设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1636|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 8 r& S/ p/ A  @: B" t0 l6 G

    % L0 l% X) E7 o. _解释的不错* z8 \% U' O5 o+ X; k

    4 P. c  `7 u7 c" ?( q: i/ e递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。3 J: x1 J8 L0 G: O* |* s
    $ Y8 i5 c1 Q. B6 c6 f' A8 K
    关键要素
    / m5 m& b7 ], d: C5 _9 s$ `1. **基线条件(Base Case)**$ y/ X; x( ^6 W  O; M$ o. A
       - 递归终止的条件,防止无限循环- N( Q3 K% o) a- Q3 y
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 16 c. _8 A/ u% ]- `1 A- i

    ! l7 \: x* T) U# g) B" I/ z" _5 N( e2. **递归条件(Recursive Case)**
    6 U6 G7 X$ s, j' ?* i   - 将原问题分解为更小的子问题
    ; v  P8 _: [+ _* j: e, \   - 例如:n! = n × (n-1)!6 Y! X# t$ @: i% d+ _

    2 @  }( k* k. X" u# C5 e 经典示例:计算阶乘$ w( D/ B" s! D- j+ f6 y
    python) T2 U7 @6 g6 T+ {
    def factorial(n):
    $ m3 r# W+ F+ M( m' q; q" l    if n == 0:        # 基线条件
    1 Y8 k0 V: E! F7 w& ]) K4 k        return 1
    $ |! ~# Y0 D4 D    else:             # 递归条件- `# }6 x$ |4 r# M0 G, H) T, m5 R
            return n * factorial(n-1)2 u5 D' p! w* @% O5 @; A* f0 I
    执行过程(以计算 3! 为例):
    7 ?1 l/ [  ]2 `; T1 Vfactorial(3)( U# S+ T' }, R4 [  f$ z( L
    3 * factorial(2)
    - C0 I; P! u7 |% X' J0 E* }3 * (2 * factorial(1))
    * h, D5 `2 h/ p% @& g% y% d, z" k3 * (2 * (1 * factorial(0))); M( P0 J4 c) ?9 ~
    3 * (2 * (1 * 1)) = 6
    ! L  @4 P" f2 Z* o9 A
    6 A( z" d; m/ m- B3 Q 递归思维要点; |$ I. `. @* p
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
      g8 m" W+ m  l3 p2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    , N4 _$ N- `) Q- u3. **递推过程**:不断向下分解问题(递)
    # E& J; c6 e% ^  _- D4. **回溯过程**:组合子问题结果返回(归)
    0 h* C" m2 a8 I9 r' U) P1 j  }3 q" w
    注意事项' Z: W2 S/ Y0 l" k8 s
    必须要有终止条件
    # o# P, {0 u1 \3 V8 _* Z* k递归深度过大可能导致栈溢出(Python默认递归深度约1000层)7 r/ R! J' ^8 V4 t
    某些问题用递归更直观(如树遍历),但效率可能不如迭代4 ^$ U( m) H# J4 J0 d# c7 m4 x
    尾递归优化可以提升效率(但Python不支持)0 c+ e0 C/ A0 V; |8 y
    9 A" {8 z5 Y+ H; Z. R5 M' \9 L
    递归 vs 迭代
    " p. `5 H2 U4 |9 l$ W( q|          | 递归                          | 迭代               |* e2 p* X6 E$ o1 v0 t3 H$ O& r$ f" f
    |----------|-----------------------------|------------------|
    3 G* m1 i, [) ?2 H) D3 V| 实现方式    | 函数自调用                        | 循环结构            |. `$ T% C3 r; }  `
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    ! e! c1 s+ _+ F( `/ {| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    4 s5 ]% f8 `" A. l! ~0 D. [| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |2 F& r. T( w4 N" ?( L

    4 y6 \7 R: z, O8 ~/ ] 经典递归应用场景
    1 L* E( s; z. `& o0 f8 Z& T) W1. 文件系统遍历(目录树结构)
    2 d8 S( G4 v3 ]' x- U5 r3 h2. 快速排序/归并排序算法
    ; ]- b8 o" [+ L4 s. z% I3. 汉诺塔问题+ G# p5 E! X! C1 J6 X' z& |
    4. 二叉树遍历(前序/中序/后序)3 S* H" P- \* K. E4 O
    5. 生成所有可能的组合(回溯算法)
    , r. y( ?4 N( \* y( }
    6 ~% H3 U, k) v1 V试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    1 小时前
  • 签到天数: 3127 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,0 U5 k- `' P$ K$ c5 C- r
    我推理机的核心算法应该是二叉树遍历的变种。) E% q+ [- `% L
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:. n9 ]# |# L, C$ P$ I, `' n
    Key Idea of Recursion# [+ c+ _6 ?8 C9 b8 X- Z3 Q9 I
    5 N8 o8 F5 C8 v$ _  b( @& d& w' R
    A recursive function solves a problem by:9 L, b: k, b6 T( w
    & w9 s/ y. K$ [' l
        Breaking the problem into smaller instances of the same problem.9 c  `0 `: n# q0 z* W/ l* L

