设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1750|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    4 X! G" b, S# y0 r/ v0 H5 J' X) F2 B2 r' R2 p2 `: _; {8 q
    解释的不错
    : o  i' d4 l  t* {; w# c
    3 Y! T! {1 C1 G% A& g" n递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
      l, j( m' @1 o, a
    9 W, z* g* I3 ? 关键要素9 \( H5 S  p% q  }: }$ g3 O
    1. **基线条件(Base Case)**, V% R; g( P4 @6 A% G
       - 递归终止的条件,防止无限循环5 B* Q/ t; b! K- T+ ]% R
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1- B/ f: e# e; g! V- K( {9 |" t% a

    5 t* ]9 Z4 f0 a2. **递归条件(Recursive Case)**
    1 w0 [: u% d7 q) Q3 Y$ `+ ]   - 将原问题分解为更小的子问题& Z9 \) _/ V: ^( p+ w* H
       - 例如:n! = n × (n-1)!5 V" b1 q6 \+ g, w  ~

    / U, H0 d% T9 I3 l, b) o0 E& A% C 经典示例:计算阶乘  Q# j& k+ ^& @$ M% s
    python
    5 F8 N; b" ~. d( W. J5 |def factorial(n):# U6 e3 H% f5 U/ k+ C6 k9 p
        if n == 0:        # 基线条件* P6 n/ q: ~9 j+ d
            return 1
    8 z$ C4 o& _  F4 k& C7 q6 j# l5 z: C9 j    else:             # 递归条件
    ; a2 F0 p1 \7 y# l        return n * factorial(n-1)
    ; O( f% b: Y9 l6 n6 x. ^: y执行过程(以计算 3! 为例):. v/ r6 O1 w  n4 L& w: o
    factorial(3)+ _+ Q. M3 @, T& u: [0 o/ N
    3 * factorial(2)+ S/ y7 h. }+ _: l
    3 * (2 * factorial(1))
      s' z2 Q  y+ d) T3 T: i3 * (2 * (1 * factorial(0)))7 e  Z; b% x6 ~3 s4 T$ p' I
    3 * (2 * (1 * 1)) = 66 P! Y/ a3 M* P- s

    5 u" h  n% j% Q1 T# A9 v/ F 递归思维要点
    - D) u5 [# n4 U7 V/ V( [- K. H4 U1. **信任递归**:假设子问题已经解决,专注当前层逻辑$ ]7 R9 N! K( O" j  q; [/ d
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间), w/ y* v0 n/ B0 A4 E/ O
    3. **递推过程**:不断向下分解问题(递)
    " G3 [+ A! ~  t# S& M! f4. **回溯过程**:组合子问题结果返回(归)! ~$ k) c0 q- T& ]' J
    ) x) T7 E, F- v
    注意事项. j9 j' Y1 [% B* E( v$ ^
    必须要有终止条件
    . R1 s% G; I8 S3 f递归深度过大可能导致栈溢出(Python默认递归深度约1000层)* c5 H3 I! f1 G
    某些问题用递归更直观(如树遍历),但效率可能不如迭代. y" B6 S& M& j# M/ T" W- Q+ D
    尾递归优化可以提升效率(但Python不支持)3 u, \) y2 E7 _3 p$ a& c& U

    * ^! [; u% G5 d* p* D 递归 vs 迭代
    3 H1 ~( w" }8 e|          | 递归                          | 迭代               |% J; {2 K; W2 ?! b5 d
    |----------|-----------------------------|------------------|
    1 ]& j4 {- F; }  e8 x! `| 实现方式    | 函数自调用                        | 循环结构            |
    ( d- O% z! a0 L3 z( u| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |# N4 w) b- Q0 Z8 ], G  r0 g9 s
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |/ I7 }5 H& |7 V
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    7 \9 ?& {6 S. n) I9 }
    0 p" ^, }9 P8 d. T/ }+ H 经典递归应用场景; z2 k4 n  W) M' M- H2 M
    1. 文件系统遍历(目录树结构)/ X7 j" B# Q. Q$ G1 c" N: k
    2. 快速排序/归并排序算法3 w/ J; T8 ^1 W" v# j2 m
    3. 汉诺塔问题
      e" X& `, |+ r/ Q& h$ Q7 X4. 二叉树遍历(前序/中序/后序)
    3 W7 i  J% r" ^! F6 _* s8 Y5. 生成所有可能的组合(回溯算法)
    2 j2 F: R% c6 ?# A$ ]( D
    2 V9 x/ V0 M8 f( U. p& C  {试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    3 小时前
  • 签到天数: 3139 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    2 E$ w0 I# P- u  K& V我推理机的核心算法应该是二叉树遍历的变种。! i7 z6 s9 I6 y% x: x
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:8 L2 K# |; T# p0 L% Q4 ]+ F
    Key Idea of Recursion
    8 y1 m$ o( B2 T. u1 c; n" ^9 s4 Y; h5 m0 r/ I3 [9 C
    A recursive function solves a problem by:
    ' B' x- s) w3 S" z! ^- U
    3 Y  s# `" h! W9 l, x( I0 W    Breaking the problem into smaller instances of the same problem.7 j4 p5 A7 {$ b% u8 P# }8 j6 y/ [; l' d

