设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1618|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    1 a; B4 n3 A  y& W9 K& C1 D1 E$ t  l! t; j: @7 t- t$ f8 s
    解释的不错
    2 X" ]  b* {1 U! V( U4 k3 R( J& D
    . j: n0 |- J8 Y7 G+ {1 Y* F) B递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。% p: ]1 z- B7 k
    + Q% G" J  {% m& }2 q: P, x
    关键要素
    0 g) s( V2 b/ [6 `1. **基线条件(Base Case)**5 @* p7 V+ G( G$ `
       - 递归终止的条件,防止无限循环
    8 P& \/ w# x, b; {   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 10 }- J/ R1 |7 P: `. O

    ! H( D7 j4 x+ U$ r2 P6 Q/ p2. **递归条件(Recursive Case)**
    . N( t' s, A" c; [& {( ^- X   - 将原问题分解为更小的子问题, B. r4 O. t$ U3 @: z" H* s
       - 例如:n! = n × (n-1)!
      i8 ?; Z# L- l' `, |6 U/ ]9 `
    ) S8 A% Q7 Q) n+ w; \* u& N& i3 N 经典示例:计算阶乘$ J% N6 H- F) F7 k
    python) s$ D* i) ~6 E. k0 k8 K  b
    def factorial(n):* F, j% X0 j* i8 R8 h$ A' e; p
        if n == 0:        # 基线条件
    . N2 Q$ g, }% S/ N( D/ Q        return 1
    # e7 J. _; p1 k2 q  I# I4 x* t    else:             # 递归条件
    + f. y/ c& q. L2 I        return n * factorial(n-1)3 {* M$ x% X) `
    执行过程(以计算 3! 为例):9 _5 E* F* y6 w
    factorial(3)' @- a3 G; K7 ~  a  c1 c* z
    3 * factorial(2)- I# i& C& B; M$ ?
    3 * (2 * factorial(1))
    / V$ p8 {: W' u! `* C* Z3 * (2 * (1 * factorial(0)))9 x* K, B8 B, Z7 s) o$ J
    3 * (2 * (1 * 1)) = 6- c# K1 u4 ?4 \9 L' F' `

    ! h9 B# D4 n: `3 J" R" w: H 递归思维要点
    8 \* B$ t- A1 o( Z2 H1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    6 U4 \5 S+ O) [2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    ; O' z1 \2 o. q+ U, I0 n3. **递推过程**:不断向下分解问题(递)
    + _) D5 n: e& v% J. N3 C9 s6 }& W4 O4. **回溯过程**:组合子问题结果返回(归)
    ! t+ `/ {$ e1 p- U% Y7 Z9 ~$ P( H0 O' s' x  o
    注意事项% b8 L9 q% `2 L) o- O
    必须要有终止条件: m. i$ ^% P; Y$ Z8 Q$ U
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    6 k6 A3 M: Y6 b* `某些问题用递归更直观(如树遍历),但效率可能不如迭代
    6 T# K1 [0 w+ E7 A2 \/ i* O9 Y$ K尾递归优化可以提升效率(但Python不支持)" B2 o0 J" [( Y( d; v, p  @+ w2 [  b

