设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1110|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    , K6 e. y0 Z( i; _" q
    - o& F# E7 |5 j9 L; g0 e解释的不错9 Y% g7 W) G/ `' `, ~4 K: w
    - y  j1 n" t& }" b+ s5 C
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    + P9 q# |+ _4 @& M. u/ O' w9 f8 ^
    0 W; W4 o" A9 v5 p* H8 {; { 关键要素
    3 |. O9 H+ t/ R$ b! `* i1. **基线条件(Base Case)**3 `5 y, |4 Z( d1 ?
       - 递归终止的条件,防止无限循环1 f' Y/ c7 F( }4 `
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 12 \5 a# H1 T+ f1 |
    0 v: |- p) `( L1 R9 S5 s
    2. **递归条件(Recursive Case)**9 l+ R$ |# s7 Y
       - 将原问题分解为更小的子问题, F: q- w! i1 r  N
       - 例如:n! = n × (n-1)!
    . U: n% h' V2 }* I, r+ w- ~* e; w' T- s& g
    经典示例:计算阶乘
    1 y$ ~8 V4 T' v5 L! opython
    . `" z, Y4 Y  Sdef factorial(n):
    , M) q2 N& Y1 a6 ?" e    if n == 0:        # 基线条件9 P+ k5 ?7 T; l4 p  E& Q, H
            return 1
    % o- X7 S" }- \1 ^; E    else:             # 递归条件/ g3 o' `2 t7 F7 Z2 {' k. A4 V+ R
            return n * factorial(n-1)
    : ~% O* w8 ^* b( ?! v+ e2 e) U7 h执行过程(以计算 3! 为例):
    3 ~8 S0 a' B! x% y; |factorial(3)! V1 O" L6 F& D4 D
    3 * factorial(2)1 k6 q/ y# x- m0 g% C" ]; _/ X
    3 * (2 * factorial(1))
    : v$ m. @8 \5 K6 A3 * (2 * (1 * factorial(0)))! D. v+ g2 x* Q) n+ M) W
    3 * (2 * (1 * 1)) = 6: `0 \. V  |7 v* x: S  [

    " p5 Y3 s6 K8 o. [ 递归思维要点
    1 X) U/ D9 @4 H; q: |1. **信任递归**:假设子问题已经解决,专注当前层逻辑1 Q! A* ^7 \  w$ s4 r! q: j
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)5 U, f; E( i& g9 o( {8 O! V- h
    3. **递推过程**:不断向下分解问题(递)+ q3 |9 Z, m5 C2 a2 Y
    4. **回溯过程**:组合子问题结果返回(归), C$ l" e, s7 [* I$ }0 M

    6 i4 d( O& x9 c- _ 注意事项. d. |; G' l: ^' c
    必须要有终止条件4 M; J+ t. F0 e* ?( @" q
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)3 M8 v- e! L1 ~
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    # n4 L8 @& K( b! \8 Y尾递归优化可以提升效率(但Python不支持)
    . Q$ s$ S0 c1 w) e2 u5 O, ]
    + G' s6 R/ M9 z0 G 递归 vs 迭代+ G1 \0 K' [9 W9 s5 e* V7 O
    |          | 递归                          | 迭代               |' Z  _5 |# x" e" B
    |----------|-----------------------------|------------------|2 e. I3 E) L; ], ]9 \0 e# u
    | 实现方式    | 函数自调用                        | 循环结构            |
      t1 N5 A5 ~8 \, R| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |3 ]6 e6 m/ g: B
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |& Y. M7 D2 G$ F* R  b+ c$ B9 Y
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    8 P7 W( \8 V- _- z, `) n. i5 T; T! S7 R0 o; U
    经典递归应用场景
    ) |8 V* R; m9 T1 L; X1. 文件系统遍历(目录树结构)
    $ ^( S9 p: E: n2 Y2. 快速排序/归并排序算法
    ! W* d2 s* J" u; S9 H3. 汉诺塔问题
    + y" w$ }9 A9 j" J* L4. 二叉树遍历(前序/中序/后序)
    % g" h- Z9 d: n9 m2 m/ }1 K1 l5. 生成所有可能的组合(回溯算法)( e. Q; o+ Z" o0 ]

    . j/ _6 O5 s* S( m5 u+ L0 O- U试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    开心
    8 小时前
  • 签到天数: 3098 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    4 D) s" z. a* l0 X' T我推理机的核心算法应该是二叉树遍历的变种。, ?1 y) ?/ M/ M% v  X6 [9 Q1 R* U
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:8 o" {3 v  Q1 R2 L' q* M
    Key Idea of Recursion' l0 X* s; J6 o

