设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1318|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 / R3 N- K" p; r" M" V
    2 D3 @- Y. R3 F
    解释的不错" b( p: u& F/ @
    ' ]% h; P* q( w
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。* ~; i3 [# l6 I! `/ k% t$ |

    % E( J- o$ M0 M# F+ X/ t" X; l4 T 关键要素
    . g, _  K  |8 @2 i% \! `1. **基线条件(Base Case)**
    1 B/ Z1 ~# S0 y# `. h. u; [   - 递归终止的条件,防止无限循环4 P5 ^: Y$ U/ x
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1$ a9 _2 I2 ~2 O2 E' {

    4 h% Z% k6 F  Y5 X* h; n2. **递归条件(Recursive Case)**
    % z( w  d4 v( M# P2 h. s   - 将原问题分解为更小的子问题8 h7 ?  b1 e; ~5 z' V2 h/ e7 a
       - 例如:n! = n × (n-1)!! _# a, c* g0 U* F$ u. D& c

    3 E4 h9 a2 g0 `% G3 s 经典示例:计算阶乘
    2 K( A8 t9 q4 {! ?/ gpython
    - }: ?7 e+ b1 adef factorial(n):
    ) r$ X8 |1 C; h+ I7 J* }    if n == 0:        # 基线条件
    ' o% L$ g1 L+ V1 w7 N        return 1; E) L) d( U4 f7 ~/ R
        else:             # 递归条件0 S# j, Q# s0 `1 [
            return n * factorial(n-1)9 O, ~! P0 z. L% Q+ p+ J
    执行过程(以计算 3! 为例):8 u  x3 b8 ^; F( o' W
    factorial(3)2 b3 D* o6 t: @. `
    3 * factorial(2)3 j- m2 T4 J& r- h
    3 * (2 * factorial(1))8 e( z4 D9 y& b! J9 Q5 n) f7 [4 ]
    3 * (2 * (1 * factorial(0))). `( j1 d. m9 x% G4 ^
    3 * (2 * (1 * 1)) = 61 X3 f1 Q; M) @2 R, S' G

    3 v( B5 {" e$ u2 x, @; `, x 递归思维要点
    ( A  G  C. P8 i( X1. **信任递归**:假设子问题已经解决,专注当前层逻辑4 l% v6 c  k5 ]" Q5 w  e
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)* ]( H& x* n* O
    3. **递推过程**:不断向下分解问题(递). ?0 _* j  {) `+ |1 M/ w
    4. **回溯过程**:组合子问题结果返回(归)
    - h/ x  J: c6 y( h4 S
    4 c9 K5 x) c& t: ~ 注意事项
    ) W1 \6 ?" F; T# d! q必须要有终止条件
    + \0 ]# g5 X$ z1 {& e; V1 b9 a递归深度过大可能导致栈溢出(Python默认递归深度约1000层), {5 j) U+ G/ c0 t- i
    某些问题用递归更直观(如树遍历),但效率可能不如迭代  u0 D2 p# Q) i2 [7 D. K) E
    尾递归优化可以提升效率(但Python不支持)" J. F# z7 ]% V1 M& z3 t5 }
    ' F% M2 G! T% S' l# X
    递归 vs 迭代
    , b% y+ j2 P3 d7 e5 x6 Z|          | 递归                          | 迭代               |
    8 M3 L, W+ e, S" D' S* @, v|----------|-----------------------------|------------------|
    2 g, J$ X7 l: f5 G| 实现方式    | 函数自调用                        | 循环结构            |
    & W, v3 V& a+ P/ x4 _1 z) [| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |2 H0 ^6 l( ~; `# {/ k) u! n
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |6 T8 C; r; z( [! s( o
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    - L7 o* q; O0 u$ t! l$ L
    , l4 C2 ?, X" w 经典递归应用场景) N8 P0 D0 E% p- T8 ]  [$ D
    1. 文件系统遍历(目录树结构)/ a& f$ ?4 x$ |9 ]  }. e; k! l  y" F
    2. 快速排序/归并排序算法' x7 v( a7 e$ p
    3. 汉诺塔问题
    ' Y7 N% o  Q$ C" P( Y: R# V4. 二叉树遍历(前序/中序/后序): V  g7 ]& b; n! }9 N
    5. 生成所有可能的组合(回溯算法)( ]' J# N0 p* M: g2 E* V, c% b8 O
    6 ]0 g% |: L8 C) l& [* C! M) @
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    郁闷
    昨天 12:19
  • 签到天数: 3107 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    ' U% B1 n0 |8 Z$ e2 a) `; L我推理机的核心算法应该是二叉树遍历的变种。
    1 ~4 E* \9 C- _: W: Z3 p另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:$ u# z0 ^' L/ `
    Key Idea of Recursion
    ! r  w" Y8 r4 K( j/ j
    # u! N- _( K; Y0 c2 UA recursive function solves a problem by:8 _' J8 L2 V6 a% b5 V

