设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1814|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 ' e& Z' {: t' c( C* r" S
    1 c7 l$ y* }- l. m" `: A  \
    解释的不错* ^2 f* H  ^. \1 O" @! |7 `

    8 O/ M' A& w, T! Z4 R3 n递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    / X/ v: X# \4 C/ k. S" y  f
    . C& h5 b: ^; Z2 a 关键要素
    " b: d+ L3 K. m9 W6 S% b1. **基线条件(Base Case)**
    / \8 E: q6 T% ~+ q6 i2 {. N0 F   - 递归终止的条件,防止无限循环
    ' j7 B0 i! s1 X8 g/ K   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    8 B0 z0 {! `2 P
    4 w" L9 G& Z. h2 s5 P' q2. **递归条件(Recursive Case)**& J# n9 E' G, _, |, M
       - 将原问题分解为更小的子问题
    - v) y4 ]+ Y; d  @& m( i( X  @   - 例如:n! = n × (n-1)!! @, C$ T6 d; [5 ^; v/ F
    + n. \) V- d' B" H" p8 a7 v
    经典示例:计算阶乘
    8 x' Y; Z4 E/ j& J! A# g4 S1 ?( Gpython. O4 S. P+ ~/ o8 _* M5 y
    def factorial(n):
    4 ]4 W6 P' H  X    if n == 0:        # 基线条件
    7 Y( ?# `0 \( P$ q        return 1
    1 ~) j( M# `# w( I) U    else:             # 递归条件4 C) Z: g# H! G& M+ [) k
            return n * factorial(n-1)
    4 ]  U* g7 O" B/ ^5 Y2 v执行过程(以计算 3! 为例):1 Q+ ]- g0 e, c# n! e- x% i5 N
    factorial(3)$ P5 J/ ~$ |' A# a$ _
    3 * factorial(2)
      f- y- E3 ~6 O9 `; [; K3 * (2 * factorial(1))
    5 J# g+ w  r2 M- w6 c6 d3 * (2 * (1 * factorial(0)))( ?( l2 v9 z9 x' {( i  l, X
    3 * (2 * (1 * 1)) = 63 k" `4 {$ Q, X4 u4 s8 }# B: Z
    8 Z8 |/ g6 w/ N
    递归思维要点4 [: E+ _' G% f/ a' s
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    $ u" p4 ]% |$ z5 O$ v0 y$ w# F7 W2. **栈结构**:每次调用都会创建新的栈帧(内存空间)/ u/ T. `& E# g
    3. **递推过程**:不断向下分解问题(递)& H; X. m4 E: h) h9 ]1 Y5 g7 Y1 C
    4. **回溯过程**:组合子问题结果返回(归)
    : U5 ]( I) F9 `+ ?* o$ d' c; _8 @/ r2 K, {5 I4 N
    注意事项2 k) f" C! P. u: P( Y) ]
    必须要有终止条件+ `& ^8 ^0 M7 h! g- j( K
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)1 V& U' |' y7 H/ Q. I* E' g
    某些问题用递归更直观(如树遍历),但效率可能不如迭代% [. K6 b# n1 g) X  P2 t4 L$ }
    尾递归优化可以提升效率(但Python不支持)& y; n6 G& K6 T9 o" p
    . {7 q! O; D: z9 `0 I
    递归 vs 迭代* m7 L7 E' u; ]9 w
    |          | 递归                          | 迭代               |
    + f) r5 q0 `2 V) u+ y" p|----------|-----------------------------|------------------|" s4 }3 M: X7 O7 J; `* r% l
    | 实现方式    | 函数自调用                        | 循环结构            |
    ) O# M- o% h( V5 y. e0 f/ @) b. q| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |1 t& f6 r# z: Q+ e
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |; n1 ]1 \+ A+ b& ?% f9 n
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |" h! f+ A" O' J  O- a

    , d' p  I6 b  s# G" b! ]4 Q 经典递归应用场景
    $ @& g6 M! o5 V1. 文件系统遍历(目录树结构)
    3 k+ a; x/ l' T, P3 T; j2 E2. 快速排序/归并排序算法
    ' V. }0 l: V6 f5 E/ R8 ]" i3. 汉诺塔问题( s& L, c+ u# j# P8 u5 a# |  [7 K6 N
    4. 二叉树遍历(前序/中序/后序)
    # r9 R' S; \/ l& k1 J5 }5. 生成所有可能的组合(回溯算法), _; X" B+ i5 ~% X0 Q0 D% ^& s
    1 m  j  ]( T3 x9 E! ]
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    郁闷
    15 小时前
  • 签到天数: 3145 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,# [$ `: X/ Z  {9 ]5 \
    我推理机的核心算法应该是二叉树遍历的变种。. G2 ]5 O" d% }: e) p1 A
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:% g' \. ?% l6 `& N2 a7 k8 U  H/ b# Q
    Key Idea of Recursion- B- B9 _; @8 l3 ^' k+ P