    4 P! Z! [( _, A  W8 v. B    Solving the smallest instance directly (base case).
    $ _6 q+ \, W# z' L
    ) g& w, f! }: O! b( v6 O    Combining the results of smaller instances to solve the larger problem.
    3 U1 l. }) ^% j
    0 f0 ]2 h: y* _  K" ^Components of a Recursive Function% U: Z* P' q+ O4 D! k. Z$ d
    ) N. F7 {# }5 p: ^2 Q/ p6 ~7 j
        Base Case:
    . ?) ?$ k- i0 D9 l  i$ i" v3 H: F  N9 \7 E
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.9 w: l& G3 S0 p3 q! V& x& e9 E
    : v' }, a5 Q; ~) g5 k
            It acts as the stopping condition to prevent infinite recursion./ P4 u2 `. v5 I6 X
    9 i8 B) ]& T: r% C8 G6 R
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.6 j( A1 |- s0 H/ ~

    - B4 ]* y6 r8 v/ U    Recursive Case:' P% M% y3 q0 C% a

    % w2 T$ W* c; @8 ^+ w        This is where the function calls itself with a smaller or simpler version of the problem.. U- l. ]  h; s* q- \; c+ i
    2 t8 L, `- X' M3 f
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).3 F0 Z( h  c" ^/ v& ~% z
    , J! C- v3 g, l. l; w# G
    Example: Factorial Calculation; Z; L2 m% Q6 L1 W1 I* p2 @

    ! x& G+ F3 M1 G0 O) a. jThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:4 l& M) A# T* V
    3 W7 J. Q9 y" G. X: X4 W
        Base case: 0! = 10 f3 Y, Y# d# j
    3 U. p! M% }9 \( I0 b
        Recursive case: n! = n * (n-1)!
    2 Q4 n+ ?+ z- B  }4 W) ^1 e; D! N. Q
    Here’s how it looks in code (Python):# W0 K% D* b' i' T; _
    python
    & q# Y1 M/ d9 w0 E
    / D# {* q$ h4 Q" ?4 S0 A3 v+ c$ [- T
    def factorial(n):4 R2 F  ]+ C3 y) k. J, o* g
        # Base case. S3 x! c5 x, E0 B
        if n == 0:
    9 X5 p2 V$ }+ v  B" v3 r        return 1
    . V* s- o7 K  L' B, j1 s2 c  c    # Recursive case
    ( m* o2 j5 J- b) ]/ v9 t5 i    else:
    : f' p6 ~5 t, ~* A! n: w' Q        return n * factorial(n - 1)
    ! x& |1 f3 A1 Z; @) q+ W; V5 D0 n+ G' r4 b3 j% Z' C. }% S
    # Example usage
    3 d3 D/ E- f0 _3 V# S2 G' U. Uprint(factorial(5))  # Output: 120
    9 o& f4 T' y& `/ @4 v( ?* B0 E
    $ k1 U' F& W! @& @$ P3 }; k$ O9 m4 hHow Recursion Works
    % Y& t6 H7 e# t( G  R  k2 G( v" T" R9 c3 ~
        The function keeps calling itself with smaller inputs until it reaches the base case.
    ) u5 J/ t* Z4 }
    $ f/ L0 u  t( G  l    Once the base case is reached, the function starts returning values back up the call stack./ q" Y" p3 i9 y

    - A# Q5 W( l, a. \. E! S* K    These returned values are combined to produce the final result.
    / V; w, [8 G& f7 E1 M, l- \3 Y/ c, U# z/ n3 P1 ~
    For factorial(5):) C! U. Y0 [; \+ n3 Y+ Y