    ) @8 }& a/ r) M+ |& X 递归 vs 迭代
    * o7 S4 u4 S! Q7 L|          | 递归                          | 迭代               |* v* H; y7 q% K0 O
    |----------|-----------------------------|------------------|
    / \- e& I$ j+ |. K( D| 实现方式    | 函数自调用                        | 循环结构            |
    2 e4 i$ @& [* @( _2 G- `: r; y; X| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |' h; Q  U9 l+ _& G5 d! M* @) z
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |6 g+ c7 s) u' y! k# a  }$ G  y" @
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |% I6 B) ~7 r, f" I5 [9 }. K: r
    / l0 J# ?1 }, k$ b
    经典递归应用场景) Z( Q; D' D/ K2 {* o
    1. 文件系统遍历(目录树结构)6 r. e2 V. M5 \" k: K7 ]3 `
    2. 快速排序/归并排序算法
    ) f8 N2 j$ j* Z2 x: e8 Q: K+ Q3. 汉诺塔问题3 q# ~& c7 i+ q* M3 V& v
    4. 二叉树遍历(前序/中序/后序)- X  P1 z% H4 J& _% Z
    5. 生成所有可能的组合(回溯算法)
    9 C3 Q% K; E/ h/ F, o' }! _0 z4 N* `! ~- ^9 ]+ p
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    郁闷
    昨天 22:05
  • 签到天数: 3125 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,1 f7 B! I! ~' c; S. _+ W
    我推理机的核心算法应该是二叉树遍历的变种。
    + A+ o8 z' {& V7 I) q) r. ]2 C另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
      q& i! H7 v) K  A/ x" n' qKey Idea of Recursion; ~, `1 i. h% D4 c8 y7 l
    4 x2 a; w( M- F  r1 Q; Z8 V
    A recursive function solves a problem by:
    ' [1 V$ v' h- w$ y* J4 U( {7 @4 d2 _$ z1 [
        Breaking the problem into smaller instances of the same problem.
    5 A  I& s; s5 k3 A4 z" L+ H* b$ Z/ p9 z' j1 {+ H0 [$ G3 L* t
        Solving the smallest instance directly (base case).
    ' U3 L% F4 ]0 P0 F+ O+ ~/ P; m( x4 V! ]2 C* g: z/ O, h! ]+ @
        Combining the results of smaller instances to solve the larger problem.
    : Z/ Q- B3 Q7 q* O! N% a& H4 s; \: F9 s) f$ \8 c
    Components of a Recursive Function
    - j: U* @5 b5 I6 f- H1 Y$ k/ G; F% U7 N! O- }6 C) D' J
        Base Case:
    + [+ y& }3 N5 L2 b8 V2 R' U
    ) W7 t( A+ a0 t- c$ J+ b9 E4 n        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    2 K2 e* o$ m) }* G5 x& k6 k: Z( T$ h. f8 N! e; E: t. m
            It acts as the stopping condition to prevent infinite recursion.! ]: a: n! n6 p4 S9 X; x2 V( v
    5 n" N9 @5 f- h; c2 M5 S/ y
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1." e* X0 A( @$ Y% @0 Q  D

    ( L0 h7 v. {7 W! f4 @3 h. J0 U" i    Recursive Case:
    ; B7 |7 g4 p* o+ J3 k+ V
    ; p$ g2 q" o$ @  [! d2 ^& N        This is where the function calls itself with a smaller or simpler version of the problem.5 ?2 i$ H2 [+ |6 f
    7 B- q! l2 n% Z5 Z: @% s) w2 X
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    ( |; D: u  Z7 G( T
    " O* p9 v* d/ v5 y' LExample: Factorial Calculation' |" l" s6 y& @/ [! _
    4 }0 }6 u& T6 ]4 D0 p0 |% v: E
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:1 @! r9 |# w5 y! S! K' Y  N
    & ]1 w' Q; n5 A% d& g6 F5 @
        Base case: 0! = 1
    . x" R# X7 D/ ]4 V0 p, R2 v' ]) P9 @, k' v; R5 x/ M3 h
        Recursive case: n! = n * (n-1)!% _: f; I6 l5 }; u
    ( q% \, S+ ]' {6 \; ~( C
    Here’s how it looks in code (Python):
    # B0 w' M, l! n" Jpython
    ! E( L  Z( w+ ^3 u6 H: m" G( O# F- |  V1 Y! T: z! v
    1 X! N: ~5 t; I& G- s% E
    def factorial(n):) }  x0 X, B7 S: m2 K4 d# p0 I
        # Base case
    8 y  t& B- K2 N5 u. p    if n == 0:  x- u& Y* P, x/ Y6 m7 g3 g
            return 1
    $ M& [6 f- Q4 [  x. Y    # Recursive case
    % L2 n4 {  D' C( F. k4 X- A& N    else:
    9 Q" Y& [7 V8 x' M; j        return n * factorial(n - 1)" [$ E$ d, d4 A0 Z2 u$ ]

    ) ^) i# m2 P" |3 n: T# Example usage
      [4 Y1 J3 F9 O( Y9 mprint(factorial(5))  # Output: 120
      ~9 m7 z9 i7 g1 v( E8 x# G5 \% \6 ], v7 b2 I) ]( d5 K
    How Recursion Works# V6 X' f- ^/ J8 V( Q# g# J
    / L$ T/ Y( [5 i8 ?  h; ]
        The function keeps calling itself with smaller inputs until it reaches the base case.
    " r' ]  v- _# }+ t3 D
    7 g) k5 O* @6 M3 B+ M    Once the base case is reached, the function starts returning values back up the call stack.5 t. p4 W3 a% {& ^* X) U
    ! N! G0 W4 D  V1 n$ X
        These returned values are combined to produce the final result.' H# }$ Q  b& i  f8 f5 @" v

    ) d( |4 D# |6 X  d; X5 o. o! L: gFor factorial(5):
    ; `6 [* t; w6 Z, a* w1 t: L7 ^! {. B& Z0 u; q  |8 j6 h

