设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1255|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    6 p* k+ |8 A0 f+ ]& |! v+ P/ \7 g8 W7 L4 Q, ]; @/ R
    解释的不错
    ; w4 b* r2 W0 u6 n8 `$ S3 A: E# e6 i. R1 U, \/ q8 z! c. u' n
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    . N9 E) R% \: m/ [$ ~5 E: O; K1 w6 |$ [  O
    关键要素: L& F7 G2 Y: m7 h
    1. **基线条件(Base Case)**2 M% o& {$ _+ i% i; U
       - 递归终止的条件,防止无限循环
    ) R" p4 _0 l# x% \$ }% H   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1; t' W: M5 `  C: s
    % W9 ]" H! {4 V) |" X2 G2 F
    2. **递归条件(Recursive Case)*** H( r$ |( r0 f" P- X6 R
       - 将原问题分解为更小的子问题% o# x7 X+ x1 p- v$ y
       - 例如:n! = n × (n-1)!; R1 S2 r# x3 H/ j
    ( P  V% ]. c, c  ~% P. s
    经典示例:计算阶乘2 i; u" z( Q; S; J1 n! S
    python' J* A& g) o% t5 ?
    def factorial(n):
    , a2 o8 [  a/ o; I; t( f- h3 d3 m    if n == 0:        # 基线条件
    4 T4 n& [6 B* b$ P        return 11 Z/ U5 R8 S1 o8 r* y
        else:             # 递归条件- x% U3 ?/ f1 F
            return n * factorial(n-1)/ c, [/ n  t6 a
    执行过程(以计算 3! 为例):, b7 c- E6 h. r1 }' v
    factorial(3)# v1 d; ]8 n! D
    3 * factorial(2)
    & V& O0 I; [  v' M. M( l( e3 * (2 * factorial(1))
    / W: A) Q2 J3 H4 I' v# z, c) d0 h- J* _3 * (2 * (1 * factorial(0))). l* t( d* ?, }2 y" B3 q
    3 * (2 * (1 * 1)) = 6
    3 ]% O' p* v! q2 A% v
    , ]9 S$ f0 ?1 A7 ~% ~ 递归思维要点
    4 T0 z" R" d5 V  J0 E1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    ; G5 I( F& A* J- H* d7 n5 p! J2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    7 n5 E6 l" b' I( O* J* _8 U+ j6 K* w- I3. **递推过程**:不断向下分解问题(递)9 y1 o, q: C  b
    4. **回溯过程**:组合子问题结果返回(归)
    ( Z: O- T% t$ }7 R. T/ m  F
    " m3 g1 `; a% K) V& f3 P 注意事项
    ( S! y9 y* H3 A' l必须要有终止条件' n( L; _6 X$ n2 z6 K
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    . t$ m( l( ^" B6 r7 F: J2 z某些问题用递归更直观(如树遍历),但效率可能不如迭代7 m$ f/ L3 V. X4 A2 v" k3 F
    尾递归优化可以提升效率(但Python不支持)
    + N) X+ z7 [% b, ~, K( t* E5 ]$ b* f* x' [' ~0 o7 {
    递归 vs 迭代" p8 s% g( S2 J' H
    |          | 递归                          | 迭代               |
    4 i( g4 f8 ?2 z1 W|----------|-----------------------------|------------------|
    ! `8 I! q% T5 {+ _! M0 V- v| 实现方式    | 函数自调用                        | 循环结构            |
    " Q- O/ e  O7 t) K7 }| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |1 B" d1 d0 q- `, D/ q
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    / U: |/ ]- C& w$ W9 Y' Z. A; M* H| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |" W4 O) x2 E& N2 N) H* P4 a& v" Q

    7 k! \, e6 m$ h1 _' L 经典递归应用场景
    7 C1 i# c. ^- @, v1. 文件系统遍历(目录树结构)
    - u: J* T9 w. Z4 Y& ]; t2. 快速排序/归并排序算法3 q1 ~, \( |1 U
    3. 汉诺塔问题
    6 q+ z& _" K; e+ j- r' i' R) \4 S& R4. 二叉树遍历(前序/中序/后序)
    5 w' j4 h- u$ T$ A, C+ O% f5. 生成所有可能的组合(回溯算法)( i9 E* n9 h0 m  F: Q: o
    ; q9 C" j1 H- l5 `
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    16 小时前
  • 签到天数: 3105 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    . S+ ]' d+ E( E  O4 ?! \$ q6 I我推理机的核心算法应该是二叉树遍历的变种。% f% K9 Z3 o5 Q9 b* m; H7 O& o
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:+ ]1 _' N1 f% t& G' J! n
    Key Idea of Recursion
    ; P( Z  Y$ d/ C& U1 A4 v; K% J
    2 F2 n$ F( J4 {9 oA recursive function solves a problem by:9 h* w: C2 g- E

