设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1825|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 , c* ]' l( ^. C2 o; ?5 X3 \% O
    : |# g/ l5 O4 t0 h2 J4 x
    解释的不错4 M, `# j- ~7 N: f1 d( ]' P

    ' r9 [' c: K7 Q& ^# ~* y% Q1 t. P递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    9 q- d8 z" p& Q$ ~0 H1 t
    ; G. j' f1 J8 m( f) b 关键要素
      E* L) B2 E) m" q8 n$ R7 h5 Q1. **基线条件(Base Case)**
      D/ d" J' ~, P8 p1 g   - 递归终止的条件,防止无限循环1 w8 x" q3 v0 D
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    - [, a. J2 J2 _: ~  X* d' m
      ^3 X: n6 V+ K2 [- j2. **递归条件(Recursive Case)**
    3 ~( ^$ X: m; w7 v   - 将原问题分解为更小的子问题9 ?% g& W! f! [  _# y
       - 例如:n! = n × (n-1)!
    / Y$ r) e# }( Y0 x3 A
    7 _+ G8 a/ F* w" n 经典示例:计算阶乘2 M+ o& n. J8 Z* G3 X2 E/ W7 [6 F
    python6 i* B9 s5 k% S' X& L
    def factorial(n):
    9 d" X6 z$ k. X- R& |# }" V" _0 c    if n == 0:        # 基线条件" E8 l% F8 Y) V# k/ ^
            return 1
    2 D# _' E, k8 r# X# t2 b0 X    else:             # 递归条件5 |4 ]7 i. W% E4 ^1 D
            return n * factorial(n-1)' ^! i& ?2 C1 s1 K8 V" i
    执行过程(以计算 3! 为例):& s9 A+ C& z# _' U6 J4 {; e% C
    factorial(3)
    & d% v; I& G" ]( W1 V$ X3 * factorial(2)
    2 X3 C8 _- {& X- S3 * (2 * factorial(1))
    , c0 e2 }* y' j7 k& V3 * (2 * (1 * factorial(0)))3 {6 N6 H! H9 A1 s6 l: h. r) x
    3 * (2 * (1 * 1)) = 6
    , ^; C+ G6 N4 w: D$ O! O* {6 p4 g5 K. B. c% B
    递归思维要点
    # H! E) u, M2 \; q+ i" ?" E& p2 H3 z1. **信任递归**:假设子问题已经解决,专注当前层逻辑3 w# Z0 p% N9 n! ~+ k$ V- G! K& a
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)$ ?& R- W- y8 t7 `' S6 X5 a: _+ v
    3. **递推过程**:不断向下分解问题(递)
    4 V  ~" @9 `) L9 O; I2 {$ K& J5 g9 P4. **回溯过程**:组合子问题结果返回(归)
    . J" I; m8 g* q# n( c" i. K7 k5 l! {! M
    注意事项
    $ J( N, Z, k! }+ o6 W, i必须要有终止条件& S( W) l* q4 ]/ [7 v, m
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
      \: g- W. T& n0 V- I" Q某些问题用递归更直观(如树遍历),但效率可能不如迭代) Y, v) b1 |+ T( G0 _- N, W
    尾递归优化可以提升效率(但Python不支持)
    2 A0 w9 I4 l7 s4 u  R
    & Q' @7 H  F* E) w 递归 vs 迭代
      Y8 y4 @$ \6 v# o( M& e|          | 递归                          | 迭代               |3 A, X3 y0 o3 d9 ^% `' `7 v
    |----------|-----------------------------|------------------|
    3 n, ?' J7 O( v6 |9 c( v+ D| 实现方式    | 函数自调用                        | 循环结构            |
    4 p9 b: @6 y, e  Q6 f| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |7 n3 ^8 P5 t0 `+ w# h; P( z' P
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |# w' y4 }$ i& O) w0 a0 \" [# P; d
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    ; H( N" p6 A: Q! z* F& h. b! c8 F1 q5 `) d; _* m, _
    经典递归应用场景
    9 {- Y! r' k$ K' s1. 文件系统遍历(目录树结构)
    4 d/ ^% `% i; {" Q2. 快速排序/归并排序算法
    / L& f0 F4 p! }3. 汉诺塔问题3 N' \8 W7 k1 R- M, I  _  l1 A, W
    4. 二叉树遍历(前序/中序/后序)( A/ }( o0 ]6 P  M
    5. 生成所有可能的组合(回溯算法)/ S# r/ M, h1 N% }
    & }' o/ P$ @" Q7 h" c6 w  y* I
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    19 分钟前
  • 签到天数: 3146 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,1 f1 |: q2 Z* q9 C0 y" H7 C% s& j; S
    我推理机的核心算法应该是二叉树遍历的变种。, H0 F4 v! F5 ^( X
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    / D  @: k6 Q- e. ?Key Idea of Recursion) w6 v5 T1 F0 {* m$ j1 @
    * |  _" D. A4 q' O; x' P" ~
    A recursive function solves a problem by:
    9 n+ Z8 A0 ^" D# D3 _) N& |# U, w
        Breaking the problem into smaller instances of the same problem.
    ) c9 e* u% U3 P* ^* R0 M$ X9 l% h4 J0 B+ v( t
        Solving the smallest instance directly (base case).
    % o8 ]4 Z- ~, V/ H) P% O; W  a2 J; ~! q0 J2 ~4 S* b
        Combining the results of smaller instances to solve the larger problem.8 Y6 p  C; y' h8 Y* I2 A# w
    9 d. ^0 L. G0 w  E: k# a4 x# S
    Components of a Recursive Function5 ^% F+ G( g3 j0 z5 H6 Q) N7 A$ q5 y2 L$ R
    1 w/ B, ]8 j3 @
        Base Case:, j1 X/ Y% [  m) p" F

