设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1369|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    : Q6 S# d9 s+ k% Q2 j0 W/ A" r$ k1 O! c) C
    解释的不错
    3 X0 E) P: Q9 y& W7 E3 ?
    ) [2 g- M7 L: J$ ~: p8 ^% l8 ]/ r递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    - S4 v3 @0 X! E+ k6 C  d) Z' u' w) B
    关键要素5 a+ M0 K! g9 M: q6 ~
    1. **基线条件(Base Case)**
    9 w( ~. s& L: s7 ^   - 递归终止的条件,防止无限循环
    4 j* y$ F. T' k4 d& B! V   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 16 @7 x8 y$ }) Q$ W% U

    6 n% ?! H4 x) ]9 x1 m! r' `2. **递归条件(Recursive Case)**
    2 p8 E1 H% U$ T- a% H; d   - 将原问题分解为更小的子问题
    ) G* l8 ^, c9 }0 n/ b0 a6 h   - 例如:n! = n × (n-1)!; ^% W. m: d( ~, g+ |! `

    - r( `! D' ]: D 经典示例:计算阶乘
    ! v6 c. L1 X/ b' o5 F5 Ypython
    5 d2 F0 t$ [; m2 Ddef factorial(n):+ g9 V  n7 N  G; w/ G: x- s! t
        if n == 0:        # 基线条件
    2 q; z1 j* G9 f; \5 \        return 1# A6 v8 Q( G' ^5 _  {% u8 }
        else:             # 递归条件
    7 N. c& x/ p. f2 ]6 Z; B+ m( ~        return n * factorial(n-1)
    ; \1 D' ]! T0 L执行过程(以计算 3! 为例):
    - z1 W9 a8 a0 J0 bfactorial(3)3 A$ w: r; ~+ E- P$ K
    3 * factorial(2)
    3 h: x+ G; O- N9 I3 * (2 * factorial(1))  w) ?4 S1 R) y! f# Z+ e1 t
    3 * (2 * (1 * factorial(0)))
    % p6 O- _' u6 _/ N- m6 F8 ^  a3 * (2 * (1 * 1)) = 6% V+ x+ J1 _) u4 @8 H% j) F
    + Y! s* _! @% F  K0 H" l* C% I  u
    递归思维要点  |$ c  H# W; s# d" T" B
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    2 R1 Q0 E( T& z4 c2. **栈结构**:每次调用都会创建新的栈帧(内存空间)" ~5 h; x4 q' j
    3. **递推过程**:不断向下分解问题(递)" t0 k1 A! y1 K( x/ n
    4. **回溯过程**:组合子问题结果返回(归)0 a0 o8 X- x! D3 M4 p, f7 C

    2 W" F% x3 }# A5 S 注意事项
    0 ^: q: f: [; ?' x* r( L必须要有终止条件
    ! K4 i1 `4 m, l5 ~& ^递归深度过大可能导致栈溢出(Python默认递归深度约1000层)' N, t& W8 @* A. r( \5 h
    某些问题用递归更直观(如树遍历),但效率可能不如迭代7 ^) F/ i8 g2 O( ~6 m6 `/ ]" R4 y
    尾递归优化可以提升效率(但Python不支持)
    " M# i0 {" M0 V  Y+ K- H
    3 h4 x. F2 }& Z+ M. @! J) O8 A2 j 递归 vs 迭代
    * p; o+ Y! Z  }" O|          | 递归                          | 迭代               |! Y+ A* G1 Y/ c! d' }! E! j
    |----------|-----------------------------|------------------|
    + s' p3 a8 b+ E; Q! D0 \| 实现方式    | 函数自调用                        | 循环结构            |
    . R4 E" N9 X( w: ]| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |0 b' m! C, K* ]3 t5 d+ X
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    $ ~& O6 b$ K! h, Q# M1 \% ]7 M# W9 C| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |% j6 R# M9 T0 r) J

