设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1563|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    8 @$ ~6 E) j  T' P& S# x& R* k
    $ ~- X& U" u+ O$ ]5 [7 K解释的不错& F. d$ Z' X1 I7 J( {& S) L

    1 B% E! u9 C: J, v) _6 A递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。  b/ K7 m  k8 h6 ]% I
    . G' L- T4 g5 E, B% E! ~
    关键要素
    8 A, \3 b) z9 d( p! B& ?+ z0 n' [/ u1. **基线条件(Base Case)**
    0 U8 C8 R" z; n9 [4 ]   - 递归终止的条件,防止无限循环# |5 q4 ~6 z  |' E7 @4 r
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    * Q4 B2 B' }. x( L/ L% B" Y) `
    / G( ~; g. |0 `. l1 p2. **递归条件(Recursive Case)**8 t6 @  A; `' S  ?% ^- |! g: V6 o
       - 将原问题分解为更小的子问题7 I2 g4 W+ M" o7 P3 c( }
       - 例如:n! = n × (n-1)!
    % Y- x6 }1 u, A) I  O2 J9 a
    / ~2 R# f, r4 l; F, } 经典示例:计算阶乘
    2 \- c. N% r9 u, I/ E; r" hpython& v9 s  k  y. p
    def factorial(n):
    ; K4 C# ]& C7 W6 _    if n == 0:        # 基线条件: q4 a: v6 r! z0 q1 x, S
            return 1
    , x2 H' S+ ]! j/ H) P9 W    else:             # 递归条件6 R* W4 T0 F& ]" V8 e
            return n * factorial(n-1)' r; x3 C+ ~% _- h7 C! l  d
    执行过程(以计算 3! 为例):  _7 ^% z8 ]3 R* H5 c/ Z
    factorial(3)9 \' S' S! a' Q4 a
    3 * factorial(2); L3 e8 W3 W4 d* r8 [0 ^- O
    3 * (2 * factorial(1))
    7 X& m/ i5 s4 p, i3 * (2 * (1 * factorial(0)))
    7 ]0 R! S! v8 K4 j& \+ M3 * (2 * (1 * 1)) = 6
    ) h3 d' b& h8 K2 M
    # {8 N2 f* Y  r* H3 R% i 递归思维要点
    ; R3 h5 }( d' I. m# R# A# R1. **信任递归**:假设子问题已经解决,专注当前层逻辑! P- f' Y. U# y1 N# ~
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)  T! l, G- |0 H9 l; i8 b0 _
    3. **递推过程**:不断向下分解问题(递)4 A1 `! Q5 g" G2 F( o1 e
    4. **回溯过程**:组合子问题结果返回(归)# C( T7 o; A' p# w; y/ Z9 A
    * s& a) P# h7 v1 t6 N& S# l, c0 s% C
    注意事项. ^/ l- O: s$ q+ I5 H
    必须要有终止条件
    9 a3 ^+ v- N" T( u/ |. |6 g' F" }  Q递归深度过大可能导致栈溢出(Python默认递归深度约1000层)7 M+ F1 ?- {8 J
    某些问题用递归更直观(如树遍历),但效率可能不如迭代" a: ~) X+ f$ ^2 m
    尾递归优化可以提升效率(但Python不支持)& w& M& F9 Z# Z3 h- w( e

    0 V' f. i; R- n 递归 vs 迭代% N- q, N9 c& B* c* i1 Q
    |          | 递归                          | 迭代               |9 C* S' ^7 A7 D3 n' |" I" m
    |----------|-----------------------------|------------------|
    - c) \! X: z" V" t| 实现方式    | 函数自调用                        | 循环结构            |
    " T2 i# t* H$ Y5 N  v* G| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    7 F" G: R: l( E& W- l| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |; m. D5 Q: t! A  [. K
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |4 t4 w3 e+ N9 n: D- J
    ( p% q! H4 M5 t# ~" \, Q5 z
    经典递归应用场景
    . X, M4 {0 y1 u8 d; l$ F1. 文件系统遍历(目录树结构)
    " @; F% W" P* f9 ~, v2. 快速排序/归并排序算法0 E1 A4 T5 R1 W, Z* b- R
    3. 汉诺塔问题9 `1 s' |; t/ Z1 b# |
    4. 二叉树遍历(前序/中序/后序)
    " \) n% l, V$ K% s: F* r5. 生成所有可能的组合(回溯算法)1 C& r5 q3 Q; a" C5 L" t# @- E

