设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1426|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 1 _4 T" R% }1 G) X
    ' i. e2 H0 s4 I$ o8 a% H2 k
    解释的不错
    / |9 W; G# ~1 I' g! W, B2 W% K  P9 @  ]9 J3 C, P) T6 d9 Y" b
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。! ^0 L+ T! J7 Z& |

    ! z5 V& Q2 }* H" { 关键要素% A/ l8 D6 B; O
    1. **基线条件(Base Case)**, k& V7 I6 l7 k8 {+ G
       - 递归终止的条件,防止无限循环6 _: L8 j% |/ o4 ~# y% l
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    . ~$ D- s9 a, A: v! I
    . w9 s3 n$ A( X$ w2. **递归条件(Recursive Case)**
    1 Z$ X. k5 ]; L' d   - 将原问题分解为更小的子问题
    1 O# k- D4 v9 s& N   - 例如:n! = n × (n-1)!
    ' ~" u5 w' p1 d: E$ r# a' l& H' b
    # G1 z) T) A; y4 O4 o 经典示例:计算阶乘  N. ]. i1 u9 W/ n7 K
    python' f# p& b. J, U7 m
    def factorial(n):
    * P# _  o& p/ O: `0 X2 h$ w    if n == 0:        # 基线条件
    7 d; T4 b- M# E  G" h8 \        return 1; S8 o" q4 X3 c, y3 d% b; H5 ?9 d
        else:             # 递归条件
    8 g6 o- L" b  z! C        return n * factorial(n-1)
    8 ?4 A. ]' V+ P  Q$ b' z$ C& l2 S7 h执行过程(以计算 3! 为例):
    . y0 N. H9 n, }factorial(3)0 q4 L% @. S. m
    3 * factorial(2)0 `; W1 S. V! |! K  G& I# l
    3 * (2 * factorial(1))% W6 F' c( E$ @0 X) ?' s
    3 * (2 * (1 * factorial(0)))
    5 i: B/ C" X" ~: `; T3 * (2 * (1 * 1)) = 66 \8 @* R& K' a4 R! _2 b% o

    , Z+ {. W9 @. [* \3 _  m 递归思维要点5 ~" O) \) o6 I1 B  j: X+ t2 G
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑  i7 Z, F7 y9 K6 P
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)2 r$ _% x5 u$ ]2 ]- V) e
    3. **递推过程**:不断向下分解问题(递)$ r& |7 i/ |" a
    4. **回溯过程**:组合子问题结果返回(归)
    * L( T1 E! B0 r) m5 b
    & p5 J# k5 A# {% a: r) I  F2 W5 J 注意事项
    8 Z9 ], q9 z, `8 u必须要有终止条件; [) k: S) |# }. Q# `
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    % T$ l- a1 \% U! z9 J5 o) d1 m某些问题用递归更直观(如树遍历),但效率可能不如迭代$ |: i. w- f5 \2 d$ ]5 v
    尾递归优化可以提升效率(但Python不支持)
    " N7 ~  P' Y8 L5 b+ Y+ @# _: T: X0 @, u6 p
    递归 vs 迭代
    8 V: ~) M+ l6 p( x0 s|          | 递归                          | 迭代               |
    ! X% G9 K6 o8 ?# O+ Q|----------|-----------------------------|------------------|
    # ~" X4 h& S1 _8 G7 W; r| 实现方式    | 函数自调用                        | 循环结构            |
    3 B- @& l' l; E' c| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    - X' C/ N) e& |) ~0 [. X1 h| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |" v4 J% C5 t4 O- W
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |: ]8 w4 Y! Z1 U( ~8 c5 ^' x! U

    8 K0 ]+ V' N) q) [6 Y- v$ N$ M' i 经典递归应用场景
    8 ^. Z5 p% y  ~1. 文件系统遍历(目录树结构)
    : s& q( |) o8 o$ M2. 快速排序/归并排序算法- f3 h+ A6 z" K# \$ e  M5 ?3 f
    3. 汉诺塔问题
    - V% O. d3 u+ y" |- S+ i" {4. 二叉树遍历(前序/中序/后序)
    . c; s  X5 z7 l2 @5. 生成所有可能的组合(回溯算法)/ o* d% U/ F* ]9 U
    ! L- m! r* d( r5 w" w9 F! r. ^
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    7 小时前
  • 签到天数: 3113 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,% k) b% n8 \4 I' |1 H6 s
    我推理机的核心算法应该是二叉树遍历的变种。
    ; O0 }' v, @+ j- f8 [另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    - X5 v% O0 P% H5 v. z& \* ?7 @' pKey Idea of Recursion1 Y. _, A0 @7 w) z

