设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1668|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 , [/ G# i) ~% G$ L0 i" N# a' w- `, I2 L
    0 _7 m  \$ U( H' v" c) u
    解释的不错5 u( W: }; ^0 x3 t7 ^
    % k3 t6 L5 n9 c0 F7 p- R
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    * Q, Z2 f$ Y: @* l1 h, y# g4 l: l
    关键要素2 `9 s. W" o. ?0 }! z4 E
    1. **基线条件(Base Case)**
    2 X% j. q  {! i  n0 [2 V8 p' k' x   - 递归终止的条件,防止无限循环
    6 L0 `* P1 e# ]2 ?2 z/ j7 d   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    . _0 _- o6 U! v- T$ n0 v
    ! W- B( x' a4 W) l' r2. **递归条件(Recursive Case)**% u9 j/ W- e1 f2 N1 E# n
       - 将原问题分解为更小的子问题
    ' G3 I$ K6 W& K3 S: y! {   - 例如:n! = n × (n-1)!. n" W5 I+ j9 X2 Z$ ]4 ]- \1 N! ^
    8 a/ z3 z- ?9 N1 d# M8 O7 @$ Y0 [
    经典示例:计算阶乘  f; F- {" n/ S6 \% N& |1 B% ~+ c  M% k: Y
    python
    1 w) n  W! b1 K9 v, |8 Mdef factorial(n):) e; B/ l1 X1 t# U+ B, u& x
        if n == 0:        # 基线条件
    3 i  A6 d/ E5 d) }, `% h0 l8 I        return 13 r/ W1 \2 d' C/ A
        else:             # 递归条件
      L- c1 P6 E4 D+ s% \        return n * factorial(n-1)
    2 I" C6 `9 X, [0 q, j7 _执行过程(以计算 3! 为例):, @+ Q4 [: }" |' C& ~) W; e1 ?
    factorial(3)
    5 U8 s* O% M+ t5 ^/ |3 * factorial(2)! R5 l  f/ }5 U1 y
    3 * (2 * factorial(1))+ J$ w1 t- R4 V' ^2 _  Q7 Q6 _" f; O# r
    3 * (2 * (1 * factorial(0)))
    ' T. Y6 x5 @8 b. V( V2 x3 * (2 * (1 * 1)) = 6
    & I! k+ g, a# m6 }2 j5 \) L, {
    - Y: T/ ~. k; K7 s! ]0 I7 |! g 递归思维要点: A/ S; b' B7 R2 p( |! |
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    5 `! w# h5 E1 A& q& K# E) g. u# {2 }+ ]2. **栈结构**:每次调用都会创建新的栈帧(内存空间)7 ]  n" M0 s; H/ u  I, U1 d& w/ m
    3. **递推过程**:不断向下分解问题(递)
    & g$ g2 W% t! ?$ g/ y: i& l4. **回溯过程**:组合子问题结果返回(归)
    , z$ [. l* s9 c2 N
    # O* D( o& f" v/ F% }6 w 注意事项
    * P: o% s. }4 Z$ M) H必须要有终止条件7 k) c3 I" c7 \# C
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层). m, R8 n4 m, z. D
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    ( i; ~0 D, M. U6 e( U尾递归优化可以提升效率(但Python不支持): Z' y4 b! j- h

    6 O* i) T0 U  A: F# d2 S! w 递归 vs 迭代5 R% ^* C% ~& D" r3 b0 @
    |          | 递归                          | 迭代               |
      F% [/ u- D6 M5 p|----------|-----------------------------|------------------|: g" t0 o, ?! u
    | 实现方式    | 函数自调用                        | 循环结构            |
    6 Z% ^+ y1 ~8 G" x| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
      Z8 W+ M8 H  m4 v3 u| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |( k( |+ P/ |7 |. o6 Y
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |: m4 `& [, f8 S7 o% ^. A2 e( J

    . F# j# D9 S- \2 b# X( w. `7 t 经典递归应用场景( j1 V4 v& r3 ~- R  s8 E* f% s
    1. 文件系统遍历(目录树结构). B! e, K, n- R6 l* L
    2. 快速排序/归并排序算法, ]; e. h% H* T) U
    3. 汉诺塔问题
    ) Q) v% x9 H. W) a4. 二叉树遍历(前序/中序/后序)' {! c6 }+ _. y! J! N
    5. 生成所有可能的组合(回溯算法)) V9 n* a5 I) s% i

