设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1880|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    6 r. k  T+ w$ [# i4 D2 i3 _% h. _9 G$ ?/ e: y# P
    解释的不错3 E1 Z% f9 G4 k0 f2 `. }, M
      z% x4 R% R# C0 e3 W( l0 [
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    $ j  d. X- l2 C6 O) C4 P" x
    : S9 t6 c6 z) L. ~7 u# s, ? 关键要素& S2 \5 u) h4 p, ^
    1. **基线条件(Base Case)**
    * |3 L3 C* F1 b6 Q* U; {   - 递归终止的条件,防止无限循环
    , m! h8 f, s1 r( M   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1+ k3 C2 \0 _( V  H; u. G' }. I& ^

    ) E% A5 E4 C3 I; \. A+ r$ G2. **递归条件(Recursive Case)**
    ' ?) Q) f$ e) q" W7 ?   - 将原问题分解为更小的子问题
    / v8 {( }: ?2 Y* K. d- O: f& W   - 例如:n! = n × (n-1)!
    6 Y# J* b  q: ~, e! @. t. k9 y* @- X1 O
    经典示例:计算阶乘, C- W3 a' U, [6 `2 j5 h/ W8 a3 Z
    python
    5 {' C9 r) V! G) m& B! kdef factorial(n):3 b6 y- ~3 N" G* G; w( M
        if n == 0:        # 基线条件+ W4 g0 X8 l& K0 }- S# w
            return 1& U: h# ?% V  z( P0 N: p$ m% `' \
        else:             # 递归条件6 i% R% B7 e+ ?1 H0 ^2 Y/ |
            return n * factorial(n-1)) J; ]1 h0 t- ~
    执行过程(以计算 3! 为例):
    ( ^% P% U) Z/ ~* B$ Q8 k  F, S- O0 Tfactorial(3)
    5 t3 U) u0 ~, I# f, P8 h9 b6 P3 * factorial(2)
    ! _0 O- i9 ?+ ]& D1 D3 * (2 * factorial(1))
    / _4 R" @3 D+ y( f/ G9 g: G$ T3 * (2 * (1 * factorial(0)))$ X. M: ~( R* A1 @+ J, }* M
    3 * (2 * (1 * 1)) = 6
    5 t, l' _4 e' l3 A% x7 }& T" X6 A: Y1 A9 c; ]* w& ^! H' V
    递归思维要点9 K: B! @! W; J/ r# C
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    9 F- q+ }4 W3 N/ T% [8 h4 w2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    * r) h  j8 {: F% ~2 J" p, q3. **递推过程**:不断向下分解问题(递)( t6 `( \% I, ?) S9 J
    4. **回溯过程**:组合子问题结果返回(归)) L( S& o2 S0 d# k2 J$ i6 E

    1 Q/ b. r3 ]( {% U4 r, i2 d6 r 注意事项
    ; T, q) n$ ]. f) d0 s. c9 M9 E  [必须要有终止条件
    . V5 r" a# I. F" I& \递归深度过大可能导致栈溢出(Python默认递归深度约1000层)" O9 O$ \- e, y* m
    某些问题用递归更直观(如树遍历),但效率可能不如迭代) F* N  x/ y- t& b4 H' c
    尾递归优化可以提升效率(但Python不支持)
    # d' ^; b& L5 R; ?6 D
    : h  y9 d8 y$ v+ W 递归 vs 迭代
    ! |  N7 I. r  ^: ~5 ?' |1 M2 p* t|          | 递归                          | 迭代               |
    & I! [2 S+ B& \+ I, x% ^|----------|-----------------------------|------------------|
    ; n& _) ~" T) M* T9 r| 实现方式    | 函数自调用                        | 循环结构            |5 H( ?  U4 X, q% a/ a  x5 r
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |$ ^( B! w! V8 B, c
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |' H$ @* C; u3 `( v9 X
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    3 d+ U7 ]1 V: E0 o
    3 K/ j5 M2 ~& F- N# c 经典递归应用场景
    * b( H9 C9 P# j4 w7 ^1. 文件系统遍历(目录树结构); D4 I( r! P, Q# r9 _, Q4 _% L
    2. 快速排序/归并排序算法% y' |! U" N5 D/ X# s: l
    3. 汉诺塔问题
    * N. S3 Z" z0 ?( k4. 二叉树遍历(前序/中序/后序)
    4 A3 [  M! [8 V  V" t( J5. 生成所有可能的组合(回溯算法)3 Z. e4 l5 z& G$ n7 E