    + Q4 i* Q6 g% p 经典递归应用场景& Q- L  C. ~  j7 o7 U
    1. 文件系统遍历(目录树结构)
    5 C8 L; P, o  m! P; a0 h3 X- }2. 快速排序/归并排序算法
    * B9 D( T2 I# ?: L" N3 U/ ?3. 汉诺塔问题! {. ]. R( V$ g) j# {: V' i" H
    4. 二叉树遍历(前序/中序/后序), M1 |6 k3 C, v+ B7 P
    5. 生成所有可能的组合(回溯算法)
    # H, k9 R2 ~0 ~4 P0 w1 O5 S9 T' ]- s8 c2 i) x  j
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    13 小时前
  • 签到天数: 3110 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,, d( A) b% Q+ i1 s5 U$ n& @' e
    我推理机的核心算法应该是二叉树遍历的变种。
    3 R( y/ C& j  R( V+ H& l另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    $ [- M$ m5 J1 |8 D5 p& gKey Idea of Recursion
    . H5 q( i& Z! X5 |( w8 i
    " B% ?7 q1 T2 a" Y7 R% x% }. {A recursive function solves a problem by:
    : `+ {* B' f+ z9 n. N5 ^. \( @& l# n! @3 R
        Breaking the problem into smaller instances of the same problem.
    9 X0 Y5 U  S& K0 n* H' M0 e* |2 i+ z) r& h4 i$ B
        Solving the smallest instance directly (base case).1 [6 B+ T* S& N( B; z" ~

    . K# b, P4 {& \6 P    Combining the results of smaller instances to solve the larger problem.8 h  F. z6 R( A) b+ v
    7 t8 C' c- [9 L/ {8 o- x9 N
    Components of a Recursive Function
    , \# c+ N# G: H3 _2 C; r- C- q1 h- e) G
        Base Case:
    ! L2 l% r2 E+ C  h7 c" a" `, ~) G9 X3 y0 o; S
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
      B2 ?; d) M1 e& w) [* j: _( S& `+ H- r
            It acts as the stopping condition to prevent infinite recursion.: I7 j9 f+ W8 k1 o/ I% ^- q

    ( W0 Y3 ]! Q0 _, H. x+ |2 d0 s        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.6 q+ J( z( M1 O0 r

    . Q8 u% W7 O. `8 |    Recursive Case:3 a+ o) [! A; M+ u9 l

    $ h- r4 p& G) B6 E# R: H5 ^# ^        This is where the function calls itself with a smaller or simpler version of the problem.$ L/ E0 `" p+ b8 g# e! }; }& Q

    0 Q4 z5 z  ~, i- C* ?' h4 p1 T# _' y        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).! N6 L1 v3 z* T5 S8 \
    " E9 e5 a0 o6 Y1 G' ^$ [* u! f% j. M
    Example: Factorial Calculation
    # W: u9 i$ V, P1 N6 Z9 x# A* a& `6 Y  ?/ D6 s) g
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    ) R5 u5 _% q) Q
    3 [7 d" r* H+ y- N6 a' c8 G- \    Base case: 0! = 1  b5 I2 K% N  Z; D
    0 V/ n7 p) j/ `, Z# {4 ]
        Recursive case: n! = n * (n-1)!
    " J6 i, K* y' M3 g0 ^7 h" s( q4 ]6 |1 P7 A! l0 p
    Here’s how it looks in code (Python):
    5 i- [  _# n8 ]; U; C& ^python
    9 M% ~& b- j" S2 Z% C7 ?- D, G" G1 ]2 K! a

    . R2 Z% V2 J4 s7 e' B' udef factorial(n):- c6 ~+ k5 s- c7 m3 |# c
        # Base case* C1 a7 }$ e: c' d, L" h
        if n == 0:
    0 v% r* ^" U( L' \        return 1
    / ?3 @/ ^: ~1 h0 \- _! W& w7 N8 A3 g    # Recursive case
    : e. F+ n, w2 _) k    else:
    $ S( h+ a2 [8 q: y8 l8 _4 r$ c        return n * factorial(n - 1)
    0 p9 h! Z$ e$ E# T
    . D* U+ m4 _" j3 `# Example usage4 |1 L2 X2 V7 l# y5 r  }1 i# i& |
    print(factorial(5))  # Output: 120
    ! t0 k, K3 F; c3 C! i9 i' J1 x" H" n4 b0 D+ @7 B* v* l" d3 v5 R
    How Recursion Works
    % g& s- j6 `% w7 J: y0 p) P$ F' Q
    9 T3 f. ]* L1 F) G    The function keeps calling itself with smaller inputs until it reaches the base case.5 c4 G( _9 V# E4 c; {$ V5 u/ k% U
    / v' D, _8 Q* T- i, u( e3 M  q
        Once the base case is reached, the function starts returning values back up the call stack.
    4 }, q& Q/ n4 |  q
    * S  ]; L8 C' Z6 q7 I' _% E    These returned values are combined to produce the final result.
    3 j* r8 o3 U9 {; b; J$ P0 W" l, Y' x: U
    For factorial(5):
    % i8 |; @2 D+ J
    * q" \) \- s& w8 o/ i2 P
    # X; b2 k5 `7 O' [factorial(5) = 5 * factorial(4)
    * ]) \0 X/ l9 I+ Efactorial(4) = 4 * factorial(3)
    2 s* z. u- S6 o( F6 A' e4 d9 m& }factorial(3) = 3 * factorial(2)
    . z# J. R( Q9 G; u& @5 xfactorial(2) = 2 * factorial(1)1 |  P+ W5 P) p6 E9 c
    factorial(1) = 1 * factorial(0)- \- V9 I! V6 L8 Q6 h  _
    factorial(0) = 1  # Base case
    7 L4 y- l2 y! P6 \
    * F. A) H1 W: g( p  L, jThen, the results are combined:1 q& R% t6 p# x" Z; ~8 x# D: m9 R
    6 U8 A6 x" k* W% g9 u! H; t
    , l5 t* _& J/ ?' ]7 g( V. o% {
    factorial(1) = 1 * 1 = 1- Z( X6 u5 \+ G6 i# |: Q
    factorial(2) = 2 * 1 = 2
    : c$ Y0 }' f7 }factorial(3) = 3 * 2 = 6
    * X& ]' ?* |) ~4 ~) K; J7 P$ \4 [factorial(4) = 4 * 6 = 24
    - r) Y" q7 v( P$ `! U2 I6 Zfactorial(5) = 5 * 24 = 120
    ' g* u# p7 D2 Z# [: ^5 m/ s4 q5 z/ X+ i
    Advantages of Recursion! f0 L' ]% C- y2 s

