设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1906|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 * p" Q0 L0 n6 t9 T6 l
    ( O2 [4 r7 ~9 o/ s2 n/ y9 ~' u
    解释的不错! F* h- a+ Y' \

    % b4 i$ `# Q$ ?# s( y递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    ( L, h7 ]7 d, c- \' [3 Q) l5 Y  e* E6 u3 \
    关键要素* U4 `# N0 k+ a8 \0 q' k
    1. **基线条件(Base Case)**+ w8 g0 X! K1 @* [1 C& ^, V4 q% O
       - 递归终止的条件,防止无限循环
    7 A+ K! }: O# Q2 L- H, \   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    , i  {' ^) R* P: H( {
    7 x8 E; s9 ]5 m% o4 c$ ~8 R1 O2. **递归条件(Recursive Case)**
      [; E9 n* n  p$ W7 M+ h   - 将原问题分解为更小的子问题# Q) Y: J4 [7 \9 B: d, D
       - 例如:n! = n × (n-1)!
    ' g# G. P: q4 ]. f: ?6 z5 Y; I( Q7 n7 K$ |# e5 X9 r0 V
    经典示例:计算阶乘) U0 K7 N3 F' @% V
    python! ]  F& _# ]; z" A+ t
    def factorial(n):
    2 B! G3 Y1 U9 v& E$ R    if n == 0:        # 基线条件9 U! D. V; l) r. L1 k% T+ U! i/ x
            return 15 U& K1 o1 E, G" B/ {  p2 F2 Z
        else:             # 递归条件
    0 P. I! l( q7 @/ H0 S        return n * factorial(n-1)( k+ C6 U0 T5 _' I
    执行过程(以计算 3! 为例):3 V- N7 V- p% \
    factorial(3)" B  v; n* Z: O! ?- n  S# l
    3 * factorial(2)  }1 {% B4 z$ m7 y3 H
    3 * (2 * factorial(1))- t3 v6 r, k1 I; G& \
    3 * (2 * (1 * factorial(0)))3 e% i# R$ N- a4 i
    3 * (2 * (1 * 1)) = 6
    % r5 t6 H7 C  Z4 C- ?6 d0 I1 c
    5 G2 e3 {' O# \) g  k1 w 递归思维要点$ N# ]( u8 n, R! ]3 n2 z
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑( m( }6 q5 Y4 H+ B. ~: w
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    & a( B3 f+ _$ ^6 X: P% ^3. **递推过程**:不断向下分解问题(递)
    ( G, s& I" ?) B: Z. i4. **回溯过程**:组合子问题结果返回(归)
    & x% B& @4 i- `  H2 N  x6 w
    . b0 ^; d6 A# G9 V" x, @1 } 注意事项: L6 z* J, V, _+ C
    必须要有终止条件# X& b$ r4 U4 x! A- M+ q
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)* i5 k8 Y. L7 E# `, w2 U+ A
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    4 s4 s+ ?# U2 X& [尾递归优化可以提升效率(但Python不支持)
    % B; z; X9 ~$ R- y* {5 ?) U( f- ?+ ?$ x+ Z
    递归 vs 迭代
    % {1 Y$ }% n. w4 o$ ^4 I6 c0 R5 N|          | 递归                          | 迭代               |
    - ^: t  C( h, W/ Y! _3 e|----------|-----------------------------|------------------|: @/ p; n+ o  j9 O3 s$ L# N
    | 实现方式    | 函数自调用                        | 循环结构            |
    ) I+ z- u( s& x. [| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |' J1 h) @1 H* j# q& x- k
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |, J, J) t, f8 O! S; W2 C3 U
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |$ F. n. X& P# a9 H4 o9 r
    7 m) Y) c  x: M" R' s. u" h3 F
    经典递归应用场景
    / h9 G( a* w3 D; f1. 文件系统遍历(目录树结构)0 E( M/ _( c% T) p2 B
    2. 快速排序/归并排序算法% C" X4 l4 a9 U$ y0 x7 K! ^
    3. 汉诺塔问题, \2 y# v. M6 Z, _" y0 h# n, ^; ]" ]
    4. 二叉树遍历(前序/中序/后序)
    ( h4 K' k0 A& K" m3 u5. 生成所有可能的组合(回溯算法)3 i2 F- U9 l3 y+ F6 i; n