    ! Z1 n8 G9 H# E9 M. i试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    慵懒
    8 小时前
  • 签到天数: 3148 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,, N. ^4 g% L$ g- d) Z
    我推理机的核心算法应该是二叉树遍历的变种。
    9 V- U& d! c" D1 H2 G& `4 \: Z另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
      c: w- y! ^# z& {Key Idea of Recursion' E" l$ @8 a# o" t7 x$ D

    + B* X% b9 G% `# \A recursive function solves a problem by:
    # E) s. v1 `( l! _# V. r7 H, w  J! h4 d9 p
        Breaking the problem into smaller instances of the same problem.7 n6 ~, G( i0 H8 K+ J6 H1 A

      R: {9 Y$ ~' ^8 h" W    Solving the smallest instance directly (base case).
    4 y9 v- p5 X, Z; J' L; K; U. q" ]3 x
    & ^8 z* y. x+ P. [1 w5 u5 @0 w' b    Combining the results of smaller instances to solve the larger problem.
    4 x0 o/ n/ ^' O) l" G1 q& j; S$ n; P  r4 T) K- a
    Components of a Recursive Function
    5 f3 y2 |( A& L2 Y, ]& T8 L  T% _+ ?9 L4 {
        Base Case:% p" P6 n, _) o# h2 ?/ l9 W: l

    & k- K, ]: W' ]+ t        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    6 O: O2 F7 F( s8 z- D8 n7 z5 p
    4 `' h4 i2 h* `        It acts as the stopping condition to prevent infinite recursion.
    : M. R8 J+ Y! o
    / W' S3 [# f3 Q# {        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    + `2 |) l9 X: R: F% q- ^$ P% ~! _% U4 n
        Recursive Case:; Y6 G/ H) U( ^2 }0 H0 U
    5 a4 B% {5 g! x# ]
            This is where the function calls itself with a smaller or simpler version of the problem.
      ^1 S3 S. y& c, O$ o2 j0 \  W9 e( z) c
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    " O6 u1 N4 Z% U) E; _/ T
    ( H0 U4 m# E7 y" D) cExample: Factorial Calculation
    3 P6 ]6 m; r! _% W' d  r
    4 M8 C" X: h2 f5 ^4 i: i  W, _) lThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:( i2 W; T4 G# a$ _

    3 i$ O( e* p0 p% v8 ]2 p7 T    Base case: 0! = 1
    % @& S3 H; I* g5 {. s: O' W$ w- x1 y4 h2 @: o, f1 N0 J( F
        Recursive case: n! = n * (n-1)!
    + Y4 V, G+ m- ]7 J. A2 |( M& }5 G6 ]4 y2 e
    Here’s how it looks in code (Python):1 w  v! W. H. A; J4 M: T
    python* [3 r- X1 F9 y+ z. F' W! m- e0 P

    1 w' i. i3 @$ u" a& ^% V
    2 C. N3 p6 \& O# _* s) H) e+ pdef factorial(n):
    / H% ]5 S7 H4 ~5 i    # Base case; N; d+ L6 E% D" k# q& x% X- _2 p
        if n == 0:
    + H& V2 y$ N* L0 b0 N        return 1& }# l1 G% a; H  F' H7 C" P; k
        # Recursive case
    + f# g6 N; W& @% m9 _% G* o7 ]; q) q% J    else:
    + v5 T. F; m9 ]$ S        return n * factorial(n - 1)4 L+ f" W0 b- N: N$ @
    9 u+ B7 |* \/ A, Z) f2 P* S
    # Example usage
    0 ~- ]" x. y. e$ F" c! A* nprint(factorial(5))  # Output: 120. q- g3 v  ~9 p/ N
    0 `% t* Z9 E) J. f
    How Recursion Works
    * R( N! q9 j) j" ^6 J
    6 E- j1 r9 {& n+ X. ^    The function keeps calling itself with smaller inputs until it reaches the base case.
    6 I6 P# u7 N* \2 K7 @- w1 k' |) Z+ }- Y. J+ e
        Once the base case is reached, the function starts returning values back up the call stack.
    9 k: h; U/ }- O4 Y) Q
    3 v# U# U% O( M, j4 E    These returned values are combined to produce the final result.  A# E, x4 i) Y* v, r$ R7 j: e

