设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1127|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    1 \- C! m) y4 f- ?% H: V0 U5 M' m* c4 c
    解释的不错. g  E" z5 J4 x- N! Q0 i

    ) A9 t; h2 H* o8 c& Q3 h, E" x6 U  [递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。1 a9 d3 T3 R& i0 M' `# q- ~
    3 W1 J# z# J1 H
    关键要素
    * v9 X- _) N9 b7 ~: Q1. **基线条件(Base Case)**
    . c- W8 ~6 U7 W. g7 Z6 T2 n   - 递归终止的条件,防止无限循环" |$ x. \0 o; }6 Z0 U
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    0 x' i( y5 |, i$ u6 z3 K6 |6 c' ]2 n1 U
    2. **递归条件(Recursive Case)**  d7 z' X$ t- o( N" u+ i
       - 将原问题分解为更小的子问题
    ( e* V! z0 F" X& X: W; d   - 例如:n! = n × (n-1)!
    9 O* ]% A2 C& z6 d% G0 I' _; e, ]# U
    经典示例:计算阶乘  X' J3 O3 W9 }* s! o0 ~0 t. n/ r
    python3 u9 ^5 K% Q) W$ M
    def factorial(n):1 a8 W, _: k9 P/ f) t' |" R
        if n == 0:        # 基线条件4 n+ G2 M8 V8 ?) r# V3 B
            return 1
    / k# P1 V: v# B5 E; P( \    else:             # 递归条件9 M" d, T; J7 d
            return n * factorial(n-1)
    ; b+ k  k& Q) n3 X执行过程(以计算 3! 为例):. S; B' D5 g$ d' k/ s6 k
    factorial(3)
    , A! O0 x/ \7 k& Y" J3 * factorial(2): [# J7 {9 G3 t$ ^5 V9 \' T
    3 * (2 * factorial(1))0 z7 |) {! K( G1 B4 b. [# l* @
    3 * (2 * (1 * factorial(0)))
    1 ~. _' g- L" T9 [: M- W3 * (2 * (1 * 1)) = 6
    8 ?# Z0 R& T  P9 H6 a- f- H& X  E' I4 M) A# v" N
    递归思维要点
    ' T6 e. @  M, E* x1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    . P: E( a( a8 ^4 L; Q2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    4 A6 p( ^% M$ T) ^- L0 R- d" {2 D3. **递推过程**:不断向下分解问题(递), Y* c/ E( C  `& o' N
    4. **回溯过程**:组合子问题结果返回(归)
      v1 m) V1 i, b" X8 D' z- I# @: J% S6 T0 M: [
    注意事项
    2 x4 n, D( |8 u8 y7 s必须要有终止条件; I* s& v( ^( f% u
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    0 Q7 X, K9 L& @6 m! L某些问题用递归更直观(如树遍历),但效率可能不如迭代
    + z7 b: V! z+ @! |' o# W1 J尾递归优化可以提升效率(但Python不支持)" w4 z2 T4 Y3 g2 J$ \9 v' W6 G
      k3 h1 ?! Q- ]2 Q
    递归 vs 迭代7 R( i' e0 |  E5 S" Y! F2 @7 Q9 B
    |          | 递归                          | 迭代               |
    9 {2 j# J" T' Y0 B|----------|-----------------------------|------------------|
    ' F) P! [- c- u& @6 }7 J! @| 实现方式    | 函数自调用                        | 循环结构            |
    % W+ r* r' u1 ~* \7 b  w# f| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    # B2 o5 Z' ?1 H! x| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |' e! J4 D7 ]& P' ~% h3 E7 B. u" P, i
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |; J( m, Y! t! l2 Y. r2 e6 Q
    / H% B& H4 y' _. f' Q
    经典递归应用场景& }5 J  T% V# M" P0 h5 |
    1. 文件系统遍历(目录树结构)( z% a" x; V  s7 `1 `& v* k8 V' @
    2. 快速排序/归并排序算法
    3 ^5 L' ]  C! y( s$ a* [$ q* D/ B3. 汉诺塔问题
    # X  |; g7 a3 d1 h4. 二叉树遍历(前序/中序/后序)4 h$ W( J9 }  U0 Q
    5. 生成所有可能的组合(回溯算法)
    # K7 H9 K* R5 J3 q& e; Y5 i/ b/ w5 }, K) M3 u
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    难过
    昨天 07:02
  • 签到天数: 3099 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    . U& L" `5 l! d8 Q我推理机的核心算法应该是二叉树遍历的变种。
    ) S6 P  ^4 z; I另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
      {3 D& U, P/ c/ C( ]9 k5 g3 ?Key Idea of Recursion
    ; R5 {2 F8 q8 [+ E! l
    # m0 F7 v9 P! AA recursive function solves a problem by:1 N3 J8 b4 A1 N
    6 {4 c! W2 e" n0 u: j0 z" W: c
        Breaking the problem into smaller instances of the same problem.
    + Z: D, Q7 B5 w* U0 `3 {2 Y
    8 Z% ]6 f9 _% x0 [. c2 r- G    Solving the smallest instance directly (base case).- t; B. A7 b# Y