    2 J9 S9 @+ h* s/ C5 `* G$ D, u试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    慵懒
    昨天 09:21
  • 签到天数: 3121 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    , i. F9 z+ {# h# M我推理机的核心算法应该是二叉树遍历的变种。- I. z4 G; h* B+ P% [# Y9 }
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    & ~' i- [, l/ M/ L) C( q  OKey Idea of Recursion
    $ l7 ^* y& D% a4 y0 ]! L* o3 v
    $ S# A, e: U7 |( [% KA recursive function solves a problem by:9 K1 Z  \- b2 J& z% r/ o! }; }

      l: T. C7 n* R  o# Y4 D0 e    Breaking the problem into smaller instances of the same problem.
    ' a% w0 i6 W: `' A+ s: Y
    / b( V# V5 X3 N    Solving the smallest instance directly (base case).' n  ?) M0 ?7 M

    - S6 x3 W5 s; d9 S1 |% t    Combining the results of smaller instances to solve the larger problem.
    9 O8 b% z  Y# u% i. m& p$ F6 T) B1 i8 K2 ?* D( n
    Components of a Recursive Function9 Y3 _  z+ X% ^9 m

    6 Y; b2 j% |: {/ H" [) i. c    Base Case:
    0 F2 r3 Q/ n  O: _8 z
    * Z5 U. c6 O5 ?        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    " T$ B0 R6 ]% N% p' U# T$ j+ R" N/ m( K* k2 R& s
            It acts as the stopping condition to prevent infinite recursion.4 r" E9 V7 ?  P, U, ]

    # F& [9 T$ V0 Q( C4 z: v        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    % _6 K3 c3 x& U8 D& T+ I7 Y1 L
    4 D- b/ c' G8 l    Recursive Case:1 l8 a/ N. ?8 ~8 U& g0 A

    " b; ~3 ~. e+ u2 J+ N( }! I        This is where the function calls itself with a smaller or simpler version of the problem.
    . c* `% I& P% x2 n* x0 r+ W# F/ h3 K" C2 K% Z
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).+ a9 }7 @. f) u, B( d

    & |  J5 X6 g2 l: iExample: Factorial Calculation, o( I- h8 }! ^& N
    ! [$ V' M# {8 H  `) O' A0 b
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    7 [  @8 K' ]; J, z
    0 }3 u! J. ~& F% i    Base case: 0! = 1
    ! p5 Q5 n! b1 G3 q/ d& U# w! a4 v+ c; O8 w7 A' T* W
        Recursive case: n! = n * (n-1)!
    $ c2 [* {1 h3 K, i6 T* r7 `* Q/ a
    * r2 d4 U: V( KHere’s how it looks in code (Python):' q* a- h, W+ s9 ?/ [
    python6 s4 h* N0 v: F

    8 |3 Z4 C8 g; x$ ^# s2 y) r" j- v7 V% h" n& z7 i' ]0 o/ O( E6 ?
    def factorial(n):
    ; c( H- V. k% X  d$ M/ Y    # Base case
    ! N1 X4 e% n. K; \  p& ?) u    if n == 0:
    " {$ m5 M) {4 O4 F+ O/ q        return 1
    7 K. I" N- Y+ ?: E4 ~    # Recursive case
    $ y1 P. `# f# s6 g2 ]* g. M    else:7 ?3 e! u9 \5 Y. x- G! A. I% P
            return n * factorial(n - 1)) e& r9 W$ Z7 c9 V, S6 U3 `
    5 {, ~: x% ]% [8 h/ @) k* p
    # Example usage
    0 q( o* s  T* ]# `print(factorial(5))  # Output: 120
    ' x0 Y* }* S) N* E1 g; K7 L
    % `& }4 ]  I6 T, D" w- ?) wHow Recursion Works6 q% j+ z# w2 N; n4 g
    $ d; F2 [' B( B! R7 u6 B, G" \
        The function keeps calling itself with smaller inputs until it reaches the base case.
    3 y) t# y2 @( z; P3 e; x! r
    ' c/ R. H0 p7 q6 k  y    Once the base case is reached, the function starts returning values back up the call stack.9 s2 x! B; V% r+ ]. B2 ?8 }
    7 r0 p. K! c: \' P3 Y# S  X% P
        These returned values are combined to produce the final result.
    $ E2 n, X5 P  T; E' C& d' X$ ?2 `( T7 R/ W6 K4 K& W4 y, x; t
    For factorial(5):) |1 b4 n8 ?' K1 ^- G

