设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1261|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    5 K. |- T) b3 w8 \1 W* r
    + B7 b! E4 Z/ e6 {* g, S6 G! ?  p解释的不错
    6 j# f% r9 b& O" N# |
    + F- d) p4 o0 Q' V4 H) M* |' o递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。2 w8 N$ U; [2 r& R& o& E
    ) H' A2 J, l* p) H
    关键要素
    5 B. s9 r7 N% `; p' |1. **基线条件(Base Case)**
    6 m; e0 {- o5 I3 j$ o. n# D$ m   - 递归终止的条件,防止无限循环5 ~6 L1 R3 c% i
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    / A, T7 M9 s& `7 Y: G" @/ ~/ s$ y. w0 L( x; u7 s- a6 m
    2. **递归条件(Recursive Case)**
    ( k( f3 ?) a" T# O! z# r   - 将原问题分解为更小的子问题
    $ V( a) t# @* [$ K   - 例如:n! = n × (n-1)!
    ; v$ z" \5 q$ n) p! g: k; M2 i5 M3 T. c  o# D# e
    经典示例:计算阶乘, d+ i! Z7 t  q
    python4 h* V" {1 e/ ]6 v( T% S
    def factorial(n):: N) q* r# o" n9 L( i
        if n == 0:        # 基线条件
    ' s8 M. J5 Z( f- l2 V5 V" g        return 10 D7 }5 K8 Y1 c( g/ K9 @, M
        else:             # 递归条件
    0 o5 t- _; Y+ p8 C! p( E        return n * factorial(n-1)
    - j2 I3 k! D! I) A* L执行过程(以计算 3! 为例):% r# [( [5 T5 V
    factorial(3), o* ~4 D1 }+ f. t
    3 * factorial(2)
    7 B( P% Y5 g; C6 i5 ~- ]3 * (2 * factorial(1))0 e7 k) {& e: m9 J5 U
    3 * (2 * (1 * factorial(0)))7 F2 s6 `3 ?: ~* Z0 p
    3 * (2 * (1 * 1)) = 6
    " n! Y# {4 I& t3 Z  ^- k
    . @% K) o. O( F8 _- M 递归思维要点
    ) _% D# Q4 B* g# B3 G5 W1. **信任递归**:假设子问题已经解决,专注当前层逻辑4 h3 w$ G7 [( n) ^
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    ' Y* l. u; ]7 I3. **递推过程**:不断向下分解问题(递)
    6 P1 Y# y( c% q8 P7 R) K0 S* h2 v4. **回溯过程**:组合子问题结果返回(归)
    & B3 j0 ?6 {4 r  t1 f; Y1 Y  S( w7 }& u% `+ u
    注意事项0 [9 U) k& J% l# ?
    必须要有终止条件0 x5 I# i+ b7 C/ ?' X8 x6 }& S
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)! ?/ @. Q  b5 C1 S9 z6 v
    某些问题用递归更直观(如树遍历),但效率可能不如迭代( S: W8 H% T5 w! P7 C; O
    尾递归优化可以提升效率(但Python不支持)/ i- u6 c7 x8 _- |
    - x- f$ @- k& b. u2 `
    递归 vs 迭代
    9 Z9 o- O: h# O# O" v2 x|          | 递归                          | 迭代               |
    & V9 U& D4 Y5 P7 F. Z|----------|-----------------------------|------------------|- B0 H9 O* i  B, W3 A' D& C% x
    | 实现方式    | 函数自调用                        | 循环结构            |* w: W% N' A% S7 Y# ~1 L, n
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    5 O4 P1 T7 z4 k9 P| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |! Q+ |7 m4 R! |. a
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    0 f# y7 Z% f2 K7 ~2 R: }$ d
    ( }1 p: N- K) V/ K 经典递归应用场景
    % s/ z$ U  F: r7 C- x5 k7 j1. 文件系统遍历(目录树结构)7 X1 Z; A  g7 e5 P
    2. 快速排序/归并排序算法! r) c; V4 ~/ s- J
    3. 汉诺塔问题. g; C8 T$ @! [' @6 Y7 L7 [) d: b, A
    4. 二叉树遍历(前序/中序/后序)
    / T2 h7 N+ K% f+ I( b5. 生成所有可能的组合(回溯算法)6 W; P* @- j; z! ~' d1 D! m

    0 k- n9 Y- h/ G, X1 }' v- q9 ?试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    昨天 06:39
  • 签到天数: 3105 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    # M% I. C$ Q9 J& m我推理机的核心算法应该是二叉树遍历的变种。
    5 W; H8 F3 Q% O% @) `, Q/ _; x另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    4 Y" E  w$ `6 |Key Idea of Recursion! j1 n/ T2 m. d/ n4 ]
    4 O8 L6 ^. ]9 T3 b& d* ?' g. K
    A recursive function solves a problem by:
    6 }6 s+ p( h; z, q
    ; }7 Z% A* L" ^5 f- M3 {9 f" O    Breaking the problem into smaller instances of the same problem.; p) {6 O" Z! _! l5 T0 s* F+ }

    7 c, S; `8 \$ F8 D% C0 F    Solving the smallest instance directly (base case).5 u7 ^( g1 U. i! X. ^% f) ?