    $ i, x; G) c* x* r" E$ z$ jA recursive function solves a problem by:) N# D3 o- z, T) I
    8 `8 C5 T' D" Q; E) X5 ~3 Z2 [
        Breaking the problem into smaller instances of the same problem.8 ]& r1 `( f" O2 d% [+ p

    " q- q- _. |+ p) T+ T5 j- y    Solving the smallest instance directly (base case).3 O  S5 t. C$ w- C: Z' U5 g9 `

    0 m0 X9 y6 \6 ^    Combining the results of smaller instances to solve the larger problem.2 l7 c9 P1 G1 ^/ s4 V5 ^3 Q
    / `# m( N6 M) F4 r
    Components of a Recursive Function8 D: i! o9 V' b, ]- v4 E

    8 Y) A0 u: u7 q' @  V( w8 J    Base Case:2 v/ `% W  `" ?4 z
    * F7 H0 N2 Y/ ~# R+ q0 l5 n$ u+ z
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion., \/ Q: S6 U- k6 R, k+ V$ X$ J. F

    4 @4 R& b: X0 T* _4 g; \( O. h+ K2 T        It acts as the stopping condition to prevent infinite recursion.
    4 M: j0 t" t8 b% _8 J6 N2 O; M' _! |  ?/ E7 j( H( k
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1." l0 L* z, p5 G" z4 [

    0 a8 }, K( a$ Y: O  J1 t( Z    Recursive Case:+ F( \: M8 v& w0 e* ]0 v! u0 v

    * o) N% @  t6 T  L$ B. o        This is where the function calls itself with a smaller or simpler version of the problem.! ^% S$ I' V" {) K  G7 h9 T/ q

    / G3 {5 w* \9 ?" T8 F9 v        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).1 X: K1 A4 g7 e4 U7 R$ `1 e
    5 {4 e& S+ R) z  X; H: l  l1 H
    Example: Factorial Calculation: j- k+ M- K$ W/ x1 @- c6 [* R

    ; D" s0 J2 p: Y  C. XThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    . |6 {, a$ ~+ K/ c9 j6 G, Z5 E3 l' l0 A% J% S  o
        Base case: 0! = 10 N( P; |9 @5 r; _

    & }" q9 }( Y7 U: |2 R    Recursive case: n! = n * (n-1)!8 E3 X4 [1 q5 e5 B. v
    9 u& r  `) q& M0 O7 W, a$ C
    Here’s how it looks in code (Python):; S" \$ |+ M0 g8 |: v' V: B0 Z5 u9 v
    python
    ) Z1 Y+ l* Q% B2 a6 {% l( Q6 l0 m( J0 z' M5 }
    ! h8 s! C: B) F" h. P) \; X# R! i
    def factorial(n):
    ' P$ }- j8 Q- F# u    # Base case
    3 b3 m) V& y$ K% u9 q. U/ r    if n == 0:
    * r- n2 j9 S; Q. F9 s; P        return 1
    $ m( F3 v& |. V7 [8 d* X$ v    # Recursive case
    * v0 p% s# _4 b    else:3 q/ t: z9 G) T6 p+ [6 L' W
            return n * factorial(n - 1)6 Y+ s  r/ F. K6 f, G. X
    $ g7 N! b8 b$ N
    # Example usage
    4 J8 M7 V; Y  Y; mprint(factorial(5))  # Output: 120
    + a7 C0 r1 S1 I' k+ U7 O5 v0 f; A) @% K: t. y8 f; `# Y
    How Recursion Works1 y% s. y- [+ o" F4 D
    ' a5 e7 `" k: c+ F$ D8 _
        The function keeps calling itself with smaller inputs until it reaches the base case.% U2 `) Z' C/ F/ Q

    4 D6 r, F3 K$ Q2 h! r  [    Once the base case is reached, the function starts returning values back up the call stack.! a$ @) e* E# j% h* A
    $ T$ W; i' S  L7 ]8 L
        These returned values are combined to produce the final result.
    # y/ R" o2 F- ^) x. I/ p. c
    / s) u1 r& [* e+ l( H' j; xFor factorial(5):. L7 c& f5 L6 D5 t2 m; X0 R; |+ w