    ; T: X  F0 ?) |) ]    Combining the results of smaller instances to solve the larger problem.
    " o+ ?6 y& E6 e+ {9 ]: n  a& n- I- \
    Components of a Recursive Function; X! L6 o$ V$ J
    * E. U- e& X$ |6 |  A( }& O
        Base Case:  o; ^# p( t: e! n* Y/ y9 `" U- J

    ; ?4 z9 Q+ E$ `7 c        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.: e3 S+ N* s' z
    ; M8 R' V" k9 S+ g8 f
            It acts as the stopping condition to prevent infinite recursion.
    $ {8 u: F9 F* V5 x4 u/ Y& V  Q' V% ~: |" F& J
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.6 K9 t& g9 u8 W) H# u
    8 t! V0 k6 O1 b) n
        Recursive Case:9 N6 s' I' N0 I) }- s7 x
    - N8 ~; w; L# u$ R3 E$ b( d, f
            This is where the function calls itself with a smaller or simpler version of the problem.1 n3 d* F) m9 t$ |/ I

    ' w' J' F& l" t. {# n! L1 j- @        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    $ b' X5 A% {9 L- }
    % @( D( P* m8 m/ ]# B' d0 OExample: Factorial Calculation# K) o- a3 `& d2 n: A

    4 R3 i, T8 A) r; h) D+ {9 b/ aThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    + @0 y) L7 Y  R/ K' m
    - I3 k* R5 z4 F7 E1 V    Base case: 0! = 1
    * B% r3 n5 L5 M7 ]: V! a
    & s) y( n4 c( U* E  ]    Recursive case: n! = n * (n-1)!
    " O" v# M5 e5 M& L: \1 h4 C1 K: s' q+ x" @3 U; P6 O& W
    Here’s how it looks in code (Python):
    ; {' W" E& q' Z' z9 m  m* @# Npython
    ; T: `! B0 u+ q8 J) ]1 [
    ( [; X1 Q1 G4 E% L
    : i9 R5 r; H9 @" ?, y3 ^def factorial(n):% n7 W' U) m/ \6 q& k  ]8 G! B, b
        # Base case0 T9 Y5 \6 ~9 a( Z) B9 F9 @
        if n == 0:
    " r7 M" F& I7 {+ q        return 1
    . |3 S- Z* a1 j% k$ X2 I    # Recursive case$ j& m: |3 o$ J! |; R% g
        else:' n/ k  X! U: D: T* s/ S# r
            return n * factorial(n - 1)+ t; f* p7 c7 ^" S
    " y+ i/ C. Y6 U, G4 g; n* {7 ~
    # Example usage! i8 i  u* Q+ ]! z; O/ |& J* B
    print(factorial(5))  # Output: 120" G9 G  d: |% C& ^
    1 w( w9 l* h& Z# ~- a
    How Recursion Works
    ) C: @- q; x3 S1 F" q
    ; A; e* X  ?4 [8 K. M    The function keeps calling itself with smaller inputs until it reaches the base case.) L* H& I; a& w' O

    4 M8 }; J8 t+ P8 M    Once the base case is reached, the function starts returning values back up the call stack.
    , S/ v7 A( ^7 g' E8 N' M: K2 B! ~" l
        These returned values are combined to produce the final result.
    7 d- [/ I$ w0 z( @/ @4 l3 ^8 H: ]1 B" M+ Z' y# w' s; P! }
    For factorial(5):- N5 K. ?0 m0 @0 m" e
    - r2 Z( [' `( c* T# {# y6 O
    # O+ _7 U4 n; o$ V0 [( ~5 Q" R3 V
    factorial(5) = 5 * factorial(4)5 z( |: ?4 z  t
    factorial(4) = 4 * factorial(3)
      o& S( J$ M! q4 t, zfactorial(3) = 3 * factorial(2). O- Y7 O) p% |0 r1 h9 O
    factorial(2) = 2 * factorial(1)
    4 a. L$ S3 c  R8 U' g6 Z; kfactorial(1) = 1 * factorial(0)
    " j* L* O1 g( `" `, pfactorial(0) = 1  # Base case0 q/ w7 a3 x5 q1 O$ L& r4 q0 ?