    8 p4 b7 x, [8 d0 jA recursive function solves a problem by:
    / z  {) i8 {  [. P8 l6 \/ U0 F: l, e, E2 L% b6 }: F
        Breaking the problem into smaller instances of the same problem.0 W1 r" R& R! H1 l

    4 R! d+ }3 R/ R" t: S    Solving the smallest instance directly (base case).
    8 I  Y1 s- s' x, z( t4 {' ?! e% @) u' R2 U" ]& [
        Combining the results of smaller instances to solve the larger problem.* ^3 E. [# i7 c+ H( O5 m0 F6 T

    & F. X; ]  ^) y/ DComponents of a Recursive Function
    ; o1 X0 H1 o4 z6 j/ y' f9 f7 [( f1 q( @
        Base Case:
    5 J* d3 L5 k  d5 y/ M/ X7 X* Q3 a+ i' X' e- u
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    , R  r: C6 p1 s) Y. S% K( \7 y3 ^" y$ q/ ^& L
            It acts as the stopping condition to prevent infinite recursion." c8 f- t- H; ]1 H1 e% x" U$ f

    : \" h. T7 K' n% V% r2 ]# }        Example: In calculating the factorial of a number, the base case is factorial(0) = 1./ {/ c$ ~$ h. V4 k. Z

    # \, B8 Q+ {& r9 o7 T6 f    Recursive Case:
    1 \; E6 \) g6 a! j' S1 |# @6 k6 h2 D9 U0 q1 y
            This is where the function calls itself with a smaller or simpler version of the problem.
    $ y- s# M9 l5 A( N0 _0 @4 g6 f
    0 H' Q) F8 y) p$ Z8 j* n        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).' R& ^$ ]. u) D) A
    2 c$ Q7 Y( U9 l% H3 m
    Example: Factorial Calculation. r1 D9 R& f4 p
    ) ]5 U, J( o* i; j0 F
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:6 k  X! c& Y" [7 e8 W0 ^, t

    ! c8 W. [7 d  W/ |! w0 u- Z    Base case: 0! = 13 m. f" D! D9 S6 T3 M; n

    " b5 w; H" i5 p; M( y5 z- q( x0 \) O! L    Recursive case: n! = n * (n-1)!5 K. b; t% t/ b6 ^* i
    ) h+ L3 W" I7 V5 T7 H" @" S
    Here’s how it looks in code (Python):
    $ P4 A+ k% O! P5 `( S, q/ Apython
      ~& T9 |; }/ n% r/ ?, G
    1 l4 ^1 S5 b5 Y  P& p
    ; F8 @; V& p. g; c5 o( p' p9 n  ^def factorial(n):
    % h) ?4 z* L& H3 c, x2 b$ B    # Base case
    $ I* |2 S5 k( V+ }  N7 b    if n == 0:
    2 N1 ^; F) i( ^$ l3 C        return 1
    - c9 q9 [+ b+ x5 ]( `    # Recursive case
    / D( ^+ n, U; L6 e8 e& S- e- b5 X4 e    else:
    5 I* X" p- Q- J4 L0 y        return n * factorial(n - 1)
    , \0 K3 |' z; s! _1 k2 F8 a2 S$ X# D$ V: q) R; @# s6 b) c. w6 Z! b% G
    # Example usage
    . t1 m) @% w3 h  a8 p, |print(factorial(5))  # Output: 1206 M& U. J" @# o9 Y
    6 y1 u( ~) x  T& Q
    How Recursion Works
    ( C# f. B  M2 L2 ?" @( \, V! r3 k0 |0 u: k  ]
        The function keeps calling itself with smaller inputs until it reaches the base case.
    $ \. u0 x7 U; s& O% `: u+ P' q& K
    5 ?, B( I' y) Z) w    Once the base case is reached, the function starts returning values back up the call stack.3 r& X( p' ^0 m! t1 X