    ) A/ J/ Q5 w% c5 s3 E) f    Breaking the problem into smaller instances of the same problem.
    / h7 [+ W# S' q0 R+ x, s5 X$ w$ M: O+ @; C8 {; w
        Solving the smallest instance directly (base case).1 G6 g7 L  y+ s' w+ m5 g( J7 x" J) k
    ' W  f  l0 t' W% o8 B0 _. r
        Combining the results of smaller instances to solve the larger problem.
    , J  q+ ]. P. f/ _; n$ _8 q# ^: r4 a9 I, i) _
    Components of a Recursive Function+ R/ a3 {, |' W
    0 h8 y7 C3 ?7 e* \/ I" c, K
        Base Case:
    % ^5 _& v/ x( G: k2 T
    % b( k0 }9 Z# d2 P0 Q$ |        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    $ Q- p2 v5 G7 |5 F$ L. L+ @
    8 N+ l: A2 I4 L" c  q        It acts as the stopping condition to prevent infinite recursion.
    / U* \% t6 \& x3 i7 {) j  i; O$ B) `
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.% P7 q2 m+ ~/ z9 T3 |
    " h6 m/ Q) W, m( H
        Recursive Case:
    6 s: w( b! h  l1 `; t# G0 S! f% L6 ~  y0 `
            This is where the function calls itself with a smaller or simpler version of the problem." C& l% ~6 y6 E0 ], b

    , ?7 ~( G" G3 ^, D; `% t/ K$ s5 E) T9 h4 ?        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    ! i3 j# p/ ?# o1 w' p
    7 Q9 ]6 |. x7 d  n0 T3 c/ ZExample: Factorial Calculation' z5 O, |6 p& B% v8 q1 ]

    + P6 t: F" U% c4 c5 ~  @The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    1 N1 s1 m! Y9 v  O
    . |$ [" I3 ^9 q  n  ~* _! d! V2 p    Base case: 0! = 1
    9 y" k1 v3 n, I4 m1 u4 H0 [9 K
    # m" c1 b: q8 X1 ^) u5 ?' ]8 i+ t    Recursive case: n! = n * (n-1)!
    4 F! m# y$ z8 q: i* z9 d7 @) G9 e. F3 N  W. A8 F# k
    Here’s how it looks in code (Python):# o! Z& k# z5 g
    python: l4 W  A1 t, F( h, ?. G; W
    : @0 a: a; R% `& ?
    + A* {. ?3 c) b8 {# q9 t
    def factorial(n):
    - n, K8 ?/ ?; C+ c" K% b    # Base case
    4 i, `' n# q0 f+ ]( Q& I: s    if n == 0:' K8 v: I/ B& b! q5 s5 g* N/ I
            return 1( E- ]. A( p  c3 k, ?& ?
        # Recursive case
    , r" ?5 N: U# {8 D. S% m    else:6 m3 }6 |% `. k2 \- v# d7 l' c
            return n * factorial(n - 1)
    ( O8 @4 g  R) d2 {  a; @3 q, ?- B/ F0 _0 j* N. ?) f
    # Example usage. ]( B. z) J. L4 p& ~/ v4 e/ P
    print(factorial(5))  # Output: 120
    ) N( s- `3 k: I+ ?6 ?/ r; `8 y# ~3 N' o% U' j* @2 G4 i
    How Recursion Works/ ^. P+ R1 z) |* n
    5 e" O5 _* _8 b0 U/ g
        The function keeps calling itself with smaller inputs until it reaches the base case.2 _7 S: ~2 Y. L/ z; g7 w
    5 U9 L, b8 ]+ P  I0 B
        Once the base case is reached, the function starts returning values back up the call stack.& X1 f" j& L2 N