    ' D0 b9 L% f$ S; u8 bA recursive function solves a problem by:
    ) f  X8 x. T2 h& W7 Y& y  f3 c/ ~5 c2 x: s/ y8 ~
        Breaking the problem into smaller instances of the same problem.
    4 E4 I" q' a: _. ~) _4 b0 [4 Y6 r2 k' b) e5 Y; Q) {
        Solving the smallest instance directly (base case).
    / r, c9 u& U, {) b) j5 u. K5 }$ n! U' _( R1 V
        Combining the results of smaller instances to solve the larger problem.
    / S. C/ J( h) b7 `8 h( i, E8 \  k0 F+ v
    Components of a Recursive Function& A& [7 d  V" v3 ^- V) v0 S$ S' W
    : h- a$ a. E  g' Q% g% G6 V
        Base Case:5 X1 s. T# t( \6 @" M/ y8 t

    0 g$ ~+ f: o$ [# j  V" l* s        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    + O) }9 |4 u" \1 R0 F
    : X5 g$ h9 F1 j" y        It acts as the stopping condition to prevent infinite recursion.
    1 Z5 T+ v$ S& c: B2 {! w  L
    0 s- i/ W, b; x; i9 F. g        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.$ }( m- j5 t. S; K# A

    ; m  l2 k% e, P; ?' f    Recursive Case:
    6 V5 _. \' U, _8 z; v3 m  |" `  J1 x1 _; U& V& V
            This is where the function calls itself with a smaller or simpler version of the problem.
    , t* Q& f, a2 C) t% x. f9 H/ h, J6 {6 Q; ~: t
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    / c' ^  o5 l: k" p9 |& h* Q: }, j1 d2 @7 Q" q, `$ f1 c1 v. y- `* w% i5 A
    Example: Factorial Calculation
    $ w( W) ~2 {0 b5 V( A
    * e: l+ S6 H/ B! P; mThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:2 _" y) C$ r- Y' b& ~( w- {( {- h
    - T' n& g  q4 T" m4 c7 E  W
        Base case: 0! = 1
    8 }7 N. @8 E" @- A: G
    ! Y+ ]% a% ?7 r# v' L6 ]    Recursive case: n! = n * (n-1)!) p; ?% V  T: g* ^9 G( J/ B2 C' s

      z! Y1 o1 N$ b+ d7 PHere’s how it looks in code (Python):! N1 ]+ y# k- Q, m  w, [9 N
    python
    4 t6 ~3 v1 e9 ]7 N4 m, i, F
    : O. f7 G! M8 L0 u5 G$ _  j
    : g5 h) i4 B9 P8 P9 S: \3 adef factorial(n):
    ' i+ R- [* Y/ l& R9 `4 {$ }    # Base case7 d- t4 Y3 G" y1 w
        if n == 0:
    ) F1 w& A7 |: c- H# e2 o4 G3 |2 N        return 1
    ! R$ Q+ J: w) W    # Recursive case
    + U9 @2 k0 j- |- j4 ?! `/ z: ?    else:8 }/ D; l: {! k
            return n * factorial(n - 1)3 V8 g) r$ N  e* K$ H$ Y# I

    9 I& D/ [( g+ f: R8 H2 Q# Example usage
    3 V5 R2 D  V/ R: M% oprint(factorial(5))  # Output: 120% n/ g8 I$ G" R6 K
    8 h( S4 b# o) x" m# \0 h# ?
    How Recursion Works0 {& {  V% x. n
    6 d, D. ^3 R- e7 a: a0 X, U
        The function keeps calling itself with smaller inputs until it reaches the base case.
    3 p# e# x/ j/ A: `# O* h8 \# l
    ( I+ x7 R8 z$ |) _4 |9 ^    Once the base case is reached, the function starts returning values back up the call stack.2 n* L& L' |4 d; Y, f4 \# J1 U/ \$ \

    / g. E  M1 P! d1 K2 e    These returned values are combined to produce the final result.
    * e3 P1 Q/ ]# |$ M0 j* _% w. V3 {( F
    For factorial(5):& D; m( t7 b/ Y2 A9 q3 k& X5 p, A
    2 n. v0 u8 Y& N: p3 e2 @# L