    8 V4 g: i- j* |( y- Z+ ^试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    慵懒
    12 小时前
  • 签到天数: 3130 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    , U& y4 C$ W/ g' l我推理机的核心算法应该是二叉树遍历的变种。
    ; ~$ j1 h9 v0 w2 H# ]7 a# z另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    3 p& u: v# R6 M/ R1 \; PKey Idea of Recursion2 ~* S7 W& C+ ^( b: V: T. A

    1 [# n, d7 T' GA recursive function solves a problem by:
    + @. y- o. y* U9 }+ x* M4 T4 M
    + J% ]9 L+ |1 S' q# b) C    Breaking the problem into smaller instances of the same problem.
      D9 n; A2 \% W9 I5 x7 N: {# u3 C& \* G2 \; e" [7 B
        Solving the smallest instance directly (base case).
    . F: ~) y* k, L5 p" C
    / b$ k$ B5 u! T" c    Combining the results of smaller instances to solve the larger problem.
    $ z, I' }" Q8 |/ W1 E/ L- S' a( r5 _9 |5 V3 ~+ E
    Components of a Recursive Function
    ' O2 f2 I" Z5 Z7 f' e: j; E* @( H+ `# C
        Base Case:) C' g+ ?( Q& s! }+ @0 p$ r) m
    : D4 _# ~( m" V- l  B9 U
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
      V8 Q. r" ~. z& j( S+ G, g2 P# d- v9 m
            It acts as the stopping condition to prevent infinite recursion.
    ) }+ h, T" V% X, ^2 V5 u
    # B1 ~" L: _3 p  L; @        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    : F  c$ a) ^" J# C/ G
    4 m# k1 ~! A4 m! \) r+ A) t4 A0 E    Recursive Case:
    ) x. I  u1 v/ F0 A1 i* c% t5 U) a* A
            This is where the function calls itself with a smaller or simpler version of the problem.9 _+ Q! g) u( Q( V+ k
    2 }1 n( X5 M+ y
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    5 U- Y- g7 w- U/ A) x( f6 ]3 V$ W" K% o: m7 @! D% [
    Example: Factorial Calculation
    , A4 G% W9 d" e, c  }, O
    . g% ?9 ]' k: wThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:& g) h; A7 e, E2 D  k# c0 V

    / q9 S3 c/ Z$ _! Y7 |: A    Base case: 0! = 1
      i  T2 }# H5 }7 m# ~5 u; L- q1 T" [8 R/ [4 I+ T5 `* e5 S, w7 l0 {
        Recursive case: n! = n * (n-1)!8 j' H/ `4 u9 Z: |3 F6 a

    $ X9 j2 U) c7 i, MHere’s how it looks in code (Python):* D& J, S( h% _% W7 v
    python) e8 v' b( s1 P: P

    * s( o" \1 ?  F! q4 e! J( M! [& P! p% e! [$ _8 S# N
    def factorial(n):
    7 x# N- i0 U4 ~" G  @    # Base case& @2 l/ \/ r" n) v
        if n == 0:, S. C8 J7 ?. I: T& q
            return 1
    : N5 D5 u) p" \1 I. l    # Recursive case
    , p* Q% E) B* W# D" o    else:6 K( z& b4 K' x
            return n * factorial(n - 1)
    . K' t- y3 c8 W& Z- W4 _
    9 W, g, `! B% N# Example usage7 c: r  b9 B' Q
    print(factorial(5))  # Output: 120! T; @) r2 P( E/ p/ p% r4 p

    " N: n- C; s, c# UHow Recursion Works3 Y! E) ]/ G+ d0 u$ E1 A  Z

      A. k* u# L4 v: E- }2 x8 ^    The function keeps calling itself with smaller inputs until it reaches the base case.' \3 p' k6 e( U" I& R( Y* a! T

    : M: ~. ~. g' W( H' h% n6 C; I! ~    Once the base case is reached, the function starts returning values back up the call stack.7 ]0 X' W9 _; a4 t* {3 j; E% E

    2 o* x, Z1 x( R7 n* t' X    These returned values are combined to produce the final result.
    9 v* ]/ ]- L' U! J1 P/ A: X% N3 G# S0 k$ j6 F* f6 s' t
    For factorial(5):
    + G/ \1 E' |7 |% r# z" X% W! ^4 A1 Q

