设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1872|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 ) U# r% s2 W9 a
    6 @1 y7 D" m: s! C" {: ?, W
    解释的不错
    * y% M$ v! P5 `! C3 ~/ X8 X! {* w# F0 c+ k& i6 ?4 T  v. P
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    8 _! G% s3 ?5 u6 s0 h
    ' Z8 E+ V) h1 n$ Z 关键要素% H# o. D' ]0 `# b) N
    1. **基线条件(Base Case)**" b  j& z4 J% U
       - 递归终止的条件,防止无限循环5 I! u" L  v  l+ _$ z
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1# m* L8 Y# p! n1 z; U- W* U& K

    6 q5 Y" C1 ^5 R0 ~: Z7 q2. **递归条件(Recursive Case)**  b3 k9 b* w! i# H! [! s  d
       - 将原问题分解为更小的子问题4 ^0 e7 r0 s& C/ Y5 N3 W
       - 例如:n! = n × (n-1)!
    / L5 m" Z# j3 Q' d9 n5 k6 O' N0 v8 b* P5 w; H! K
    经典示例:计算阶乘
    4 `" p# |" h  t2 p5 h3 _% F8 ^5 O' }3 Gpython
    ! ^/ c- o5 g. T3 Odef factorial(n):$ p8 v6 m9 I' X& ~2 X2 J
        if n == 0:        # 基线条件
    # a8 g, t4 Q4 S        return 1$ J7 y6 U7 i6 X) t) N9 }& x
        else:             # 递归条件; I8 M, @7 }$ l7 }1 u2 H0 r
            return n * factorial(n-1)( ?3 W6 l$ i0 O) x
    执行过程(以计算 3! 为例):2 m* Y8 \& E, D# g2 i7 _) Z7 b
    factorial(3)
    . S+ {8 i* u- S- D: s. |3 * factorial(2)
      @6 ~( |4 `# z/ N. `7 U% }4 T3 * (2 * factorial(1))9 `' F! z8 {3 r* d* X) f
    3 * (2 * (1 * factorial(0)))
    $ U" r3 O9 V( U% e% J9 C) e3 * (2 * (1 * 1)) = 68 f3 N* I0 Y' p3 _0 N
    ' z% h( W0 A$ L/ h' t7 N/ \
    递归思维要点' f# F( Y1 I  k# r7 ^& t
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    , a7 D3 H8 L$ x* J" t- C2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    : q0 g+ \( T; Q3 C6 w3. **递推过程**:不断向下分解问题(递)& k. U% c+ d% G3 u
    4. **回溯过程**:组合子问题结果返回(归)8 L. Q4 d/ A, Y# O5 `. J  V- d

    4 w' c7 H+ ~8 k 注意事项8 D  C& u! R5 q
    必须要有终止条件; i. o1 P, N" n. t
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    9 b$ P6 t! g, ~. N某些问题用递归更直观(如树遍历),但效率可能不如迭代
    ) L% L4 w. X3 {8 t7 y( L# M2 y- h3 h尾递归优化可以提升效率(但Python不支持)$ j* L* {# c! p; P# ~

    $ u7 m) R9 }$ r 递归 vs 迭代
    " c9 F2 x: G6 k2 j|          | 递归                          | 迭代               |
    1 \" p& T: \+ ~; ?|----------|-----------------------------|------------------|
    7 S+ F9 K1 Y  V  H9 X% N| 实现方式    | 函数自调用                        | 循环结构            |& N& q" e6 q! v
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    1 E/ y8 D& P! @# u| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |, T% @( }5 E: u9 _. B/ B
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |* d2 W4 U% M3 Z/ q5 I

    5 G5 A) ?: f! ] 经典递归应用场景
    , P# B% P3 x8 \' ~- z' J5 q: [( E) p1. 文件系统遍历(目录树结构)+ s2 {/ ^# K0 D) ^- m0 p
    2. 快速排序/归并排序算法+ q' ]% P& p( ~" X' _- A7 g, I1 V' l
    3. 汉诺塔问题9 w+ b) K( f) ^# g' n
    4. 二叉树遍历(前序/中序/后序)3 ~" [8 I. b% v- b9 W
    5. 生成所有可能的组合(回溯算法)7 |7 Q  g& f! q3 X4 O* C4 i( j( h) e