    " ]+ F* N1 a1 i* d7 Y, U9 o& d( Y# p    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).& C3 {; i0 V* ]

    ! p8 R. a8 Z* M0 Z1 |6 l! H: N    Readability: Recursive code can be more readable and concise compared to iterative solutions.- s# L% U, H2 b# c) L4 P
    + z& J8 q0 B$ A6 Z: f+ l
    Disadvantages of Recursion
    * i  `3 E/ ]0 F8 Q& k1 i- Q4 i0 r0 ?! k# j0 a
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    $ x1 J) z: `. a3 d* `
    & ?& Z( F; g+ k/ h/ h    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    ) O; U( U0 Z9 Q0 `
    7 |5 b1 Q1 c) L6 M9 M$ O$ o- e" ]5 b/ {When to Use Recursion
    $ n# L* j- G$ A
    6 [" N/ V8 m# L1 P    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).& C( ^; A  F4 }1 X" A+ u2 ]: H$ A
    " C0 J+ V" X1 ]" x2 P
        Problems with a clear base case and recursive case.
    6 C# i8 l" y6 y$ |  x4 q$ {2 |4 B/ e4 N5 ?; q4 V
    Example: Fibonacci Sequence/ ^- ~! {$ W. f8 @! |0 {1 ~! ^% s

    % `& @" ?9 J7 R8 d: A2 wThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:# x. }, L2 d6 J5 u" }

    - x1 \7 o8 [; }/ A  k! q, f+ _' K    Base case: fib(0) = 0, fib(1) = 1
    # _  j$ x" E; g8 L% u6 \
    2 H3 k7 e: d0 O/ A8 ~% d6 [    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    " e$ P1 O9 J. r8 a" d  f  }$ @  o# R2 T
    python
    ; u0 Q0 q9 K3 M% h; J" ]: Y& a
    / |- a' F: C1 D; }! M
    5 h5 C5 z" v  R- Odef fibonacci(n):
    5 l* t0 L; K+ R4 B    # Base cases& D7 E: b8 E8 U+ z( k% r7 ~
        if n == 0:
    2 B2 _; L' x& y0 G, R1 K% S        return 0& M( j# q1 E$ ?
        elif n == 1:) M, Z; b8 R8 E; Z* x
            return 1
    , N/ B0 a* e/ m) P8 u    # Recursive case
    / M% g2 t8 ]; S3 k- g) x    else:$ b3 {4 {, f. n% G- U  e# j' s) Z
            return fibonacci(n - 1) + fibonacci(n - 2)
    $ h- g% `0 }; \4 T9 a: Z
    - q" e( i. F& j) ^4 v9 o# Example usage
    9 I$ w% G3 X: s2 G0 Jprint(fibonacci(6))  # Output: 89 @& [# @( Y' w' u

    ; Y; U: o5 P8 x4 B2 uTail Recursion
      u9 a/ r$ }$ p, K8 u: z4 W
    # ~$ @) k, _' x  Z  DTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).( K1 X; z8 U8 Z, p, x1 M
    " a0 T) q( P5 I7 `+ x
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-6 19:15 , Processed in 0.038198 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表