    ! \* T9 V" @1 q1 d: W    Breaking the problem into smaller instances of the same problem.9 K; V; t8 k: x' I
    7 A0 `. |4 E7 b& S/ S
        Solving the smallest instance directly (base case).
    ' s8 R3 F3 R& v- ~  _9 a& R9 T7 a# k1 F! v$ W1 J& l9 w
        Combining the results of smaller instances to solve the larger problem.# \: N6 a& _$ A$ d
    ( ]: F6 n: E8 G
    Components of a Recursive Function+ ~3 M' ^/ m' }. ~2 T- ^" w3 V
    * z2 j+ _% ]/ {3 p  x
        Base Case:
    ) G: R+ ^  @; X+ i. K( C7 V) r) Q
    " R- g- _! _% ]# u6 }  B        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.4 q) F" Q7 z' Q# Q

    $ J" E1 q% H0 Z3 p& C  D        It acts as the stopping condition to prevent infinite recursion.( M2 A. h1 P4 j1 C* `
    ( X5 B+ b  ]* Y$ G; k
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    * E! I" ^' N5 B
    ; {. |* @2 n; w* @/ m    Recursive Case:2 K4 n$ p( f/ o8 \* \; k
    : J- j) b1 v# V% t! a  x" ?( ]
            This is where the function calls itself with a smaller or simpler version of the problem.+ L4 i6 H9 |7 l

    $ o# r; S, c( \% R" `' i        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).) L* S! s' a/ e6 D; X

    5 r" A* [+ |& z. VExample: Factorial Calculation
    1 x0 r) I1 A% _) q/ d3 X: d: A  |* K1 `$ r1 q" o4 r
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    0 |+ \& t) ^, D  {% ?8 S) M1 E
    8 H- f% |' X+ o7 T& C: d    Base case: 0! = 16 G$ r9 t. ~7 w2 Q
    ; l3 P. x9 P; k' U4 [9 E
        Recursive case: n! = n * (n-1)!1 [: X8 Q* y2 o+ l% p' h1 X
    ; a2 A3 I/ X0 m; o. F+ L  v( k
    Here’s how it looks in code (Python):
    ; A/ O7 U2 X6 r7 Z1 ]8 [python$ ~& @) F9 `( W

    ; p7 U% W! l, u4 m& u: p4 ~4 Y! f7 H/ i( W
    def factorial(n):
    / C. `7 G, q: n2 |/ K, R! n( A    # Base case
    0 g4 e! i/ k, A$ R" o    if n == 0:
    ) j0 t- S; f+ P        return 1
    , E% n$ _3 N$ B4 G; {4 T    # Recursive case4 K  v. l9 D5 ?  |- f( m; b# Z1 ]
        else:
    ; D5 |1 X) \1 ^        return n * factorial(n - 1). J. N  O% C' M) U7 q- N8 X
    ' M; G, V# p5 Y) w' V! k0 e/ x
    # Example usage
    1 W8 x/ W7 c! \print(factorial(5))  # Output: 120) ]8 R! \8 A; W

    . E7 d$ b6 A( J' C5 nHow Recursion Works0 o  y( y( ]# P+ X( m7 W

    0 E3 e9 s- U+ U' w: }    The function keeps calling itself with smaller inputs until it reaches the base case.
    / i0 a, h( U1 ^! D: d! _0 n) p; g; J+ r/ x
        Once the base case is reached, the function starts returning values back up the call stack.
    : X9 K/ ~2 n' b1 o, I0 p7 w, {( z% K/ N/ {
        These returned values are combined to produce the final result.
    9 O* L1 g3 f2 n/ O) Y# c! T( d( Z% U1 W
    For factorial(5):
    5 w9 [, a8 b0 A5 g7 z. F( v# d3 `% k7 C5 {  }$ ~
    2 v1 c. t+ g+ k( t' T
    factorial(5) = 5 * factorial(4)
    , r! ?( x. L/ e) H1 y1 f) t6 Jfactorial(4) = 4 * factorial(3)
    & B5 ?) F- {  gfactorial(3) = 3 * factorial(2)
    $ ^+ v# L0 Z1 ]) c( [1 j0 {factorial(2) = 2 * factorial(1). c' E1 q6 ]# e4 z
    factorial(1) = 1 * factorial(0)( l8 ?( _% ~! ?! w. X" }( x+ b
    factorial(0) = 1  # Base case: j) S2 x6 E7 ~* A: A