    + x, K2 ]1 E( T$ Q. DFor factorial(5):
    $ A5 h: v- c5 X+ O4 f$ C
    $ G  g) N6 K& r+ u4 r! ]  w7 s) U: T- B; X0 q" S" }; O
    factorial(5) = 5 * factorial(4)" R8 K8 u! E8 W$ A' J, s
    factorial(4) = 4 * factorial(3)& u" d+ u$ r( e& A* ?8 g& o
    factorial(3) = 3 * factorial(2)% D0 g1 s* e' K6 K
    factorial(2) = 2 * factorial(1)
    / L6 c$ C( K9 A8 w: yfactorial(1) = 1 * factorial(0)
      u' j4 D2 j, ofactorial(0) = 1  # Base case9 }7 i1 B+ V+ Q& R! I
    % h9 \7 `. F  E1 `6 K0 d7 `
    Then, the results are combined:: V: P- F3 X% r$ ?# Z
    % B( N8 u! B  x* h) W
    ; e0 g1 v+ r7 i; X: r' H. k" w
    factorial(1) = 1 * 1 = 1# ]+ h) t8 T1 a9 I
    factorial(2) = 2 * 1 = 2
    $ G# r' {3 `0 zfactorial(3) = 3 * 2 = 6' B0 M  M4 i. w- O, E
    factorial(4) = 4 * 6 = 24- o  ]$ M# J( n  J7 x
    factorial(5) = 5 * 24 = 120# h! I" c& N: R2 Z: B- j
    3 i; b* \5 b( J% z( r
    Advantages of Recursion
    4 ^& @" ?8 E7 T( R1 f4 b
    ; g1 a! \1 b# q2 [/ X7 h( i    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    - ]. J2 x) ^( T% N8 R7 O) f. q  G: T% A: y8 y0 o( W
        Readability: Recursive code can be more readable and concise compared to iterative solutions.4 @9 c! ^' w- f7 B& T: \0 N: v
    ) h  M5 H( S5 h/ V! P  q
    Disadvantages of Recursion
    - D- o$ {+ z' A: v( \& _
    ( \: N8 C2 G" `2 ?/ {: ?    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.) v5 D" |7 o+ J: N

    ; o3 |- ~# T# K% B# G2 c: n    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    . [* }# a" J2 G- T8 N* c
    & |, c/ e: A0 Q* P! h. }; M' h# w4 R9 EWhen to Use Recursion0 O$ ^; z, e1 f2 v* y9 [, W/ V
    + L7 h6 m2 N) V8 n
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).+ T1 @7 m* x: {1 |5 c

    ) N3 J% a( ]  p- e+ x, D    Problems with a clear base case and recursive case.
    5 w3 I8 C+ P: E' s# M, i0 c# x  `: y/ h/ W0 U9 v
    Example: Fibonacci Sequence& |( {& Y% v: P( N

    ) i- I$ y0 i' x+ {, R. PThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    % w/ u2 @7 S9 h* l. R3 \1 k+ I9 O! G9 F9 d
        Base case: fib(0) = 0, fib(1) = 1
    ' k4 B* a( |; ]5 B& W7 Q- E6 t% e$ y- C4 W
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    7 w, r1 F9 N3 z& }; h% ^
    1 H- u! }3 J% ?5 r. Ipython
    4 g5 K; R8 _! l1 U0 {
    ( G8 `5 }/ G* i+ C; r3 X3 h) m) J- V$ _- G" k/ y3 {
    def fibonacci(n):7 Z: i. e6 H! b- L! l
        # Base cases
    9 y9 Y: ]! s& d2 ^: H  Q% e    if n == 0:
    4 s0 ~* `1 O! E& W        return 0
    2 V" T7 w8 ~8 d# c6 I! H    elif n == 1:/ G& N8 B. C# n( x( i1 Y
            return 1
    * O3 ?  r; ~' u- z: [' f6 Y    # Recursive case/ ^' h; T! {0 J) g5 u& u
        else:
    % j( ~2 y, s6 y/ o' k" J        return fibonacci(n - 1) + fibonacci(n - 2)! `# c9 l. T4 k: a; W1 j
    / H6 i9 y# N; i- Y
    # Example usage, n3 L3 F) {/ d" T9 q& H' F& R' [
    print(fibonacci(6))  # Output: 85 z/ [8 v" q% ]4 z: _1 f

    # l( O. k) P" N' Y4 c; E6 pTail Recursion& Q5 V6 v# l0 A& h# q- W( {

    & i! I4 v; c0 i9 h& V, lTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).* R  [' }( a+ T5 B0 o6 j- L; E

    & y! D/ j3 U9 Y; WIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-18 18:46 , Processed in 0.034635 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表