    / T! [9 z, c% z    Combining the results of smaller instances to solve the larger problem.% c+ w, H7 O+ l& v$ ^* D
    - U# S7 S! Z0 j
    Components of a Recursive Function
    " y( q2 N/ L2 y/ z, f% n3 t- Q5 {/ ?; Y8 m) {% ^/ q0 A
        Base Case:' y8 g$ c) C2 D( ^2 B6 G1 K6 A

    # q# H$ v+ F1 A/ p6 l        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    ; ~/ @1 s6 I5 H% n5 K
    2 c) H, `( r4 U, l; f, F' c. b  ^) G        It acts as the stopping condition to prevent infinite recursion.3 `* Q0 z9 N, i5 e( N

    3 S. ]# ?* T# C" j( T4 @/ }        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    & T% g  l0 }- o/ l7 Q( g8 C5 m0 L# o3 r6 ?5 @- u9 d' @- a7 O
        Recursive Case:. E. b7 @9 I3 V! T0 n8 ^' M
    # {0 [( `# r. ~! q! |
            This is where the function calls itself with a smaller or simpler version of the problem., M3 L4 R  p7 |5 k: ~
      Q' G4 t8 c6 z) b2 ]! w
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).  N3 e, d( Y9 k% Z2 P& }% U
    9 J) u  [: n" Y/ s2 l6 T' _2 N
    Example: Factorial Calculation
    & A' F6 j. c! ?' I0 s, P% R' R, [/ p' J( U/ q, J6 t* z3 B, p
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
      q$ H. ~+ A. d; E+ }
    ! _" ]' ^" Q3 V/ a7 I    Base case: 0! = 1# |9 p3 q: `) A3 C: N) H

    6 ^" s4 x; ^8 |& ~& M6 |( q" u    Recursive case: n! = n * (n-1)!: e* O0 e# _1 L

    6 F1 ~2 b# L) o2 }' W6 aHere’s how it looks in code (Python):
    ' e: M6 I, B+ D3 ?python, {  z, ?: L# Q, l, D% i3 u6 c; x

    ( }6 s/ @7 n' u/ t
    ' ~. y' {! Q2 X8 x$ `- B, F0 idef factorial(n):
    * U. X" A+ e- [, d    # Base case& W! y" M% l5 c8 V4 Q
        if n == 0:
    0 t4 B: q# e/ j2 y6 n, ?        return 1! I' `- ?3 N! ]4 R$ L8 ?
        # Recursive case4 N9 p4 K/ \1 g
        else:
    . Q9 V8 B3 r6 Q$ ~$ D; b7 ~, m        return n * factorial(n - 1)
    4 L, p8 ]  A* W, ~$ E% F) |2 v1 h! s, B# F5 I& J5 w% W
    # Example usage' z3 R( ^5 R/ o, P
    print(factorial(5))  # Output: 120- f3 ]4 S4 @% f6 w3 z/ N# R( H9 V) z7 p

    9 B- x. Q2 K2 S/ @  G, W  ~* y6 bHow Recursion Works
    $ P9 ~( V% _! D: R: r% M' X: [) x4 p
        The function keeps calling itself with smaller inputs until it reaches the base case.
    4 J0 `( Q# `8 S& v5 J" G" S5 U) p9 h7 S2 K1 @$ Y6 j  i8 y+ p# R
        Once the base case is reached, the function starts returning values back up the call stack.2 M  q, ]8 ]& a( s, F2 s
    2 G4 {0 \6 H) Q" b( m
        These returned values are combined to produce the final result.' f7 ^% o# t. }8 l& q6 U8 S
    ) h. E! p" ~" @4 R
    For factorial(5):! A7 i9 S, Y3 f. P: p0 L