    4 h/ y7 o( {! a7 S    These returned values are combined to produce the final result.
    3 a5 ~+ }6 J. q$ k2 s7 C; `4 M+ [
    - }: X2 R( }3 q2 pFor factorial(5):4 e, s" A3 v6 c
    6 e+ Z9 t+ r( G' X7 N
    / |* }7 i; L- _* W( Q
    factorial(5) = 5 * factorial(4), j3 F7 S: O$ M
    factorial(4) = 4 * factorial(3). I; y& T: I/ g: s0 r+ \, Z" t" P0 e
    factorial(3) = 3 * factorial(2)
    - a" M" b7 F/ v8 v$ P; efactorial(2) = 2 * factorial(1)
    ; t6 G! ~5 i$ r+ U3 cfactorial(1) = 1 * factorial(0)* K2 u7 I% {5 K- ]
    factorial(0) = 1  # Base case  z$ f" {1 C( C3 a
    . x) `6 r" d, m! D9 o: ]
    Then, the results are combined:/ O  j1 S5 m, P% z, @
    7 g4 |0 p1 J, g

    , C/ S, N$ {, k2 s4 Kfactorial(1) = 1 * 1 = 1( z0 W/ Z! [4 @, l  B$ A, s
    factorial(2) = 2 * 1 = 2. E& u% j8 ~0 E, ]8 d$ p# M
    factorial(3) = 3 * 2 = 61 R: U/ x6 f6 x# [+ a
    factorial(4) = 4 * 6 = 24
    # N; j  M  f7 [0 zfactorial(5) = 5 * 24 = 120( V4 {1 g( N( c/ `7 F$ V2 [/ d2 I
    1 o% n& T, O- N% k, ~  E4 f
    Advantages of Recursion
    ' a7 ~) h0 g4 d) P: W1 m; E) }$ k7 A* D2 Q# S
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).+ ^5 L. o; X2 {: u! }) j' m  l
    ; X- l) _: O& E7 A% T  s
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    8 P/ K3 {5 W8 o4 B
      A) U6 o1 L' j- @9 x) zDisadvantages of Recursion# H2 W" Z# B" H! D1 G
    7 |! m# J" }8 p* j0 `/ V
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.+ b5 O0 G/ J, y
    " x- }2 v# k8 y, z, \2 r5 V/ v
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    ) a8 Q; }0 [$ p3 d* v7 _
    + \4 J% s. ]7 i- F9 w# |When to Use Recursion% A$ |+ U- c$ I0 I3 \6 b% j6 k2 P3 R2 |

    6 \5 y% H# R' r2 x    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).9 K2 b0 \& Y: e& ^$ f
    * v7 o9 p1 ]8 K
        Problems with a clear base case and recursive case.
    ; q( D4 E. y" A% q" [8 ^
    ( D3 j# i) a+ _% X" d9 p4 ^Example: Fibonacci Sequence1 p. x+ g& d* n5 ^
    ( f3 g' [/ H! b, Q2 \1 r5 J4 C* T( x
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    * r8 Q! e0 v7 b0 ^- }$ N% x
    % \( k' u5 g6 X; n    Base case: fib(0) = 0, fib(1) = 1, L# x8 c$ Y. \; r6 |
      w' Q- u4 O% q0 D. P% o* p
        Recursive case: fib(n) = fib(n-1) + fib(n-2)# P4 Z. w- ?! W7 M1 m

      c% w1 @0 G% l% p0 g* _8 E5 ^* T5 [python: B  y" X" Y* L2 E# ?- R5 \' W
    - a4 q" v4 P1 S0 a6 C
    : R0 D4 }  N+ G) [
    def fibonacci(n):# \5 k; Y+ g* L& R
        # Base cases9 h, p: S7 ?) v# V3 G2 }& b6 R& s* z
        if n == 0:, k$ b* A/ Q3 j+ S" U8 \7 |  d! ]
            return 0
    6 j. i# @; y" G6 j) v* g3 b    elif n == 1:
    - [# x0 ~  k' ~" v3 Y  f. e! X! E: S        return 1
    8 t) D, ~; }/ t4 J. o    # Recursive case
    * m, m) t' H0 [8 ?    else:2 [" p( e2 e  K6 k" ]% H  C
            return fibonacci(n - 1) + fibonacci(n - 2)
    . r* }" ?0 U; M2 z6 @
    ' ?3 M& N& b! k  `# ~! z) X) ]# Example usage" q" d1 `9 w8 M& H4 ?$ p# F( ?
    print(fibonacci(6))  # Output: 8
    - s5 X4 q  [4 L& C+ b4 \, @6 a  l) }4 H8 l
    Tail Recursion3 ?' `' c% g4 b( V5 z
    1 l$ a' P$ d( l  E9 t6 K
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    : L' }1 \4 O5 N9 v# [% j
    , N- ?1 W& w9 b* `1 Q! fIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-4 03:41 , Processed in 0.031914 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表