m9 H" Q3 f  ]) A        return fibonacci(n - 1) + fibonacci(n - 2)
    2 V, w4 }8 L" p+ e' Q* C& ]1 W# M: L9 D6 H) y& k% u
    # Example usage, e# L, J: e) b; r3 T
    print(fibonacci(6))  # Output: 8
    , p& S2 S! U  t. N
    ; C' B. i4 N+ a& G& l, q) rTail Recursion' W3 x  x1 X1 \9 B9 _, N1 ^; A" I
    & v$ ~- N) [8 M! h3 }
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    8 z$ u2 X" B- d/ u$ u: o" Q/ X
    " @) f4 m# c* e' \0 L# m6 SIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-15 09:54 , Processed in 0.031801 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表