    # Y$ `: y5 Z# n        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.1 U/ c" A$ f: L2 l& @8 s
    1 a0 @& \) Q8 W/ |: r# I8 r% J8 u
            It acts as the stopping condition to prevent infinite recursion.
    , U! [8 q9 p; E3 A" f* l6 U! \' |: W# v4 e, c% g
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    & {9 }% i& h" O, e: s# e( n4 U) K  w/ X0 d2 i) r
        Recursive Case:; Z7 g6 [0 i! Q; ?+ f. M( |

    4 l2 o# ^$ @  t; z. D        This is where the function calls itself with a smaller or simpler version of the problem.' F( X- i( X; w* R' {

    7 N% j& ?4 ^: L        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    4 x* N  l/ v+ ~5 c) `
    5 [% P$ r1 {+ M( oExample: Factorial Calculation
    " q$ W0 y+ u* Z4 N, q  h2 m3 ]: B' y: X
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:1 k  p, c# M5 _# H$ q

    * z2 o% |" K# m" |, L. D8 W3 w    Base case: 0! = 1/ [( p9 T% p/ w' O2 d2 J" \
    . u+ G  M! f9 K
        Recursive case: n! = n * (n-1)!
    8 G7 U' d$ k' f( R: f
    ; l" e- {2 U" v$ S; L" H4 |Here’s how it looks in code (Python):
    ; ]+ W. ?" O! Mpython2 s5 G1 M& t. P* L# [  o; j
    . @% g  G" Z$ y" T7 C# m
    6 ?4 B& M0 Z$ I6 p- _
    def factorial(n):3 s8 Y" j8 k5 m. y( ^8 V. C
        # Base case! D1 a' E# G$ _
        if n == 0:
    3 C! x0 ]5 a) `6 g' {4 Y        return 1
    ) n! h" [# c9 n0 g$ d" p    # Recursive case
    ) ?3 k, o7 V5 F. J8 f' E; _3 L7 _    else:
    7 {" \1 i/ u1 C1 P! x  I5 L        return n * factorial(n - 1)
    8 U; w* y  ~+ b% Z  H1 v6 {- J0 g3 `: R- _
    # Example usage2 C. |, D/ c6 e* w1 e- b# v/ g' i
    print(factorial(5))  # Output: 120# K9 ~; ^4 T; O) x
    2 O/ f& ]; L. n& D( m( G1 D
    How Recursion Works
    ' h" P+ C" J2 O. c! h4 ]2 J" K$ P1 b: T4 P6 E4 G+ w2 k
        The function keeps calling itself with smaller inputs until it reaches the base case.# |4 [4 w! R% e7 V
    6 Y" ~3 k1 O. L. [$ j; A. C" e  E
        Once the base case is reached, the function starts returning values back up the call stack.( s# s) M/ O) K7 S$ w0 w& r

    3 C8 r; f! c& |4 b6 U0 X0 @+ f    These returned values are combined to produce the final result.7 E9 a" w7 l+ s$ j8 Z9 _9 }' n2 s/ l
    ; w. C7 g, T% j. t' \1 E
    For factorial(5):/ [+ w( r0 N2 G$ ~) _' W0 n# n5 y; d
    % H' Z$ p# `9 u. R4 y  q+ y
    , u$ o9 ~, k* {) v$ f1 b
    factorial(5) = 5 * factorial(4)
    : \5 A% H. W& n" mfactorial(4) = 4 * factorial(3)
    8 O8 }1 t1 A1 Q* b; O7 `' C% M# l7 j4 xfactorial(3) = 3 * factorial(2)
    0 G/ R. r+ h; H- t( kfactorial(2) = 2 * factorial(1)6 @8 P% O) x4 X+ _+ {5 E
    factorial(1) = 1 * factorial(0)6 U% K- ^# M. ~8 z
    factorial(0) = 1  # Base case, X5 {# A. s" w& ]2 [- s  [/ e