    7 v7 A" O) L6 y% ]# W; S
    0 R" o7 x4 e8 G. A% Hfactorial(5) = 5 * factorial(4)
      K: I: O" \$ m9 L" j5 G6 S2 Cfactorial(4) = 4 * factorial(3). E9 M3 R# V& J- A0 C4 g. e0 O
    factorial(3) = 3 * factorial(2)4 z5 x% A! ?" E! h* S
    factorial(2) = 2 * factorial(1)
    8 p  d1 y" B7 K4 |$ S: H' F& ofactorial(1) = 1 * factorial(0)
      P6 ~, o# C# r9 ofactorial(0) = 1  # Base case9 L2 h8 K: c, ]3 E* W
    - n3 v+ S, i/ h1 }, f" V
    Then, the results are combined:
    8 F0 a* c5 `. T$ I% P5 l+ h  z( P; ~8 u7 ~" e; b9 G) K

    + ^/ a& m: w- h/ Vfactorial(1) = 1 * 1 = 13 J. h6 T5 B$ q. L4 v  ~$ v  c
    factorial(2) = 2 * 1 = 2
    ! l" @/ |6 i8 e) O3 {factorial(3) = 3 * 2 = 6) \4 e5 k% a3 t: \) H9 w
    factorial(4) = 4 * 6 = 24
    # d4 S) N  g' W: q8 u$ efactorial(5) = 5 * 24 = 120" J$ |9 u6 {. z, r

    ) p- m" D7 }. |: t3 OAdvantages of Recursion
    ! z9 i4 E% e  v0 k' u
    0 b4 s3 \0 d. R! ]6 o5 _/ Y    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    # n% z' G6 Q& x) @% E$ p" x7 u, g% `8 ?6 H7 ^" `& ]+ ^  t
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    ) o, ~$ B% G. G% X, g+ R0 v
      C6 \0 z3 N4 C8 C- oDisadvantages of Recursion( @1 [% {; @1 Q
    $ i9 w4 D. ^. Q" E
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    9 ~& C6 `/ o/ {8 U. X
    ) g+ V8 r. K0 m3 f/ }    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).. O) ^  n9 B" t7 O
    7 y: I* `; Y7 ~; K0 I( t" U' V
    When to Use Recursion
    + k) ~$ F) ^' G# \" e! ^, h6 S. W' {2 {3 \3 R
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).: C& o7 v6 M* i
    & h8 V( p9 K7 [5 J' a
        Problems with a clear base case and recursive case.
    7 U: Q+ c+ b+ g; m  M/ H% m6 @' o3 i$ E
    / z: d0 r) f  y% b, o  [9 S7 FExample: Fibonacci Sequence! D% F3 l9 u$ j6 N: A* L, F

    7 T7 j: Z( }" ~3 cThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    9 p* L1 J1 L: j1 B4 k" M- i6 P! A
    $ x1 ]9 u8 V$ o" H2 c& [7 ^& Y    Base case: fib(0) = 0, fib(1) = 1
    ! F& g' q4 i9 c& a% E* c( G' s5 m+ Y. w7 s' ^$ t+ `! c. ?! j8 K
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    % q& f7 K3 m8 S( |/ ^$ }! P1 y2 \$ Z5 a. [" v6 S! e7 J, S
    python# R, A  A' Y9 `0 q4 T4 |2 K
    # G* O, A4 v' `& r$ b- k  P
    1 Z+ |- E1 x! s# S& E  R" k6 p
    def fibonacci(n):
    # d0 h' F" O" G7 v4 @) h- ^    # Base cases: Z3 }* w  ~: ^& f0 e- J3 n0 S
        if n == 0:
    / s6 t4 ]4 w7 _- f        return 0
    5 p1 m7 b6 ]9 s    elif n == 1:
    . l( c  E8 v' Z5 R        return 1
    - |1 Y) i! r; E& y    # Recursive case
    9 Y, e- U) q. X* K6 f2 p& M, K' G- m+ N    else:3 ~" b# h& y* {' i! [' g3 V9 _
            return fibonacci(n - 1) + fibonacci(n - 2)
    " f2 P2 n( |; D# [7 U& c6 H
    ) I1 Q  v9 Z4 ^. z$ R3 F# Example usage
    ! t7 r. W8 F  p. Uprint(fibonacci(6))  # Output: 8
    + ?% A; g/ V5 \* K6 S+ f$ s0 [! u9 n/ H& Y- O( ~
    Tail Recursion
    3 A$ ]3 K8 b4 k( J
    0 E. C2 R& K' G# j  X5 b# r; i7 H5 }Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    2 h1 A9 T2 e& z( a  T
    % p6 W/ l$ l- C5 a0 t4 @In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-19 03:39 , Processed in 0.033220 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表