    1 T5 j& \/ r" \) J; d5 z9 I    These returned values are combined to produce the final result.. F4 k1 h0 i6 `) A

    # l) M6 u/ K" Q: u7 [! u$ u+ RFor factorial(5):
      E$ q. ]  @/ g, f" [8 {. ^5 `# \$ U& U: x

    $ y9 d/ Q# V6 o0 N' q1 zfactorial(5) = 5 * factorial(4)2 @7 n) A( u1 H, E
    factorial(4) = 4 * factorial(3)
    + c! b8 S' l, h: u/ U& pfactorial(3) = 3 * factorial(2)
    8 P, U" f4 v$ n5 kfactorial(2) = 2 * factorial(1)
    ! T, v. b6 W. B! R: ]factorial(1) = 1 * factorial(0), |' P" Y8 S  z: U9 }+ V3 x" n
    factorial(0) = 1  # Base case
    ) r" V8 i+ g) Q' {0 ]: ?
    ; k" y+ u2 r6 ?- m- R' aThen, the results are combined:
    $ U+ v$ N* ], B& {
    ( A! x, O3 e3 E$ Y0 f* Q( [5 l/ ~# o" P
    factorial(1) = 1 * 1 = 17 Y7 o% C' A7 E) H
    factorial(2) = 2 * 1 = 28 f  H+ F, s& |1 n8 @; ~9 z8 s/ g
    factorial(3) = 3 * 2 = 64 @( Y) `6 }* t# m) g8 S  c- B
    factorial(4) = 4 * 6 = 24
    ( n8 f2 O' B4 q  xfactorial(5) = 5 * 24 = 1202 r/ a. S) g& u" }/ }! S

    # |$ c$ H0 ?! I& w2 ?7 b" iAdvantages of Recursion! X, _+ j0 I. G

    2 @/ K4 ]8 a/ c& Y4 I9 o  W( I2 k  W" _    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).5 \, ^6 P) M6 C# t
    , _  q( y2 ]; T
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    ! {! s8 |$ \' d3 b: \* d5 ^4 B$ y( j, E8 M
    Disadvantages of Recursion: `0 E2 p/ k% }/ z
    1 K9 \; }, d" l5 y
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    % V/ J" L5 @5 @. l0 A: i0 A& ]! M$ G9 Q) e
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    4 ?% e6 i( e. z
    : ?1 t& A/ A2 a0 a4 y' U1 r) |When to Use Recursion
    . d5 ?& R( |3 B: X1 M: k- m8 Y! `8 G3 e6 P/ g, R
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).6 F! ^: B: f: g" ]0 h2 V/ Z

    $ B; [0 C% D& N    Problems with a clear base case and recursive case.
    3 l9 P7 V3 e$ j* q3 t4 r; v  m% w  a/ \3 o: s% S
    Example: Fibonacci Sequence
    / v* ~/ w% M* `% ]( W% O
    - ~& H3 C1 j* S5 m& A8 B3 PThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    * f. p$ O  z# A, ^4 [5 f& q
    7 V5 ?0 S) h' ~    Base case: fib(0) = 0, fib(1) = 1
    3 b; L: D* R) s( L1 H" M0 i+ t" `+ V2 H7 w# x3 _3 Q: @: c
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    : v/ f# \5 v1 F( k7 L4 O2 _- @% z& N) {2 a# Y7 ?& I9 S2 ~" \8 W' a
    python
    + ^( P' k$ u8 K* U% g$ k) o
    9 ^' ?- ^5 H( d4 L/ X
    $ D; j' @& I) j, p/ Q- a2 edef fibonacci(n):
    * E/ m9 D7 O! I) M4 ~* j% `) x/ m2 n' c    # Base cases% C* [3 j: Q, r- {; g
        if n == 0:
    , A/ d0 Q+ N3 P; C4 B0 u- N        return 0
    " w* g9 {& u5 w7 i7 Z* ]    elif n == 1:$ ]9 X; a* J+ W. Z/ L/ w- o
            return 17 w! E* g2 |  O: @3 h' V6 C4 H
        # Recursive case9 [1 E% {. X8 v/ O3 D: V& E5 M  \1 S
        else:
    : y3 j( v' P5 U+ ?% ]5 X        return fibonacci(n - 1) + fibonacci(n - 2)
    - e2 {" b% [# P9 R3 E" V9 a* }
    5 g5 i- k& ^+ z, V8 H6 ~: _# Example usage
    & S) b- ]4 Q: H3 G  i/ Jprint(fibonacci(6))  # Output: 8
    6 l  E. G/ c" }' r: T" r) N4 w4 `, _" O# E0 @
    Tail Recursion
    & j& M% M, G! G% n! {: b
    2 p& n' m/ a% r7 I2 ^Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).) \$ y9 Z7 O4 ~! J8 J
    " r% }5 z4 Y+ ], J
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-9 14:54 , Processed in 0.029468 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表