    + a! L3 _& `0 r! l" I/ y3 LThen, the results are combined:% @1 X% d& j* H, U( Z: s9 i

    9 S7 F1 v# H0 m* M% v" U; w+ Z8 {5 H; N( G5 K; X0 A. A0 i0 _
    factorial(1) = 1 * 1 = 17 ?: F' b& C0 y+ G7 X' y3 }
    factorial(2) = 2 * 1 = 2
    " K. W' k+ R: J- @, }* r) Kfactorial(3) = 3 * 2 = 6" g6 D) ^) ?' @6 q4 S# D
    factorial(4) = 4 * 6 = 24& q6 f3 b, l( V! w4 F( y7 ?  T0 l
    factorial(5) = 5 * 24 = 120
    & G& t, u8 u  _2 K8 t4 k- M% [& n7 K$ b" @/ N* J3 u: R  }$ w
    Advantages of Recursion. ^/ N0 x/ q* G" C$ z

    $ U9 `( H4 b3 K0 v4 q    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    - E3 e% }* t: C( j+ ^4 U# b( s. c- E! |
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    ' @/ K% p; n; k& b+ M2 t6 j% ^- H0 y- Y2 d
    Disadvantages of Recursion& t7 Y6 R: j3 D1 p- F8 A+ z; B+ q

    ( Y+ W& E7 H7 |& j  R    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion./ U" C5 g, N' |1 [1 w; Y- X
      y' s% q/ `0 G5 m/ i9 u
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).: c3 F% I3 n7 [9 L- b7 E7 g

    4 F( C+ R- x1 t9 s+ l1 O) o0 ~  m5 wWhen to Use Recursion
    7 {( F- r1 b( E' N  B6 h. }6 B& m3 k( ^
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).7 R) S# Q( ~; A. S! @! @! W1 E1 F, m
    . z5 d/ }' {7 q4 q
        Problems with a clear base case and recursive case.
    ( a. b  s& p! F  [) Q( b6 x" i$ w/ @7 i" W, r' L% p5 m+ `
    Example: Fibonacci Sequence
    9 T5 Q" Q( j. v) s$ _+ u
    6 |8 f9 J, U( f5 XThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:" J  R/ q$ w) [( Z& X1 _8 c3 y
    ' v: a+ v% Y% g7 x
        Base case: fib(0) = 0, fib(1) = 13 |& u& S# b8 ~8 Z4 m  q
    9 ]5 h( h) g8 g  O. _# M% c
        Recursive case: fib(n) = fib(n-1) + fib(n-2)9 x% E* Q5 w4 [/ z, T

    * S- v) U* \5 W* y4 d) n3 cpython
    + v+ P% x$ ?5 x$ N) b  s8 Z
    4 o! }8 S$ O4 t# E+ P$ \! n2 c+ W7 f; K/ x% {& w
    def fibonacci(n):
    4 }- B/ i8 d5 z6 i    # Base cases  J/ l- h8 z5 W3 r0 {& H& G
        if n == 0:
    9 {& `+ d. y9 M2 o* e8 a4 m& y        return 0
    5 z$ d8 l9 T; r8 j, F  N    elif n == 1:
    ; M, A. C) s# R  |! O        return 1
    , n9 k% O0 F. v- k2 G: I/ v" ?    # Recursive case
    7 L; j, z4 H, {" [3 l    else:
    - K0 }! p+ i& Q3 s% D8 B' v        return fibonacci(n - 1) + fibonacci(n - 2)" r+ z. q$ q( S! f
    / }% Q  C& o$ l3 c0 H
    # Example usage) v, }+ b* e; e) S: U! p
    print(fibonacci(6))  # Output: 8/ a. i$ u/ i( k% b( K
    ( C3 ^9 E2 \1 X, e( O1 y5 F
    Tail Recursion7 {8 ]. v: I5 Z( n4 z

    9 o: ?  K% ]0 U8 C8 @9 m3 eTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).0 ?2 q6 {$ V; C6 P% [, a: O5 P

    1 e" V" W: a5 D8 i9 ~% ]! ZIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-14 06:50 , Processed in 0.029276 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表