    ' L% K2 |7 v. E9 K9 |% |/ j7 h3 `/ ]" }' J* N6 d5 N
    factorial(5) = 5 * factorial(4)
      ~1 i$ R: D7 |) e- gfactorial(4) = 4 * factorial(3)
    ) q$ Y8 v- l% ffactorial(3) = 3 * factorial(2)6 k* E. i2 [8 q5 x/ f
    factorial(2) = 2 * factorial(1)/ ^; Z$ E; V$ }/ a/ n4 t
    factorial(1) = 1 * factorial(0)
    * c0 V' x% W' {9 n1 |factorial(0) = 1  # Base case
    9 n  J( i9 x0 g6 o; U
    + s5 a$ [+ m8 d( B; K. BThen, the results are combined:
    8 H% _5 Q: d6 D" Z" Y
    " k1 M6 Y8 e, v0 g/ }" ^+ C! X8 _& a
    factorial(1) = 1 * 1 = 1
    : q; t. u5 @- s' t% hfactorial(2) = 2 * 1 = 2  b  X" q+ p8 o0 d3 y
    factorial(3) = 3 * 2 = 6
    3 X  ^8 h; p# o4 bfactorial(4) = 4 * 6 = 24
    ( G3 Q2 [! t- @factorial(5) = 5 * 24 = 120
    4 l0 @0 x7 J: |/ R7 m8 N3 I9 \
    Advantages of Recursion7 l& G$ W$ D; @: }
    0 M- l+ ^2 m3 I) E9 G
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    / r& Z* k+ [2 V" F* `+ J1 f
    3 C( ~- {: s( L' D6 G4 ?* ^7 F* N    Readability: Recursive code can be more readable and concise compared to iterative solutions.% }* H* M: D% Y1 P$ L" X
    ( @1 d: u+ t3 v! d4 [  G7 u
    Disadvantages of Recursion
    + M8 o1 `) [* s* }6 K) y- M2 M; g$ s- z
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.1 A* |* Z, n) z! T) L, J( U# b9 i
    ) T2 m4 P% B: b; v# [" @3 G# Y
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    + M; \* w3 @" u( b/ P3 D4 v
    6 |+ h# ]6 }& t% z) {. t/ L5 ]When to Use Recursion
    9 `- X. w$ Y+ n0 |0 W8 y
      T7 j9 j+ N8 z    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort)., ]6 L" @" v" f
    4 R6 B: J6 R+ n2 H/ V
        Problems with a clear base case and recursive case.
    4 n. y7 @, |, O5 b7 g, Q
    ' e6 Z7 S2 ?3 |1 R% h) ZExample: Fibonacci Sequence
    ' G6 Z1 R  }2 A; N; W- q8 a& e
    # R0 {, @  _6 s8 Y! v- p! d+ Q) DThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:1 X4 x6 @7 q2 g
    + W5 o# O* o7 {& m, o. d% x
        Base case: fib(0) = 0, fib(1) = 15 K) L+ f/ \: k/ i+ K6 ]
    , e9 L; l5 p4 k0 M9 l
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    $ x7 q0 @2 V! d' `/ {" [5 t# z9 m& C
    python
      |- o' G& t, _$ H0 E  a9 J
    % i% \% U) D# W8 j, A5 c" z$ N* ]/ t& \1 h% G3 n3 @
    def fibonacci(n):( N% x; T' S% ]9 d$ ]3 {& l7 k
        # Base cases
    ) P( k4 ?" r% e" |    if n == 0:
    # c! s9 X4 x; ~6 M8 I        return 0
    4 s/ e0 k% O- M8 P    elif n == 1:3 m" F; r  ^9 R1 l" x
            return 1) w  R1 L; G& U8 H( x' M
        # Recursive case
    7 R( k1 q; l( Y2 n; d) O5 g3 o    else:
    2 x( v) ^$ O$ `+ d  \" u        return fibonacci(n - 1) + fibonacci(n - 2)6 G( \& V( K0 f
    ; K* q4 s3 l8 ?; V# O8 l" }
    # Example usage- x% _& E5 v) g# d, P7 |2 p* u
    print(fibonacci(6))  # Output: 8
    : V, e3 F( q- Q( O: r9 O4 k6 A* f0 F  D1 }( z3 b3 |8 p' t
    Tail Recursion
    / r5 c9 O4 G9 q" j! f5 ~/ }: ~! d& [( o2 b% x0 S9 `
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).; e' T2 X$ z( ~1 j; Q4 D- h3 v
    : e5 ^9 U/ x; w6 U6 g5 n
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-13 22:25 , Processed in 0.029202 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表