设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1718|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 ' W; c+ l  J; i
    , v3 c$ @+ U  A& f% M% M
    解释的不错
    % `! c) M' p1 N0 t; e( T
    ) f4 h0 q) t& j' H3 r1 U5 I递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。% |7 y' J) `5 d
    / k* \* T$ R( }. M! H) h
    关键要素
    " Q( e) v% H3 g- L2 m5 z9 L: Q1. **基线条件(Base Case)**4 d1 k5 {& m4 B( p7 C# D: Y
       - 递归终止的条件,防止无限循环
    ; p) d% K% [" f, O% H4 i   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    ) d6 s- F  d& v( t  U9 E# {2 r& J! r+ k0 D) s2 f
    2. **递归条件(Recursive Case)**' T1 Y) d$ t" e% H: x, Y$ h
       - 将原问题分解为更小的子问题5 V# N9 b" Y8 S! i$ I/ C
       - 例如:n! = n × (n-1)!
    - [3 B7 q. o: p/ m, e* I
    ( b% X; s, ^6 s 经典示例:计算阶乘
    9 S. j  D" `! g  H) e! Hpython
    : l) U- Q; ?$ k% W) O* Edef factorial(n):
    . `+ i3 m% }; s- z9 O( d, `; U3 V    if n == 0:        # 基线条件
    - a5 h- `9 O, @6 ~+ H        return 1( a% [) a! N3 R# Q5 T" b
        else:             # 递归条件$ r' b0 i# @9 I* _8 s
            return n * factorial(n-1)
    # a! W7 m) s0 A0 @% a+ D. @执行过程(以计算 3! 为例):1 D( I# h2 C8 D2 x2 e% l
    factorial(3)7 }2 ^2 n, U( i  i: l4 I: f
    3 * factorial(2)+ @7 }0 g! t2 d- A# E5 }
    3 * (2 * factorial(1))
    - q/ f1 V# H8 Q+ E* d1 U& c# A3 * (2 * (1 * factorial(0)))- b0 r) F& z0 U0 J8 X- |; t) `* \
    3 * (2 * (1 * 1)) = 6
    - G; L: j3 d. h* E
      \. R4 p0 F1 Q( `, p 递归思维要点0 N9 V6 a4 s) ?
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑. [, t# x, u) z; K
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)8 ]/ g% w$ C3 f9 f2 A
    3. **递推过程**:不断向下分解问题(递)
    7 Z# C: F5 i( l/ W: @( Y4. **回溯过程**:组合子问题结果返回(归)
    6 }3 i; c  u3 E7 Q' U9 m! B# P2 ^. S! u" s' l( ]; B
    注意事项
    % r2 z5 B8 W! k: q& `必须要有终止条件
    6 i# ?2 E1 _5 H4 ^4 w) X% z递归深度过大可能导致栈溢出(Python默认递归深度约1000层)) e9 }5 f- |! p5 O1 |* q
    某些问题用递归更直观(如树遍历),但效率可能不如迭代% l+ \# S4 }4 R' n. d7 e9 n
    尾递归优化可以提升效率(但Python不支持)* l3 O1 @. U' Y
    ! k. e, L2 K7 e% l) |& _3 P, F/ I
    递归 vs 迭代
    ( e5 n5 B0 h' ?* e$ l# B|          | 递归                          | 迭代               |
    ; c2 Y! {, O' {( x1 q0 p) U; Y|----------|-----------------------------|------------------|0 I1 l. L- p9 U7 Z6 S) D
    | 实现方式    | 函数自调用                        | 循环结构            |
    ! o4 y9 P& J/ e- [| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |1 J- r9 o( j2 C9 F% W+ e
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |8 C/ j- ?- A) {, i2 a3 j
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |# v) U2 w; n* D$ r; @

    2 o3 O7 W  A& Y, ^0 a% w 经典递归应用场景
    : C% S: z* S" A5 ~7 S$ l/ O1. 文件系统遍历(目录树结构)9 N# ^  L5 t. w0 F  U5 Y
    2. 快速排序/归并排序算法) Q4 [+ x: e3 {" Y* f- Q2 W& u
    3. 汉诺塔问题1 U" J1 R% a3 I! h0 D
    4. 二叉树遍历(前序/中序/后序)5 w3 `/ Y* Z- d  \  w% ~
    5. 生成所有可能的组合(回溯算法)" n; c4 \# A, L
    . S' [* w) D; w" Q6 X- s
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    开心
    昨天 15:11
  • 签到天数: 3133 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,2 t$ _. X7 J' Y& f5 k1 B5 o/ P& ]
    我推理机的核心算法应该是二叉树遍历的变种。
    # M' Z# W& @$ L6 r另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    , F  Y7 }6 L( S% f7 wKey Idea of Recursion
    0 u- L2 X& E/ {9 ~6 p: j/ t% @6 a* V3 Z7 O3 [" T" Q' u, K
    A recursive function solves a problem by:
    : y- f9 A. X. y% s
    + J, ^- r8 T; b) M# _- H    Breaking the problem into smaller instances of the same problem.; a( |! o  A" x& Q4 w