    1 o  k) {: d' h  h  Y" Q6 ?  k    Solving the smallest instance directly (base case).  p/ D' G- j; A' i
    # l0 K) v$ Z2 U1 R. f4 z+ @$ [4 X
        Combining the results of smaller instances to solve the larger problem.+ c& [0 t5 X7 v7 v* M
    * ~& O3 n3 a) l) ?0 L- @9 P+ m: K& c
    Components of a Recursive Function
    $ M: i0 H' B4 R! g
    7 t, a  Q& K3 Z# P    Base Case:2 O' J, i+ `/ M. ?. t& x5 ^1 E

    % `7 T. a! y8 E, }# w' K        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.9 e# k& G2 P$ a3 m2 j2 k
    7 N% j7 i! c/ f0 t2 M
            It acts as the stopping condition to prevent infinite recursion.% D! N, w( r* D7 n, T5 r
    7 B' l) C3 r( ^! y' @
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.7 A( _: _) ~( i3 a7 N3 o5 A! k
    2 [9 x' J6 T8 e+ ]2 A- O
        Recursive Case:* m3 F! i9 I  `2 B3 N7 L: I
    8 j  v3 S/ Y$ T7 A. j
            This is where the function calls itself with a smaller or simpler version of the problem.
    6 F: c- I  J7 {: w8 k1 f% A# y# S! y' {1 p
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    ! P4 y4 z, }, s6 `
    0 E5 a0 r* }$ n2 x- DExample: Factorial Calculation3 M0 }  ]  i, {

    7 ?5 H- g2 @! K; _- }, I3 PThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    % y0 f3 D3 d- v* P6 T
    8 _; ~% C- J( T/ l! Z    Base case: 0! = 1
    ) q$ y# a+ B. m- l( m9 h, S# O( t6 C  s9 ^6 i$ l0 v# \, y
        Recursive case: n! = n * (n-1)!8 S. X$ A' q* B  o1 ?8 T

      Y3 {5 ~& p/ j1 c) hHere’s how it looks in code (Python):
    2 O& t2 }% Y8 \; x8 _6 s! \' f" r6 e5 Fpython
    + c- B1 K, R3 R8 ~: B0 L9 b+ @- f! ?) }+ ^# t0 ?

    ! t3 _0 X( v4 Ndef factorial(n):' ?7 N9 A, i2 }$ ^
        # Base case# X! n+ M8 W$ W% {1 p
        if n == 0:
    - b  `3 J6 K1 k" [/ I9 {6 a7 o        return 1# n7 E$ V( T# X% }6 w/ S. g
        # Recursive case2 n' N& Z9 e# R) F
        else:
    ( U4 \' [. Z2 A! f        return n * factorial(n - 1)
    1 C& g& K$ i0 O/ o3 p  U* k4 b& [0 I! N8 h4 N
    # Example usage
    ! P# h6 S/ p1 Q" L" Hprint(factorial(5))  # Output: 120
    . L/ X# V- ?! W2 \
    / u( Y. P( a' G& A# P- H" CHow Recursion Works
    4 w" a0 S0 b1 W! E; g
    2 }! d) [# F! z4 y$ y* H1 Y    The function keeps calling itself with smaller inputs until it reaches the base case.
    9 c7 d& i- X5 S2 _/ W
    , I2 e0 j; F: Z0 i9 j    Once the base case is reached, the function starts returning values back up the call stack./ @+ ?6 S' K# A# ?5 J. s- ?