    ( n) ~' t* v- z6 G试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    昨天 06:27
  • 签到天数: 3147 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,  K. N4 p) L% d. `  c4 u
    我推理机的核心算法应该是二叉树遍历的变种。
    , j3 r8 ~9 u/ k% }4 u另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:; ?# `6 E; w, `" I& v
    Key Idea of Recursion  E( ?3 |$ d) i* F' D
    : ~2 A" n6 O( @
    A recursive function solves a problem by:' V: C) z& `: Z

    7 B9 ?6 b4 X; Y. M6 D& c* t    Breaking the problem into smaller instances of the same problem.
    2 a. {* |# E9 H# O2 g
    4 s( f: d! ?( Q$ M    Solving the smallest instance directly (base case)., Z1 `4 L1 C0 n. m" s

    " I4 U0 C$ ^9 d8 M& s7 C    Combining the results of smaller instances to solve the larger problem.
    + c% z0 {8 R& y2 f4 c) h" n
    & _. {# R  v5 Y( V$ {# ?( P, IComponents of a Recursive Function0 m, ~! ]9 F3 Z- C  g7 g

    " |- Y/ W* S# O    Base Case:
    - a+ S( V. }5 ?9 U. S- _* }) m) g9 q6 L# _/ Q2 K4 a' H# G# J9 `
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    + s/ ?# z( q9 S) M9 v% y, w; U4 J' L/ o  z* {
            It acts as the stopping condition to prevent infinite recursion.7 u( G4 c& q/ }+ p9 A" I! w
    3 [" F4 J! q9 @: w/ W9 i
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1., G% R, Q  f  B. M. E- _
    : i) N* r3 N% Y$ w) o
        Recursive Case:
    3 U/ e5 e( a) g9 d
    " Y2 p8 j6 @# K/ l9 I        This is where the function calls itself with a smaller or simpler version of the problem.# f6 Z7 e. Z4 C  h, \2 E! @( Y: Z
    ; F2 n4 j1 r: }& u0 j
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).* }5 F' `3 e  D1 l) F" N* ^3 w
    8 ~3 n" F0 J+ m; S3 W
    Example: Factorial Calculation
    . \+ J7 b0 I9 ^+ h  R3 v3 \- h
    * T* a1 f9 ]( ~! r: L& Z  MThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:( ~: H0 S/ a% H1 a# }$ e% J4 C

    ( {; \3 I) p& G! z$ u8 ~4 ~    Base case: 0! = 1
    0 y) e8 K) z, h# }: P( D2 ^3 \3 n( e6 V6 z8 Z  n& M
        Recursive case: n! = n * (n-1)!
    4 [$ L$ i5 Y8 L: U1 l  ]
    " G( d* `) `% u. ~& [  c$ p4 E0 [Here’s how it looks in code (Python):
    " h' U7 c) y+ S" b. |" m; Rpython
    . g: v# F1 J2 q; N! ]6 r% p
    5 m( D9 G0 L5 W8 A+ {2 Z& M" R2 h% f7 X6 s' J! s
    def factorial(n):
    8 o" i% |% y% H! T# L    # Base case4 [/ L0 c* E$ q+ P
        if n == 0:
    ) O6 o4 i2 g* a$ m* P9 i" M        return 1
    - l7 B- O$ h  M. M! ^) w% f    # Recursive case
    . k: H* Z3 V$ V) z+ s    else:* b# N/ A1 G  N! ~( p
            return n * factorial(n - 1)
    + x. {( W: t: K9 P
    8 ?8 O* \; x& h9 m7 G% B: X# Example usage
    - S2 E% l$ u6 b. j# kprint(factorial(5))  # Output: 120( b3 ^" e4 N% u$ A1 c+ L. W
    - F. Q5 C+ l& D1 z5 w/ H
    How Recursion Works+ L5 U+ S. Z) z( I$ R3 E7 c

    $ W( ]& R# P! ?# {: u% z    The function keeps calling itself with smaller inputs until it reaches the base case.
    7 T. T4 I- l  ~  S+ B4 Y
    0 B1 b- c2 W2 ^, m5 Z    Once the base case is reached, the function starts returning values back up the call stack.
    # s% v7 ~0 T" S' P6 b- W7 K+ U3 W) i, O
        These returned values are combined to produce the final result.5 F3 }5 F# O% W' N+ W# x
    2 X; T( d8 \! y/ }: ~: H. Y. m4 s
    For factorial(5):
    + o3 T. x4 x9 v' ~% a% q4 Z- r6 T6 G2 b
    7 s  B7 x+ H# t6 e' ^" C* k; I
    factorial(5) = 5 * factorial(4)
    5 @- f' K" C" a4 _( H5 b" cfactorial(4) = 4 * factorial(3)4 ]- T* _( e8 I6 I' E" Q7 ^; l$ a
    factorial(3) = 3 * factorial(2)
    8 N2 U# c6 U! H. ]( sfactorial(2) = 2 * factorial(1)
    % Q4 S7 U+ w, S1 E, hfactorial(1) = 1 * factorial(0)
    9 |3 M" P" k: L! k/ a7 ?# W1 Qfactorial(0) = 1  # Base case
    1 S+ K& ]" G: U2 i7 G0 l% \" P" o. a3 w" ?! @3 y, o$ x# _  v# N
    Then, the results are combined:
    & k, d$ L' m- @% _, F0 X+ S: H; t