    : u" ~8 H$ I+ |( I& o" Q    Solving the smallest instance directly (base case).! c, k. k6 X. E. ~' @4 a
    7 ?2 Y7 D( s4 r: y! t% _  ~3 q
        Combining the results of smaller instances to solve the larger problem.4 n  R' D6 K6 T

    $ \  Z0 y: a. \  Y6 yComponents of a Recursive Function
    ' i- N1 b" L0 w$ Q5 v4 c0 ]* e  |$ u5 G0 u" X
        Base Case:' N9 S6 l+ k& U* O, h

    5 I$ e0 ?2 ]! x' O! r  q  T8 I1 c        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    & @" G2 G9 z5 n. @3 N" L9 [. U: ]. u' h  {6 f9 k4 b2 ~. N
            It acts as the stopping condition to prevent infinite recursion.
      Y6 C8 I3 G( M2 l6 j6 w! ]
      B2 [' y2 i% a3 o1 K3 _3 ?, @        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    5 `7 g) w5 ?0 j3 P& `( u& }
    9 P0 j$ L/ }$ o& G+ y    Recursive Case:" h, e* U$ Z/ ^, h! {- q" u
    # \, [& V" i. U: A2 z" `+ |* d% S4 w
            This is where the function calls itself with a smaller or simpler version of the problem.* C. H% |5 x2 P/ [) z+ L
      n) ^- H: c0 G% G( _0 g) ^
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1)./ p7 }# U2 }; t2 _5 z
    ; `% K  f# L6 L( j' C$ q) e4 k
    Example: Factorial Calculation4 G- f/ J. Y# F; |: C, R
    ) f4 ^3 t5 m3 D9 k- l5 c
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    1 e  I- E( _4 A2 U
    ; d# M! Y4 k2 R7 m7 @/ l4 E3 Z% w    Base case: 0! = 1
    + k9 ]8 ]) K/ f# ^7 R; B4 ~
    & w! I9 `8 @, x, S% a- X& s" U    Recursive case: n! = n * (n-1)!. P" o3 o6 n7 {4 d$ f' C
    * M) r/ |/ ]* U3 f- n; S
    Here’s how it looks in code (Python):
    % A: Z5 H; X! w3 P( Hpython8 P, j" d3 @" W) o5 P" w

    / j9 H2 W$ c. a! V* C1 n3 d3 E2 H
    def factorial(n):
    7 o  W" w- o( ?5 c. I    # Base case
    3 Q& Z4 R. R6 M  M; r4 q) P    if n == 0:& Q2 G6 Y; P# E3 ?' V7 ~
            return 1
    7 U' W. [- f! P    # Recursive case
    # k% Q- [& Q& F    else:
    % b! F) n" n2 c; ~        return n * factorial(n - 1)
    # v" H2 v# S$ \' A1 L3 m# S3 V6 t) G8 M- ]4 R+ H; z
    # Example usage, n6 T4 R: Q* }' d( j
    print(factorial(5))  # Output: 120/ [, h2 S$ t: j7 r) I
    3 ^4 t% n" H7 T/ n* g! e; W
    How Recursion Works3 d% @* ]* C8 p# _7 {7 Q
    9 F) u/ c. _4 ^5 e5 `' r9 @' }, u( u
        The function keeps calling itself with smaller inputs until it reaches the base case.
    " o# }- |: N& j$ m( n5 {' b
    7 y+ H/ g; j( \, P1 N% i; m    Once the base case is reached, the function starts returning values back up the call stack.0 w0 K# H/ |! w
    " ?6 P$ `; n% j7 }  y8 Q
        These returned values are combined to produce the final result.
    ! H- z5 S# _1 z3 a; q  c0 F
    ' u8 I( S4 ~2 i" n, q& _; q/ v/ hFor factorial(5):$ I' q$ D5 P  l: o' Q6 H
    ! p, ]+ I$ n& Q3 b& Y
    1 O/ Z, t" q* l" y' l0 F
    factorial(5) = 5 * factorial(4)
      a( N. b7 n# Q* pfactorial(4) = 4 * factorial(3)7 j7 _6 h' Z8 l) \; I! g, r% u
    factorial(3) = 3 * factorial(2)
    ( m* r- R- X9 Ufactorial(2) = 2 * factorial(1)2 K. M1 d, g( H2 s5 P7 |
    factorial(1) = 1 * factorial(0). X+ @, d6 _8 P# h
    factorial(0) = 1  # Base case
    : ?8 z% @% k+ v1 O% U4 y$ y$ y9 a6 ~
    6 S% e( N8 y9 D- D! P: q; iThen, the results are combined:$ I8 f/ Q! ?! c& C