    $ A; {! P' ?- U) O5 z试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    昨天 07:11
  • 签到天数: 3150 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    ; S  Y) }" B3 r- h我推理机的核心算法应该是二叉树遍历的变种。9 q8 C. r# f) e. A+ y$ J0 m3 f
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:$ J4 m" @  m  F+ A9 z
    Key Idea of Recursion' |# p0 ~# a& J4 r' P
    % [" f6 Y1 T& n, w3 x& \* X7 U
    A recursive function solves a problem by:, S: B& u( g" _3 L2 _5 V% h
    6 H- W/ Q, `1 M' o  d/ B2 f
        Breaking the problem into smaller instances of the same problem.9 j5 W$ y' r+ W4 `

    ) Z& l3 c" B: P6 ~/ Y8 e" F    Solving the smallest instance directly (base case).* q4 ]1 L% h3 ^9 M) I4 f
    2 `3 e0 S2 b& o  X# F
        Combining the results of smaller instances to solve the larger problem.
    + \7 _! l4 C' b) j; Z7 ~/ z( F1 I" i/ g' x7 s% F8 m  e
    Components of a Recursive Function' O: ?% B4 o# @$ F9 W2 e/ \2 ?

    . i) ]4 G, R- n4 K5 w$ J/ l    Base Case:
    ! R/ d0 {: S/ y
    : @! D) J) [- }9 f4 _: F        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.9 \9 `+ b# h5 X

    8 Y! y! ^) i8 o1 i        It acts as the stopping condition to prevent infinite recursion./ U& ]( t5 ?9 }! i' r+ d% V
    - C* g* I9 U+ i( D* n% U) n# ]0 K9 j
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.9 H/ Q* l. }+ }7 I  z5 N

    / ^1 p2 c$ X6 N3 ]0 E; t    Recursive Case:
    7 s6 `% U5 ^2 Q7 O
    ) l  d: t0 z- Q& Q        This is where the function calls itself with a smaller or simpler version of the problem.) @( A" t; o! o
    6 f1 N) P# {1 F* A% x, x+ H
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).  b6 N6 w# s( b' S2 U

    & _, y1 a- ]/ C5 r( BExample: Factorial Calculation
    9 Y2 i+ o7 H7 z- y6 ~
    1 L4 J8 g  C2 QThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:' h$ S  g3 b# {" \  \: k% S$ M- S
    4 g( [. e$ G! l
        Base case: 0! = 1
    + t1 I0 x0 f6 U% b; D" h* p: z5 ~' b$ J9 b$ j* C
        Recursive case: n! = n * (n-1)!0 T* s9 e9 s4 J! ]- V( V( n) J
    4 Z) r& n1 A5 z7 B" r1 Z
    Here’s how it looks in code (Python):
    * s& b+ Z+ K* {7 f. D. V6 z. s# d' qpython+ c; Q$ v2 a4 o9 Z
    # W; {! `: L9 F( z

    ( `& m& c8 {! I9 |* t2 h& xdef factorial(n):) Y. ?+ Z  L" O% I# Y
        # Base case
    ! B' A8 J# i% ?. M8 y) t    if n == 0:$ o, B( J# v$ Z) y" U
            return 1/ l$ {7 }) V& k( R2 f- c! v$ Y4 Q
        # Recursive case
    8 Q1 Q+ N! g$ [3 V    else:2 o, H2 X- ?$ s! C& A% E
            return n * factorial(n - 1)( X/ e9 k5 Y& X& N  |  U4 ?
    # G3 I: V5 k; K- e
    # Example usage8 q& M8 x. y2 n; {
    print(factorial(5))  # Output: 120% R5 G& a( ?. m4 [0 G& ]
    1 Q0 u( d" k& N
    How Recursion Works
    * f* H- O1 g# l) Q  c6 K* Y, Y! y& ~$ H
        The function keeps calling itself with smaller inputs until it reaches the base case./ e/ k  A; C) [& [$ S
    7 M/ p9 T. O' M4 P
        Once the base case is reached, the function starts returning values back up the call stack.
    ! C) k' N9 ~# @# @8 R$ T) `0 e2 f
    ; ~* v4 |& O% `2 D) a6 B$ P  R- q3 O    These returned values are combined to produce the final result.  h# C8 ?: E( x6 U% {

    7 e7 M/ i" c3 O- m- B" b& PFor factorial(5):7 A# J, d/ r% B; x9 f# d- B
    * ?, ~% g( _% l! q) i! F3 y