    1 z; r2 O  [1 \3 r: H. |
    ) z% m6 ]; z* v9 pfactorial(5) = 5 * factorial(4)
    # o0 h, n# o9 L" Ufactorial(4) = 4 * factorial(3)
    4 m6 T; L2 Q. c8 F7 u5 c( v8 m+ ?factorial(3) = 3 * factorial(2)6 z6 ^+ T4 t  B$ U/ x" P8 b# |
    factorial(2) = 2 * factorial(1)0 b) ]0 o4 T$ ^$ c3 ^
    factorial(1) = 1 * factorial(0)5 g5 i' g) D, T" l3 A, H
    factorial(0) = 1  # Base case
    9 B  A# z7 _3 w  J! e4 Y4 m
    ; x8 O% ~1 l& P# l- Y, P8 I: k) \) sThen, the results are combined:
    . M& R. F  D1 s/ V5 X0 m2 [' D2 Y! y, Z- C

    9 N; ^4 k" U5 v5 e0 F( Jfactorial(1) = 1 * 1 = 16 C! f6 k% ]( M  l2 B
    factorial(2) = 2 * 1 = 2
    . [( N0 [5 l2 tfactorial(3) = 3 * 2 = 6( G$ p- ?" N' P: u2 x- \" g/ U% j
    factorial(4) = 4 * 6 = 24; Q+ t+ i0 K2 l& h6 z3 Q
    factorial(5) = 5 * 24 = 120
    6 M5 B4 t% t+ q5 q6 B! C% j$ ~/ s
    ( G4 I4 f! M% wAdvantages of Recursion
    ; u9 _& }( ^) R9 _0 L" D' O. p
    * [/ Z, F) W! Z5 y# L8 D    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).6 Z. \6 G; @4 [# N1 c7 `

    * A; x6 R- B' f5 O    Readability: Recursive code can be more readable and concise compared to iterative solutions.5 t4 H# x8 i* s) M* W# j/ l0 n2 L

    + R4 {' L! d0 j+ e1 YDisadvantages of Recursion, J- b; L6 R+ d: X5 J
    * h) T$ Z4 N7 }& M) ^: U, B! x
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.9 v' j3 G- I) j$ |* t  I  V8 l: n

    6 d- X9 }2 N) g$ V+ O: K    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    . W) a4 U3 z+ D3 R# ~- p' J5 U. z2 d0 N( U& ~
    When to Use Recursion. [) F9 `1 k. F/ l1 T5 K2 a
    3 \" O, [, @; H% k
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).$ E/ z* Q( q) k8 q% z+ K

    7 O4 x8 D9 N/ A. X( }8 o1 K* W    Problems with a clear base case and recursive case.
    ! @; Q7 Y" r6 Y' \% N4 \
    " `# o: J! J$ AExample: Fibonacci Sequence9 v6 V( J% I* s
      R+ \; F5 a& L8 y  ?
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:9 h3 c0 i* }! m6 v, R6 }
    + t3 |5 T; }5 k6 Q
        Base case: fib(0) = 0, fib(1) = 1
    $ N  {- A/ ?* J3 d/ t; }3 G! O3 @( k
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    7 i. j( C0 o8 U) |: s' y, _* [1 P  k- k
    python
    " ]( C4 d% W) r: W" v, ^. {/ y; d/ K8 ^$ w8 K5 S: ~2 E
      y6 U, q) i1 S5 m# j2 @) u# F3 R
    def fibonacci(n):
    , v6 R) c6 x/ r" O5 M+ |& G    # Base cases
    ; L% J$ V. x1 b* i; Q( G( _    if n == 0:2 G! z; Y2 S7 x- Q7 i9 C' q
            return 0
    9 {; b! ]4 `% }/ v    elif n == 1:! c% U5 r1 ^: G5 z; Y! e& R
            return 1
    4 G* B8 E: E: N- C0 I" m( J    # Recursive case% D8 e: ?1 f$ {* x/ N- k: x( w! D
        else:5 E* ?0 N+ [$ H4 _8 I; E9 k! I  ^
            return fibonacci(n - 1) + fibonacci(n - 2)4 t1 k2 K6 w4 B# T( z' ]. x) Z

    + m" ~' H0 q$ Z- b# Example usage
    # |* _. q" M. X0 g' z% [print(fibonacci(6))  # Output: 8. Y* U8 U7 A% `5 `

    , n, g4 T. a( y3 {( a( S* f$ DTail Recursion4 @: \6 X$ i9 r3 l
    9 U; J9 G  I6 m7 r
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).  v/ l* ^) u4 e$ M1 \0 S9 e+ W
    0 m- Z/ C9 G* P) d: s% M% W& y
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-1 04:09 , Processed in 0.037217 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表