    1 _  v6 @8 j4 O
    % s, a0 A* z, qfactorial(1) = 1 * 1 = 1
    , S1 C( l- b+ Z; O3 j8 ]$ t# k- Wfactorial(2) = 2 * 1 = 2
    ' H$ j) T- n( a4 n% mfactorial(3) = 3 * 2 = 60 [2 H3 @% T" ^+ O
    factorial(4) = 4 * 6 = 24! F3 G7 a& p6 w  g
    factorial(5) = 5 * 24 = 120$ z: K3 a% C: H% y7 w/ Y

    % O. D2 t. M3 p  WAdvantages of Recursion8 r% x( e8 f. W; u5 d
    + H. K6 t8 c2 W: s- O
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    , y2 n8 B' P& u
    / r4 Y! B" l# ~' r9 n    Readability: Recursive code can be more readable and concise compared to iterative solutions.: v2 f! X; a! j+ y- ]. T
    0 a+ t6 g1 M3 M; w% W
    Disadvantages of Recursion
    ) U, _5 h7 N/ n* X' U
    ' U$ y7 C* d  o0 x! K    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    : @3 K! p3 `- ~7 s2 q$ ]. p' j9 Y
    $ S) z! m2 H4 k! t* x% D    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).8 S) w2 A1 D- Y  D0 ?. @

    % K3 X8 B4 @3 l- _. Q8 M; P, g7 OWhen to Use Recursion
    & L! T9 l  g7 _' R, o+ R" b
    ! B+ h4 p/ j3 j; B4 }! F    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).* D; Q: u' E- R( h( `2 j

      Z! B. j* y9 W( n7 L    Problems with a clear base case and recursive case.8 A  I( ]5 z" k" k3 m# O
    , N* e; d9 F+ B. Y# u
    Example: Fibonacci Sequence/ I, u0 q; J' [
    * n- O1 B  y" e' g& N5 A$ \8 E# x5 w
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    $ h4 W5 V* s: e" u  [8 V2 W. z: q2 e! x, a) j$ _# o
        Base case: fib(0) = 0, fib(1) = 1
    ; }  U) q6 r+ n
    , b% [& T: O& H! u0 }7 P2 l    Recursive case: fib(n) = fib(n-1) + fib(n-2)7 Q" ]& M- J# D. @( f/ z

    4 C9 Q3 X* i8 W6 c1 Ipython) o# z9 r4 Q4 Y9 Q/ K1 l
    ' y, n& J& C" f2 _1 }/ S9 t' T* Z

    % a( ]  x  I1 H+ A; T4 Fdef fibonacci(n):' L" t2 N( l& I. r& ^
        # Base cases. g; T+ L# T0 H3 _/ J6 `2 d
        if n == 0:6 z0 [, W6 O- {: x4 G5 y
            return 0+ N8 u$ p6 j* t$ K1 G+ D  w
        elif n == 1:
    . W8 Y  N# _9 T5 F% c        return 15 U# b4 u6 r/ P+ @" Y
        # Recursive case& k/ U; i" j* n' `3 H! s4 [
        else:
    : J, @9 ?$ K" ?        return fibonacci(n - 1) + fibonacci(n - 2)
    : P" x; G+ x' ]8 k  r# ?$ H
    : l0 p/ V2 D; X5 m6 s; X# Example usage
    * U+ z/ [. c( Q: b. d; T2 _/ Pprint(fibonacci(6))  # Output: 8
    % j/ L( V- R; |- p/ i8 Z  o, o/ ^) u: K  ]2 c) p8 ^
    Tail Recursion7 U  |0 n5 p, b1 ?/ ~4 _

      ?( k& e; p$ w3 S, p/ wTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    ( q+ ?. |& P8 V2 i, Z  a' z9 R# d& ]
    8 j- X' K" r' D$ \: g2 b' Y0 _% EIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-2 06:44 , Processed in 0.031075 second(s), 21 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表