    * l" L5 j' u, b/ t" @factorial(5) = 5 * factorial(4)
    - u, G* E3 b: `7 Bfactorial(4) = 4 * factorial(3)
    . |, I. N% e3 O: [4 rfactorial(3) = 3 * factorial(2)
    $ n( M3 J  C7 Q  I2 rfactorial(2) = 2 * factorial(1)% H1 L9 t( f# a/ T5 I0 q% @
    factorial(1) = 1 * factorial(0)
    3 i$ v& ~8 W9 q# l4 n+ _factorial(0) = 1  # Base case. C9 A6 s9 J3 [  c0 A* g
    , S: X6 [, d3 O5 ]* V  ?
    Then, the results are combined:. k& l( f) {3 k: O
    0 G7 D" V2 u2 a, {1 D
    2 ^9 |' p: T; T( G7 ^. q4 z  t9 G
    factorial(1) = 1 * 1 = 1, }2 l8 z: U& m) k/ @3 y0 _0 o
    factorial(2) = 2 * 1 = 2& O% V/ `, }* |- N( w1 u
    factorial(3) = 3 * 2 = 68 p! _$ E) W, F# Q" X6 O& ~  N
    factorial(4) = 4 * 6 = 24
    1 o4 A& q" O( z& i' y: rfactorial(5) = 5 * 24 = 120+ p  @4 V( K  {: t8 K2 A
    ) O+ M; ]% J) S: d' N
    Advantages of Recursion. h1 |5 m6 W+ B7 u1 A) ?

    % U- C, ]5 Z3 i) {    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    6 c9 Q, G. }! u
    . I6 Z1 N4 q+ `* U    Readability: Recursive code can be more readable and concise compared to iterative solutions.1 a5 f4 {: h0 j1 H5 M$ b! x9 C+ O. O9 ~
    7 A  a3 e7 S' A, A* [5 D- N
    Disadvantages of Recursion2 g# N: I- ~( V4 o( j
    5 Z/ Y8 w, [  ~# e8 v- Q# o5 Y
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    ) k* j/ }4 }$ J# z( ~
    ; c5 g0 ]4 Z/ `4 @. @1 Z    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).$ Z. @! ~5 j) H$ y  G- N
      M# W0 k8 v* K9 R$ A
    When to Use Recursion0 g4 c3 w, s2 M6 }* q% ?0 z* L/ N2 h% }
    : u- K. j. i5 b( s* L4 g
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ! V' I* C& C/ R) R  _/ Q, X& T/ u6 E& r5 [
        Problems with a clear base case and recursive case./ m3 n8 M- C0 j7 G/ W. L

    ' w& z2 I: y' ]) k( w  O# [Example: Fibonacci Sequence0 d9 Q3 w2 C$ Y* J3 F, E
      b# O, e5 }0 B2 f; z
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    2 \2 r: N: R; v5 J0 }
    + A6 z( l  y8 v- F, q5 ]4 H    Base case: fib(0) = 0, fib(1) = 1
    ! d6 A- ?7 g1 Y4 S% V* Z0 _$ V# J2 H- c
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    ( g/ y- S& m6 i4 A5 v, {: u1 G' F# X; \' y! O! ?
    python0 s7 u. Y$ C# x  f
    $ Z- c6 b- h4 H: I

    1 R; `+ u! i$ N) m& r4 v5 P! ydef fibonacci(n):
      ~2 [. U6 d" V( u    # Base cases6 R# O% E: s5 k1 i9 h
        if n == 0:
    1 }) R7 N' \& r( q        return 0) ]! l6 E, w( {
        elif n == 1:3 E4 K6 z/ W, b# i4 h
            return 1' m$ e: F1 w. d9 @- p
        # Recursive case* M7 ~% W% q) I
        else:
    6 s+ a; o1 @" S: |8 G  u) K        return fibonacci(n - 1) + fibonacci(n - 2)
    1 v# i( S3 m$ r4 _! l" a
    ' v; S5 J2 S% }; ~  f# Example usage
    + M2 I% q1 [+ D- }9 Iprint(fibonacci(6))  # Output: 8# z  k3 y$ j+ E2 H" C
    6 @7 D# l5 J# w' V9 c. I+ }
    Tail Recursion
    5 y" R  v2 D6 Z% z1 y$ U- j) ]- J- M
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).3 X6 C% Q: j) d" ]" Y2 b
    ; e% i) z. P" E; P+ t
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-21 20:14 , Processed in 0.066102 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表