    $ }7 c/ W/ V2 [! V, G2 S: wThen, the results are combined:
    7 R4 [# B# I- [( Y5 z* C
    / ~0 x. l; ~% Z6 \
    , ]1 T3 I, M( A# dfactorial(1) = 1 * 1 = 1
    * @, _- c) x9 x: d( k- ?factorial(2) = 2 * 1 = 20 T3 V5 j3 j0 q' u1 A: T
    factorial(3) = 3 * 2 = 6
    2 l$ R/ S% ?3 F' y  gfactorial(4) = 4 * 6 = 24$ G6 N" G0 A0 s6 U1 }. ~; j& ^$ e
    factorial(5) = 5 * 24 = 120
    3 \6 \1 ~0 P! p/ ]7 q. v+ `) ]5 X7 v7 C- ]; X! [1 Y8 w
    Advantages of Recursion
    ; I/ U* j' e3 E4 j2 V# t0 D7 _* X( x/ O8 C! B; b
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    6 ~: Y, h: n2 O8 X- N! X% J7 `8 [1 V# L
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    , D! n& B: p- q1 s9 b4 _# c4 ^4 K, g1 N
    Disadvantages of Recursion9 G4 K! c. q1 @/ T( j5 |- N4 z/ Y
    6 c: T7 s! I1 h: X& ~7 q
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    9 e1 k) @$ f, M  H2 s0 N  Z2 U2 X5 s9 |) x5 f. Y
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).9 i! F9 @# z  V; j. t& L$ V

    6 N' l' ^# V* @! T" `When to Use Recursion! d! V$ g. j2 G) t* r

    ' W2 I/ a* S$ Y. b2 E5 M    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    + e6 H$ q5 D6 u, T% e( M+ p
    6 y( T7 [; A! V) L) {: p    Problems with a clear base case and recursive case.
    " S7 C3 U* o) B7 _* S+ J. N! }. G
    Example: Fibonacci Sequence6 z' s" w: R- m* P

    5 H3 I* c1 e+ r6 g" O1 S1 C/ T0 zThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:* @# ^' Y3 o) b: A. ]

      J& \! U! ~# j: P6 G% A4 F8 o    Base case: fib(0) = 0, fib(1) = 1& n0 T+ v- Y0 {, {& P: e) z
    : k6 j: D. `7 S1 ~
        Recursive case: fib(n) = fib(n-1) + fib(n-2)+ Z4 }4 Q9 e4 z8 S+ \. |
    ' ?2 m; C# ]8 ?0 P; @2 j$ }
    python+ a" j  M1 U: n
    9 g( {  Q% A1 y0 _
    ) n; R& H. |: p1 X# ~2 V: h
    def fibonacci(n):
    9 U3 Y; r$ B- X( L2 |; D% ^    # Base cases
    3 D" X, v. A5 O' a# A) v4 y7 R    if n == 0:- S4 Q6 K8 o1 e4 a  e: y
            return 0; p6 t0 R3 ]. s) ^; o
        elif n == 1:
    5 D# M6 j& w, u7 ~* S        return 1
    . b3 B' Z: a: n  c! H* W    # Recursive case6 @2 B; n; H" i+ h5 g1 r  @1 A! l
        else:
    3 o. r* ?6 Y$ n* E        return fibonacci(n - 1) + fibonacci(n - 2): x) U* _4 p) S
    ( M2 Q( E# q, F( U) L
    # Example usage
    ' Y. F6 \2 [+ H. `, i1 m3 t( @% @print(fibonacci(6))  # Output: 8( H' O& e3 q8 O" Q  V( g6 ]
    " n) ^! a/ Y( k4 _
    Tail Recursion8 k/ A/ f# |" I  n# j

    6 Z+ @' Y+ A2 ^% l% f9 W# |+ ?* `Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).) u1 f/ t' K3 ?$ K. t- U

    : V$ f8 n7 x; j- R8 x. ~: p* z8 y' @In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-23 00:07 , Processed in 0.040026 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表