    9 S  m6 T8 M3 X( C' Z5 F5 W% y9 e2 n( {8 c: f; l! g
    factorial(5) = 5 * factorial(4)& r1 v2 ?/ Y# n3 q) }1 u# {
    factorial(4) = 4 * factorial(3)- x$ R( ^: K( c9 Z
    factorial(3) = 3 * factorial(2)
    " e3 }) Z6 ~! J- Jfactorial(2) = 2 * factorial(1)
    $ A+ h7 N& ^4 Vfactorial(1) = 1 * factorial(0). R  V" g. x9 f9 k& y) s
    factorial(0) = 1  # Base case8 |0 z: G% W+ I1 }, u# @) w
    ! s2 b8 x* Z6 t% A% @$ F* p# N" C
    Then, the results are combined:
    / g5 b0 J6 r# N+ c$ z/ C  h9 f9 ]! h* O/ ^9 p1 @
    5 }' E; o, Q2 g' ?( _1 H6 p
    factorial(1) = 1 * 1 = 1' S. {1 f$ k/ k! G% y
    factorial(2) = 2 * 1 = 28 R: M# }% u2 F) B
    factorial(3) = 3 * 2 = 6
    % C# Z! ?0 g6 A: V, x/ y) Rfactorial(4) = 4 * 6 = 24
    " K9 N# c& h& d5 N9 g& M/ [factorial(5) = 5 * 24 = 120& V* H: v" {% a4 p1 p, [  U$ Q+ R, y9 d

    7 [" ~+ g$ o" Z. H: u) K" p& @- d* kAdvantages of Recursion
    ! ?) T* m, X% @4 {( |, Q0 A
      z- B9 F0 I5 d# Z" x    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).; U+ n: s6 A' V0 z4 J% }
    ! H( s. [8 L. K1 E
        Readability: Recursive code can be more readable and concise compared to iterative solutions.# N! U: S. j5 `( _) O; j' @' E

    9 o. u' g! j, o8 s5 qDisadvantages of Recursion( T& d( c8 {7 H& J7 U8 K7 r. B
    ) s8 K8 h+ {* u8 D! H
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    0 ]5 N$ T2 X, Y$ w- i+ N
    - ~3 @" }! ^, N/ z    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).; B* j2 o- c1 W

    + v! a1 |; v5 R$ v# m+ S- ?When to Use Recursion
    & n0 o. T5 F2 w: Q. u
    1 s% N& A1 q1 n2 j9 d) @    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).  S8 I" p, i; c: g2 T( E4 G+ ]

    ! w/ A2 T- T/ w; n% n% B6 s3 |    Problems with a clear base case and recursive case.; M2 X2 R! ]: d' t& t1 D' x

    / K5 O) ?$ Z. Q( ?7 w1 A" m: `Example: Fibonacci Sequence+ u- a) a8 s, y# |% q! r1 t  B

    : |2 s# q# C! c8 p: lThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    0 z* z- H+ U& l; P8 }7 t1 X. @/ K% k/ X7 _
        Base case: fib(0) = 0, fib(1) = 1' O1 \+ D5 w/ r" o6 ]7 H/ f7 q1 i$ V

    . ]! {: `6 B: Y! |9 _    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    ( I, I8 I" @" ~) a
    ; m1 i6 p4 u; y6 c: j0 wpython. W5 N/ S* S: P& z5 U: e

    ' O% D3 c$ L. L( d- T& n: o$ B) h8 [5 R8 W( ?# A& @) ?/ G
    def fibonacci(n):
    : V5 a) L: Z+ I/ E5 c9 r/ c. Q2 A1 x    # Base cases
      b! b: I7 l5 F6 Z2 Q0 M    if n == 0:
    2 }) F7 O4 i0 e0 s  ^        return 0, F" F5 R$ O8 N
        elif n == 1:
    2 o1 o0 L5 R# F* J! u1 E6 c        return 10 @4 T! o: z* e
        # Recursive case- }9 v; k# W8 Y. p# i
        else:
    # R8 R* }9 `1 q1 ~2 F8 ~& U        return fibonacci(n - 1) + fibonacci(n - 2)
    , M# ^+ C4 G: M4 X/ l3 F! J7 z/ G- ?
    # Example usage
    6 v( o# ?3 z( F( W' f  F: e9 qprint(fibonacci(6))  # Output: 8
      Z& ?' l% W9 _" F" A/ [5 ^  F' A" T) o" Z2 t+ Y, E
    Tail Recursion
    ' [! c! o4 }8 B" z! q5 V3 u3 \8 K6 W% k5 J7 W$ D" h
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).6 q: V4 ^8 {5 P3 s: |
    / J) y. l0 V4 b; r) c- U3 s2 n! j
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-25 14:00 , Processed in 0.029780 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表