    - L, C/ |; ?, S" [! H5 |" Bfactorial(1) = 1 * 1 = 1
    # q& D4 m1 ^! G8 Rfactorial(2) = 2 * 1 = 26 |& Z# r5 ?: F; B7 ]- ]1 l
    factorial(3) = 3 * 2 = 6* i+ T. G' t1 h# @/ {) ], B
    factorial(4) = 4 * 6 = 24
    . Y' h; y" I/ |5 L3 ?8 J( Mfactorial(5) = 5 * 24 = 120
    ' k" q/ ~2 Q. o( J4 t2 w
    9 G+ b' P, d: G$ V  S* MAdvantages of Recursion
    % X' R$ l: E4 b' }" t, n9 E  f* K
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    * H- @' H' i7 G% ?4 o% v
    % {5 m) u& [$ u& ^    Readability: Recursive code can be more readable and concise compared to iterative solutions.# G; p8 z3 Q: h) C3 r* W7 N

    0 ^9 M/ e& F$ ~  T3 YDisadvantages of Recursion
    2 v1 ?  ^+ T) o; E4 @) {0 J
    4 V. r' |- k4 ^. |8 c4 R% C6 S    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.% R- b+ F) ~# V

    ! h1 y, o8 r7 n$ Z0 H  e" w    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).  D2 n+ P* L6 j# o- `4 Z+ [2 Z6 ?

    4 v+ j: C. G4 I, ]9 o, vWhen to Use Recursion
    # Y+ w5 h2 b" M) l
    & {  z9 a0 g$ M+ W" H    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).$ M4 ^' O# @9 V3 r0 I9 X

    4 L+ G. u) w& G1 h0 R  `    Problems with a clear base case and recursive case.
    8 `/ Q! A! r3 H  }* `8 Q
    $ K: {( n( {# ?Example: Fibonacci Sequence+ T) _. M  R+ s: f% G1 L& \

    + p5 M& m+ L+ M6 B5 q; vThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:/ {! }! p: Y( _
    7 r% B* F9 e) ]. ]3 E8 |
        Base case: fib(0) = 0, fib(1) = 1
      o# ?* E- y$ g3 ~( k% \$ W  Z1 N& m' T6 k0 {: H
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    * V2 m$ Y$ f3 n/ Q) m) X) t! p+ C
    % P# k' z1 F( i/ I+ T4 Gpython) u, Q9 E$ m/ b2 V
    - K' q. z: \% x) C! o& f# j& |
    $ V, R' Q; H7 s# i) Y
    def fibonacci(n):1 \! B9 f  m% h7 }+ `
        # Base cases
    3 q6 ^# t7 R9 @9 u    if n == 0:" Q- R  J3 |. V; s8 m5 k
            return 08 a1 m. ^! ?4 i6 d7 \
        elif n == 1:' H# n0 f7 b" E+ y* C: R
            return 1( |( H- W( j* A8 z1 g
        # Recursive case! p. w8 `. o" ?3 r- Q" d
        else:
    - x/ O$ p9 _% z8 G% c2 X& o2 W: \- x0 H        return fibonacci(n - 1) + fibonacci(n - 2). |5 x1 ~9 S& z
    ) F+ F$ A0 v' E1 R" x/ n) P& H
    # Example usage# y0 R) H, _" ?) K' l% `# C- ?
    print(fibonacci(6))  # Output: 8
    3 V) @: u- y  ]" o2 M% l6 t/ `% m6 {+ p( ?4 g
    Tail Recursion2 V: M5 U, P4 C( b9 I3 u7 j% T% j$ Z8 g

    % t$ o" C5 g  ~6 C7 vTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).  z  x* G% r8 ]# T& t) X

    9 u% l- e' ?. {/ AIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-18 02:43 , Processed in 0.031303 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表