设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1851|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    6 c  B1 H; ~' R2 D" A! U( X4 p0 R# _* t
    解释的不错6 V7 U7 [: k2 k4 ~, x/ r/ I

    / Z  J+ o& y: j8 O- c递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。" k# P9 @7 ~" Q# [
    4 R1 f' w/ v" ~: V: W
    关键要素
    3 a# N- d; x( b( N! r1. **基线条件(Base Case)**
    ; C1 u( Q' \( s  N   - 递归终止的条件,防止无限循环" B. h& d# S+ [4 s! J2 x6 I: k
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1% l, f7 N% N5 j( r2 \0 ?- g5 m

    9 m4 S% Q; G" J% R7 ~% j% G2. **递归条件(Recursive Case)**( b& M* B, X6 \& Q/ e9 g
       - 将原问题分解为更小的子问题
    9 X) K5 D& o- W   - 例如:n! = n × (n-1)!( s. L5 j( M8 T: z

    & K$ C# A3 [9 l3 \% N 经典示例:计算阶乘, o8 I) n$ h4 E5 |2 a3 p
    python
    7 E3 L& l% O3 v  N. \def factorial(n):0 W% z% j' L: V- l& K! q% c" P4 S
        if n == 0:        # 基线条件
    % R" n& k2 z3 i# I1 j        return 1
      P1 g- ~% v; P& X0 g    else:             # 递归条件/ a' p; t9 U; S  X
            return n * factorial(n-1)
    * q% ?% ~0 H/ P7 a, z) ^执行过程(以计算 3! 为例):
    3 B  i" f. s* I5 s+ Rfactorial(3)
    0 g0 ?) F3 E1 C3 * factorial(2)( j) [4 v: D% Q7 P) I. ^% P* g
    3 * (2 * factorial(1))# F) r1 N) Y, ~( X
    3 * (2 * (1 * factorial(0)))
    + v6 C7 c( _8 q4 x! Q3 * (2 * (1 * 1)) = 6
    0 O9 y# K; y; q9 d4 K9 f3 [3 w! B
    3 g5 Z0 \' E, E 递归思维要点
    ( q5 C- e: `6 Y1. **信任递归**:假设子问题已经解决,专注当前层逻辑8 l# a# w  y" ]* r% ?, |, j
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)# j0 E2 S9 G% j
    3. **递推过程**:不断向下分解问题(递)$ k& l/ K! p9 ]7 {; d. y/ u
    4. **回溯过程**:组合子问题结果返回(归)" m6 F" G8 k9 A) f  N0 L9 V# p2 f
    # w7 K' O, L$ L9 p7 p4 X
    注意事项
    # I* L  q' T- V2 d( x" ?+ T+ C必须要有终止条件+ Q/ }4 Z& N3 }( J9 a
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)& z8 [4 f# {2 J& V- G0 o
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    / ^' H/ b; H0 V9 _1 v" ]' L尾递归优化可以提升效率(但Python不支持)
    , \! ]: ~  Z! M3 j
    1 X. |( O# f' z 递归 vs 迭代
    - x& F$ m# ~6 g+ y- Y# S. o|          | 递归                          | 迭代               |
    6 g# a/ @4 R0 e|----------|-----------------------------|------------------|6 c8 q% Q( i2 O3 F
    | 实现方式    | 函数自调用                        | 循环结构            |
    ( B( D* f6 o, p: [9 b| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    ' ]. x7 r7 X/ c& `, v) Z3 \| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |0 ]- C$ P5 q* C( \
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |! G* T# a5 I5 F; f7 k1 X$ O
    & K% G) E, c7 h% w6 V
    经典递归应用场景
    1 ]" ?3 I+ T! A" @% V( t1. 文件系统遍历(目录树结构): k# r2 H% d, r
    2. 快速排序/归并排序算法, N" A0 r: d" w, \* R/ k
    3. 汉诺塔问题2 x* T4 U% G* q7 N9 O/ |$ P7 c1 z
    4. 二叉树遍历(前序/中序/后序)& Q3 P- w( |: u0 _) i
    5. 生成所有可能的组合(回溯算法)$ Q. _8 Q0 d; b+ |3 s6 ~* V1 O
    5 c5 Y  w6 M2 P' y
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    前天 06:31
  • 签到天数: 3146 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    2 L7 z* N& l, }: ^: v我推理机的核心算法应该是二叉树遍历的变种。8 D6 U8 V, X6 G( }$ ]
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:1 \3 u" t1 m4 P- ?& e6 {
    Key Idea of Recursion# U* Z- F4 m! W! R( t# R
    6 s2 W) [. V) r+ ~
    A recursive function solves a problem by:' x& T0 i2 h( e8 r0 N+ |  x