    ! N" ]. r8 i* a$ l# ^factorial(5) = 5 * factorial(4)* l$ s9 [; l" a! o" s) b+ W1 W
    factorial(4) = 4 * factorial(3)$ d8 a; _3 d4 A4 d' Y+ \* |, q) Q
    factorial(3) = 3 * factorial(2): H  G: C4 h7 l1 |
    factorial(2) = 2 * factorial(1)+ Q' B! Y- c$ W  t, U# R9 @- a
    factorial(1) = 1 * factorial(0), Q5 {0 D2 X6 J1 n+ i
    factorial(0) = 1  # Base case
    " Y7 Y" P( u1 k
    * p% p) g4 t7 c  [% ^Then, the results are combined:+ a" ^( S' z9 ?2 l' r% o. E

      [' V4 @5 B1 f: f7 O
    6 d6 ]" n. ^1 o2 J! S& `( V, g0 Q- _factorial(1) = 1 * 1 = 1
    - \# k( H9 S6 I# _, R: Afactorial(2) = 2 * 1 = 2% E! G/ M! Y3 g: `8 r2 n
    factorial(3) = 3 * 2 = 6
    " Q# q2 B. D  b: wfactorial(4) = 4 * 6 = 242 u$ Z3 \1 Q3 ^. P; q1 z2 @1 @
    factorial(5) = 5 * 24 = 120
    0 O& d8 o4 {) y* W5 C/ J$ l
    / z( P; G# [. `& E# j  P; k9 H. DAdvantages of Recursion6 G) `, ^0 M2 ^

    ' l4 u/ o) w* J4 R0 w+ x3 q    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    ' }4 R! V( w, T
    ' b/ s. U: t' r. m( V' w* u) L    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    : |6 Y) y: m- Z  i: e+ c% O5 b9 {: _  e
    Disadvantages of Recursion, D% N( G) R& U$ `  x& f/ q+ P
    ) G+ O, w$ S" y6 x- t; f/ B1 o
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.# I7 H1 ~: t% E9 Y% I
    2 n9 ^; v( y" A5 s# r( r% Y7 f
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    . j4 e! f* [& y9 ]/ k) L$ o. p# `( _7 T, c9 D8 }$ j, k  g- m
    When to Use Recursion# L  C7 r) O' G# w) a" j, \

    - i0 S6 ]' y  y- H9 A! e    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    . a! L! U2 d) X8 W
    / L5 k0 [3 G5 k! [: F8 t. `    Problems with a clear base case and recursive case.
    + M$ v# k$ q. s  r! i) d$ [& o/ m* V, J
    Example: Fibonacci Sequence$ H6 l/ D; @( V2 [

    & m& [; `, ?! K9 V* FThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    + g4 M9 f/ `) H3 g. |" K- D6 p- q; `: ~6 L
        Base case: fib(0) = 0, fib(1) = 1# |/ V3 M; P% F! |2 V
    2 k8 P! `3 \% K' z
        Recursive case: fib(n) = fib(n-1) + fib(n-2)0 T! M4 H+ J$ c8 y0 f
    & Q) C' {; _; R  w  Z
    python
    6 S2 f! ?0 {2 E" q1 R$ `, k
    5 G4 N" [7 G. i: n( J
    ) T. f, v* Z2 G. Q) \, n# ^def fibonacci(n):
    3 \* b6 k' B9 M6 b    # Base cases% L- C, X; \* g5 e, [7 V5 I
        if n == 0:
      \3 Z  y- G# G# b        return 0
    1 {! ~" J% y  N4 I( m    elif n == 1:
      q: |" s  w+ O# `, |0 M. [7 O        return 18 F- T. ~+ Z0 t3 `8 d7 E6 V' }0 U
        # Recursive case
    ; S- ~- Z( q! K. Z) @6 M    else:
    $ j: A8 L/ T3 [, {- q$ C' F        return fibonacci(n - 1) + fibonacci(n - 2)  _7 @2 }2 }1 Q0 ?" Q8 s

    $ ^" C" Q" Y6 }# Example usage3 [1 H3 {) ]9 a# S' `. D
    print(fibonacci(6))  # Output: 8: [5 d8 f2 `* E! y3 V: X* Z( E
    7 A- M. F/ U) X: s) x
    Tail Recursion" v/ `+ y; g1 p) d
    ( Q6 l& V5 @+ d) U
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    & ^; C7 l* {. W. M: d- P$ c2 C- z1 \' G
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-28 22:45 , Processed in 0.030065 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表