    + D8 k. ?2 a, a2 m$ Wfactorial(5) = 5 * factorial(4)/ k$ U: ~3 O) b; ]6 w1 r
    factorial(4) = 4 * factorial(3)6 d. i, m7 A; Z- M9 Y( x
    factorial(3) = 3 * factorial(2); v7 Q" X- p+ H* @9 [
    factorial(2) = 2 * factorial(1)- d3 T8 Y8 o$ a
    factorial(1) = 1 * factorial(0)8 q! {  O# ?2 Z! C8 V9 A
    factorial(0) = 1  # Base case- y6 M7 p4 s# E: A

    1 K- s- M0 W0 o) A" }Then, the results are combined:6 o! [4 J  l0 @; z! w
    ; R/ v6 V2 D! Z7 P! N
    3 e  `* I1 E2 a; w
    factorial(1) = 1 * 1 = 1
    1 a# f; u4 C+ i9 V" ]factorial(2) = 2 * 1 = 2
    ) f: e7 ~" L% ]factorial(3) = 3 * 2 = 6. N3 D* V. m3 t3 [4 d* R+ l
    factorial(4) = 4 * 6 = 240 M6 H$ i  V2 M8 J# Y" T0 L
    factorial(5) = 5 * 24 = 120' m: E6 S9 q1 ]! z: E, f, `

    7 S$ T* L5 B8 w- K6 V2 SAdvantages of Recursion
    * h& A1 B  B+ I0 J" a( P8 ?
    # M) H$ c) j) X. u    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).) m& y, ?( F9 K+ ^2 {  H) {

    8 x+ r. q- U+ i; ]    Readability: Recursive code can be more readable and concise compared to iterative solutions.  u/ ?! ^5 `) h: v" ]

    - t: P& {# M9 ^) oDisadvantages of Recursion
    0 o. P6 |7 f6 t
    , M. ~9 s, \" o4 W/ F; n    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    % G4 _; _6 U: @1 H7 K" o9 x( u. O3 L8 P" f! F) y
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).; H7 f( {7 `2 {8 G$ k! P
    ' S+ c5 H+ r5 z8 K% M6 f9 z/ Y) ?
    When to Use Recursion9 J8 A9 a) M4 y* f* v

    - f( j6 x9 R* s& F    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).* z6 H' j4 N( m
    - X: L& w- X; u$ ~- r8 K) G3 R
        Problems with a clear base case and recursive case.2 u: D4 ?4 J6 _1 ~# O

      q' p# N! r3 c( z* Q$ n; }Example: Fibonacci Sequence
    9 v( n6 q5 R2 J' l3 h/ ]& w' g; a
    , Q4 b0 `) R8 sThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:% ^. X  i" n5 {
    + x& u$ T+ ^3 d8 `/ [1 y0 Z( e
        Base case: fib(0) = 0, fib(1) = 1& J' _4 m) P9 ^, F
    3 U3 O" r0 t9 @. K" I2 A! Y& w
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    : v2 }9 v/ R- t* M6 K, B; s1 f
    3 h/ _3 S  L/ Xpython3 t3 e$ S9 x: v$ w# a8 Q

    $ E; K+ ]: |5 |* l# p. r* m7 ]! X2 b
    def fibonacci(n):
    ) ]( Z1 x% h5 D    # Base cases
    % l6 r7 m+ t6 W. z$ H, F    if n == 0:
    $ u6 ]' w& @5 S        return 0
    9 Y/ v2 w9 Y$ g6 s2 E    elif n == 1:
    $ x$ F3 _/ @1 g2 A        return 1  N+ R" _& M1 Z" l% [
        # Recursive case: G& Z) f. ^8 J2 _
        else:. h" p& D: a' T6 k( P) C5 q
            return fibonacci(n - 1) + fibonacci(n - 2)& m4 T/ W2 A) N5 u2 r

    1 Q" N& N  A/ ^6 Y( n6 k# Example usage
    % [  e8 v' y) @3 Rprint(fibonacci(6))  # Output: 8
    % G- R+ S5 W( {' Y; L: h1 B6 S# m& a. k  J6 Y0 N' V3 J) D$ t; P: R
    Tail Recursion# I9 X6 P6 c9 G  e/ C" W

    / z/ ^/ N4 F% m" {Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    2 c" o% U0 u) S9 n$ ?! R0 z. w* a
    7 p! |) T& z4 Z0 W3 M5 [% h7 `In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-24 05:55 , Processed in 0.030259 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表