    1 M5 z5 l' u) c/ F! E( z0 l    Breaking the problem into smaller instances of the same problem.
      v2 X' `& s1 }( }+ t/ ]+ d( D- b8 }, G9 ]+ @5 g: r- e7 z
        Solving the smallest instance directly (base case).
    & Q) j+ k/ D/ `+ u$ J
    " y2 [: ?4 |6 h  `- f    Combining the results of smaller instances to solve the larger problem.) H, H3 O, m( F/ ^$ Y: v+ v' ~
    % u. e/ B1 @8 [" w! H2 j1 P
    Components of a Recursive Function
    # d5 O. j: z$ I. w2 p7 m% d
    - ]9 F5 }" ]3 w1 q    Base Case:
    3 z/ X  U1 `" Z7 c. M% O5 J# ?9 j9 [3 ?7 h* |& s! B
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    7 I3 g$ Y& i2 l2 E( m
    ! o7 v% i+ h) ~# R# k        It acts as the stopping condition to prevent infinite recursion.
    9 u9 E% b# x" l4 Q2 `- ?5 O
    ! b# V' P- h2 S0 u* f" L/ L        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    3 D8 O& u1 E& {  T3 Z: e8 k# ]( Y7 N& z# r
        Recursive Case:
    % ?5 S. k% T, }& P8 ~, c0 V0 ^) @2 c' O5 M. Y3 t  p
            This is where the function calls itself with a smaller or simpler version of the problem./ h+ `3 q: @# g' k) }) h
    % G) v) {" v, S- Q4 L
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    ; T2 T" W* V$ b% e/ u5 b" D: N$ T' Q9 u
    Example: Factorial Calculation
    / S7 f3 [/ T, }1 {( Y7 y' A* F3 j. G
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    4 M+ q' w$ T& A; u4 C0 e2 ^  E# o
    . H0 b9 K" |. Z! h8 X9 \2 H    Base case: 0! = 1* V; V9 S. ?% h4 J

    % ^6 s2 E  ~+ t4 C/ Y4 T+ M    Recursive case: n! = n * (n-1)!9 H0 x  i0 ], E. B) r3 U$ [4 i5 p

      H4 K. S- j% b& ?Here’s how it looks in code (Python):
    - y+ e9 T7 K( y  C* g* d0 ypython  l& J/ O/ t4 c1 m3 l/ W+ A+ \' ]
    . Q4 \+ Q0 W; V; c

    4 }* U: }; n( B# b6 s9 Tdef factorial(n):/ n+ c2 H4 d+ U
        # Base case* g8 N  U$ K  V0 w) ~/ [, o6 ?1 l
        if n == 0:/ [9 x# M" a+ ]9 [# g
            return 1
    9 T& W% R8 M6 w7 j! ~( ]    # Recursive case$ l1 F4 u) |: ?, ]# G; ^! Y. a
        else:
    - t: Z% P$ I6 d0 ~1 u" V, V! k        return n * factorial(n - 1)0 g  j) W+ E/ H

    ' M2 N6 s1 {! \+ H. M, X) o# Example usage
    ' e* c' |2 c' r3 e& Tprint(factorial(5))  # Output: 120. L9 r1 m' l% h$ r5 u8 i
      h( t& }2 }9 @: c: P
    How Recursion Works
    6 X; c' R, Z2 p1 r6 R5 g3 a  B" E( E! Z+ t4 u9 n+ t
        The function keeps calling itself with smaller inputs until it reaches the base case.
      z) E9 X- W* ~% [" }' E$ M- o7 C0 W. N* ]- l; {( m+ J- ?
        Once the base case is reached, the function starts returning values back up the call stack.
    ' M% @; {. G# {- N/ k/ Y3 ]5 g$ E1 v6 M
        These returned values are combined to produce the final result.
    ( {, o0 C/ R, e# v6 {+ F) p* p9 ?- n% ?4 _) E# d8 w. S
    For factorial(5):/ [& \$ v6 ]( f( G& N( ?