    ( v8 B+ H0 T. c9 F# mThen, the results are combined:* B6 p6 \* \3 W$ }$ c6 }# Q

    1 W9 `$ b3 y4 C: l1 v& v1 Q% i5 L: a' T+ e9 W4 J
    factorial(1) = 1 * 1 = 1, p; P. [& c# o4 h
    factorial(2) = 2 * 1 = 2! d  q1 k( ]- m5 ?* y
    factorial(3) = 3 * 2 = 6' T, G# f" U% _( z! v0 V
    factorial(4) = 4 * 6 = 24  t9 k' C. R5 y7 e
    factorial(5) = 5 * 24 = 120
    & S& Z+ N( i9 X, O0 c9 q) Q  P5 l% D( L5 a6 f/ a% W
    Advantages of Recursion) `4 L" c- s4 [! R
    9 W. Y) t% W! _2 K* E6 t
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    ) x8 p" q& n/ a
    * G: g7 U# @5 Q4 G& f7 H. w    Readability: Recursive code can be more readable and concise compared to iterative solutions.5 N8 t1 f- b8 U; C

    1 k8 m, h7 m6 I, n' i# rDisadvantages of Recursion
      [" _( }9 }# l5 J/ g7 F& D, _% ~& K, m' z
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.! s* J9 ?: w/ o" N. I8 b. U& k* V

    ' a' A, I/ r# ?! ^) C/ ]    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).2 o, k+ W& f/ _7 x. N& _
    * r; D- R/ L3 C
    When to Use Recursion- x+ E2 }9 E" i* x, f

    8 Z" _! ~% H8 q8 L    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).% `8 W# W1 ?2 ?* [

      f% {' R8 S; O. M: p$ u7 A* w    Problems with a clear base case and recursive case.) T2 s3 s3 A8 ?$ H: l& l
    # f; p6 O- ?# z) y
    Example: Fibonacci Sequence
    1 J" A' j4 c+ L! t( T. Q; G5 N! Y# C% L* ^! M4 c: I4 _/ B; ]
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:, D9 m) \3 U6 r
    , Y# [6 ?% X" i4 f. v
        Base case: fib(0) = 0, fib(1) = 1' b8 z+ q  ?0 Z: F
    $ d3 }5 |( P+ h3 e
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    6 T# D  z0 Q" }% c" C
    ( l7 \% j9 J: C7 H* n4 Mpython1 W6 ?$ \; y  |3 [
    ! I: J/ z- o4 o" g6 Z5 A- |2 h9 D: e( U

    ' @8 }0 q+ m0 e# j( Y6 K- Edef fibonacci(n):" g2 M/ K- n( _" J- A% o5 K% `
        # Base cases% k$ E- }+ q6 N. h
        if n == 0:
    2 {& t+ z6 Y/ z5 D        return 0
    ; E+ R! h% S) d4 A' S1 T- ]  e    elif n == 1:
    ' N- F: G5 p3 r5 e  E6 j- v1 H        return 1
    6 w4 |. k. P5 a/ p    # Recursive case
    6 h( B1 ?% f, h3 H) k    else:+ I0 W$ e4 G4 a* s6 M$ w
            return fibonacci(n - 1) + fibonacci(n - 2)1 G/ G0 {4 U& u7 Q$ q, z
    ) }+ \8 h$ s% A# l+ B1 I5 {
    # Example usage9 t9 d4 u# f, Y: j! X
    print(fibonacci(6))  # Output: 8( e6 J( n  _/ ~  R1 ]# e
    2 i( S9 J5 s# M% b6 U% n
    Tail Recursion6 {9 W. O, G% ?9 R: c# V% \3 D+ |# \
    8 z; G3 m" V5 I& Y2 o) m
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).) z. X+ V5 V; F2 x8 w+ S  |. R
    7 P$ s4 S) T6 G9 Y5 d: }
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-30 22:51 , Processed in 0.037227 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表