    4 A8 R5 M1 u2 X# s7 n    These returned values are combined to produce the final result.
    6 D0 a# [$ d$ B$ m( e8 Z/ i8 H$ U
    For factorial(5):
    ' t, x$ r, u/ i% D7 u8 ?6 g5 C' ~* A
    + f7 f5 e6 K4 k7 V  p) D* V. m, u% ?" o2 m- n  L
    factorial(5) = 5 * factorial(4)
    # S' C8 d( K) D' Qfactorial(4) = 4 * factorial(3)
    0 H# s1 {% s+ @8 p9 ~" g7 W0 Mfactorial(3) = 3 * factorial(2)
    $ `8 Y: Y* }+ {, Cfactorial(2) = 2 * factorial(1)5 X/ g* N- e* G% X3 D4 d
    factorial(1) = 1 * factorial(0)
    $ o4 d( d: q: O- Zfactorial(0) = 1  # Base case
    9 W( p7 Y, @" g4 |6 A  n, S* @" x1 E# J/ ]' p& y
    Then, the results are combined:
    1 v, `$ W/ m# D& C& @- E. \& j
    . I; c2 q% |, u; {- R' ^: W3 u; t3 p- i2 ?: z
    factorial(1) = 1 * 1 = 1* X9 f4 I+ N4 \! E7 ^( R
    factorial(2) = 2 * 1 = 25 }' l5 c8 d% u+ x7 Y% @
    factorial(3) = 3 * 2 = 6
    ; |. D: S; Q$ F' T6 @factorial(4) = 4 * 6 = 24
    3 Y! x6 r* y% m/ S8 g9 l0 Ffactorial(5) = 5 * 24 = 120
    9 i  B* z8 x" I& _' c% m( f* f# {$ m7 z5 K; @" a; E% w
    Advantages of Recursion
    2 l( o7 L0 ~6 ]3 b7 z$ H& \; W: z/ R0 j( g% g5 K( H
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms)." m$ i& ?8 D- l$ m- {5 Q
    3 r+ h4 C. G; y, O% P
        Readability: Recursive code can be more readable and concise compared to iterative solutions.- Y: c$ p; V! Z5 }: c& a5 q) J% J+ r
    . F4 r1 X: }* e0 j
    Disadvantages of Recursion/ l! Q* f. Q6 Y. {( x: K- V2 s
    ( R* }, ^. ?* s% }0 U: Y
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    ! ^' H& I* ]" ^* S3 N5 X% C" z" c
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    & O; l0 {  ]( M9 B1 V7 R4 @- F( E
    3 c/ O; r  }4 P3 |  o+ k$ d" AWhen to Use Recursion; p$ A9 [( m9 h: _2 h$ `

    2 n6 M3 ]+ `2 h# b. K    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).0 M0 a# _+ g9 w2 _+ X) E
    - p( j  l/ L. A- }/ J
        Problems with a clear base case and recursive case.
    / p7 T" r* W1 d9 q$ f' |% u0 _- h0 a% \4 A
    Example: Fibonacci Sequence/ i, R3 h! q9 Z3 C

    : U3 `) L6 ^3 yThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:; L1 q) ?- g* V" X0 b
    4 z- w/ k3 f5 i2 r  o$ V( v
        Base case: fib(0) = 0, fib(1) = 1
    / u( Z! f3 |& a) W* m5 u3 b2 j9 h3 c* C8 j: }9 i
        Recursive case: fib(n) = fib(n-1) + fib(n-2)* S% b  }- L" ^) c# G- l/ h& q! F$ ~
    1 ~; L0 i4 g  b
    python
    : H$ |. t' Z1 n4 j
    ' z# Q: l% i3 N( \5 L2 X* R! }5 [" J' I3 U, Z- {3 k
    def fibonacci(n):- Q6 `" `& W1 S6 f  l: ~/ {
        # Base cases3 @9 h# G) C" m- }! E  D
        if n == 0:
    " ]3 }/ S$ v) h/ }* d; e1 F+ h        return 0' D9 r1 b- X4 r/ l8 M
        elif n == 1:. V6 E& V+ @4 ]& O/ ^, |6 O! @1 S6 O: C
            return 1% w, A' R9 o& s. z$ r0 U
        # Recursive case
    ' a6 h4 ]( B. i8 V% i: X    else:- b4 a: {& O& ^' b4 W
            return fibonacci(n - 1) + fibonacci(n - 2)
    ' H6 b  A- }$ X9 A! S2 x- w' W) b7 F* L* X) h- o4 Z- Z2 k# i6 ?
    # Example usage5 f) b/ j3 m. f, i3 _6 ^: P: j
    print(fibonacci(6))  # Output: 8
    $ D: S. l6 [! o; q5 H' x  Y
    1 s6 d0 V; u/ `5 OTail Recursion
    7 K% x3 i1 h" P! B' c  D3 x0 E9 e! D0 K4 B
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).1 s4 K7 Z: a$ x

    + o! q0 O5 t" ^8 [5 R$ IIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-7 09:42 , Processed in 0.033318 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表