    ' [$ K0 B1 e) G* A, v0 S% ~/ O  S  X( R3 t
    factorial(5) = 5 * factorial(4)) {' r* J  B8 ?, F! r
    factorial(4) = 4 * factorial(3)5 H/ c" D, c! K1 h
    factorial(3) = 3 * factorial(2)
    / _( j& J" e* W2 i4 u( j5 R; W- e) Nfactorial(2) = 2 * factorial(1)# Y7 }' S$ }/ \5 t
    factorial(1) = 1 * factorial(0)2 u& j4 F+ t6 ]: K$ Z  ?6 b* J
    factorial(0) = 1  # Base case0 {, j" p: a- i8 r

    : ~  h+ Q+ F7 p0 `( p" h& FThen, the results are combined:% l1 Y8 k0 T9 I- m6 j

    + `( _: T7 G/ V" \1 \- w6 @' _  U3 t# ?% k* G6 u% ^
    factorial(1) = 1 * 1 = 1
    8 K  |& w# z8 k( k' P' j, Pfactorial(2) = 2 * 1 = 2
    3 r5 m, |" A9 b, Wfactorial(3) = 3 * 2 = 6
    / e/ C* v' t+ W" m. ofactorial(4) = 4 * 6 = 24
    2 i+ u1 V% Z) {factorial(5) = 5 * 24 = 120# c$ f, ]- q- ?
    . o  S( {# ~7 {5 u. ?  Y
    Advantages of Recursion. I( _3 D" G" S" o: n

    5 s/ h6 S( {5 |6 V0 u- {$ |    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    7 _7 t3 n: i, T" H4 k. o# a6 A
    ' C  s3 P6 f! m2 N: a( j; c    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    * N: V) [; h! r: p( Y7 R' N* }5 U: w% q  o
    Disadvantages of Recursion, ?: W) O$ e2 {+ ?0 u' {

    * X+ s  _3 W, t! ~0 Y# d    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    / N+ j  [& \9 d9 u& y
    4 t, f; |8 W( Z" |2 f" }    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    8 ]/ z  v: M2 e# D& ?0 ~1 u+ A& o) w; p9 a9 @4 x
    When to Use Recursion
    . \% g3 L5 ]1 K! y2 m2 n9 _) L3 b% A, k& n8 D  g9 Y
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).# A  Q& S  Z- s, l% S6 a4 ?

    8 Z1 s$ s) v" f9 l6 `+ R    Problems with a clear base case and recursive case.
    4 n7 _( O3 y+ Q9 E: M+ U$ Q( d, X
    Example: Fibonacci Sequence9 v8 c8 N6 C9 J- A- |

    % G5 e# c: `) q, C5 M6 [The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:$ `: C( _& Q9 f3 K- ^

    $ \) {7 e/ T: P6 N$ R; I  X# g    Base case: fib(0) = 0, fib(1) = 1# S1 D& q4 m# [. u
    9 ]2 ?+ d8 d4 W- u
        Recursive case: fib(n) = fib(n-1) + fib(n-2)0 m3 o* ?: O4 W6 T/ F

    ' G" ?) p' {  Y" T7 rpython
    4 v- y6 ^! g% s! k; Y) H8 c9 C# F" ]+ Q. c2 j8 o
    $ e4 d! c8 }- W
    def fibonacci(n):
    8 U9 X! x8 Y) `( O: @2 R    # Base cases+ E- U4 H: q# c9 C
        if n == 0:" P- f. B8 @% L9 C
            return 0! r0 y# b' }& ?+ [; ^. z
        elif n == 1:' O% F1 a" q5 K5 C5 p+ j9 @; R
            return 1  Z3 Z2 g) X  z/ E
        # Recursive case" G& ~1 @; y6 O3 M3 \
        else:  _) J+ ^: c2 M' ?4 `
            return fibonacci(n - 1) + fibonacci(n - 2)* k' \7 D8 G& y) N. p6 ^
    ' e; |9 A1 @* c" f2 {$ U
    # Example usage
    " C4 ^' i  {2 M6 {% t+ |8 N/ d4 Nprint(fibonacci(6))  # Output: 8+ ?5 k7 ?+ r& |: P0 g( s8 p& r: G8 F

    ( e5 Q" p* j; X6 F- N  T. ^Tail Recursion% m  I/ l0 F, q3 f" @

    # W3 C7 W3 G/ S" t" P  K2 o7 G8 O6 NTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
      |- H* u7 M) G& U8 M& C, a4 ], D) B; ?- F8 p
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-16 18:13 , Processed in 0.029392 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表