    4 i8 `- F" a: i1 Y5 D: Z! b) J- @factorial(5) = 5 * factorial(4)1 a# D' O4 f( a, i
    factorial(4) = 4 * factorial(3)) F9 a6 N# _" p9 {
    factorial(3) = 3 * factorial(2)
    7 d, Y* }' S9 C5 e  M. b/ Yfactorial(2) = 2 * factorial(1)( [) T0 |  q, `' p/ Y
    factorial(1) = 1 * factorial(0)$ i/ n6 e+ a* Z5 V! ~/ W1 I
    factorial(0) = 1  # Base case! V/ x! L* t) R" ]
    ( G* X8 r5 }# m0 b- ]$ R( h
    Then, the results are combined:
    ; ]7 f- h. s- d0 _2 H! h0 U! Q5 O3 I$ J9 u8 P0 q- q! l

    2 M! @: A! Q6 vfactorial(1) = 1 * 1 = 1
    8 @. Q, I: e7 Ofactorial(2) = 2 * 1 = 2
    1 a4 \' E4 H5 s5 d2 J/ o  Jfactorial(3) = 3 * 2 = 6
    - }2 ]6 d% m/ ]) B1 B6 x% \factorial(4) = 4 * 6 = 24
    ) Y7 }+ q+ t% V4 d6 x. u: kfactorial(5) = 5 * 24 = 120
    * U# {8 L9 v$ p3 d, J
    % g. }  V, X+ y8 s! Z. K* g- q; }Advantages of Recursion
    5 b4 l6 s2 f& h& x+ W, g5 s
    3 A, V6 j7 q- r2 \    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).5 C9 k8 M1 _8 x( n/ P+ a$ X

    ! x/ P2 l/ P6 W2 U5 Q    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    7 O% T. Z8 Y" O* p6 t" w. x/ c, E0 B/ G  I2 Q
    Disadvantages of Recursion% a* X! R$ ]: O3 Y: H- S  Z9 I( X
    ; @3 l4 W* r; S# k, ^
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.5 H) g: y, V7 P7 V6 X

    ; z7 ?1 I1 @! ~; N2 O" @& w4 B    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    + R6 p$ M1 _' B! r% Z1 K6 i8 ]4 \& o+ n, T5 q/ E
    When to Use Recursion
    8 l+ }% V, q$ P: }, G/ d: k7 d" u7 u( w+ I, `: U
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).0 e& }: a- N6 q. V  X; w; F

    ! g$ E2 y( l$ Q) t  }    Problems with a clear base case and recursive case.! p6 F+ m/ M8 K0 T

    - U9 [8 Q" v# B6 w+ m* w2 H# R7 lExample: Fibonacci Sequence
    2 r$ e) s1 K$ a! _/ P! b" o. N8 E. G5 r2 E  g( k+ _
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    ! N$ n3 s2 [. J/ c; C- Q7 a% \, P( e8 }1 }
        Base case: fib(0) = 0, fib(1) = 11 X8 W. X0 ~* g0 t- A
    + t6 ]" ]( R5 Q7 E/ W) h. L. y/ x
        Recursive case: fib(n) = fib(n-1) + fib(n-2)8 ?2 o7 M! ?8 L! r" ~: G/ l
    + p; u. w6 ^0 ~6 ~6 _* e
    python
    - Y, ~! k: S. A4 g( g% A  P8 B# L4 {9 c+ d+ U2 M
    7 |% b" \. `1 F2 B. G
    def fibonacci(n):8 ~: g: B+ m, Y
        # Base cases
    ' W- g$ G7 c6 m8 G    if n == 0:! z- |2 O! P+ K7 [4 @; w
            return 0) V; _. H; z' R& m" Z
        elif n == 1:
    6 X$ Z+ P) h5 l! S        return 1
    ( K; K2 D  y# B. v    # Recursive case) [* u# c! a. n% i( Y8 y! o: I
        else:
    + e( e5 @2 W/ O- ?9 m4 ^; I! M$ o/ X        return fibonacci(n - 1) + fibonacci(n - 2)# R1 p9 d$ I5 l" y
    % x& J( r- F- l
    # Example usage" p- J% v$ I1 M) Y
    print(fibonacci(6))  # Output: 8+ J7 Z" Z# A, q) r' Q

    8 R2 B$ ]0 |+ j  z1 |* O' pTail Recursion( N5 w& P; m5 D5 X) d8 L
    / s5 Y+ l+ x2 q1 r. V6 ^" A
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    8 _! f$ Y  u& }( a
    2 D% U' ]& d; QIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-21 14:23 , Processed in 0.033379 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表