设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1082|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 , N; T, K: e( m5 N

    % X5 B( U8 d( ?3 \$ X解释的不错
    , S4 }) t+ c8 l) V" L0 `) V" g3 u8 L% ]3 Y
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    9 V( V: J0 H/ X# O  Q
    3 G* w! ?, t/ U1 Q 关键要素. O; [$ Q+ X2 z  v- ^) V
    1. **基线条件(Base Case)**3 t/ ~) m- Q" m% Y, J8 b
       - 递归终止的条件,防止无限循环
      Q# B* }. d' U7 S# |   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 17 ^' v. b: J% c4 C
    8 p0 d4 r  H& {+ t" f# y1 X
    2. **递归条件(Recursive Case)**
    - U/ }0 t- ~. L   - 将原问题分解为更小的子问题
    8 S0 j7 V$ Z  {   - 例如:n! = n × (n-1)!
    0 I/ }; v( i* }4 `' [* J* c$ N0 A+ s4 W( o
    经典示例:计算阶乘! }5 K7 [7 I( f4 v+ w: i" R3 h
    python
      V6 E9 M* K- l: Wdef factorial(n):
    & j* v" p+ ~& }  K  l* _# C6 C    if n == 0:        # 基线条件
    ' z9 B8 Q: _9 O! p: m        return 1
    & k: \3 Q/ Q5 N( U8 C+ ^+ U2 J6 f    else:             # 递归条件
    # x3 q4 {$ n! w2 B% I        return n * factorial(n-1)
    ' T7 {0 ~9 W" @! y4 {9 J执行过程(以计算 3! 为例):' G1 ^) W. m2 y$ s0 R
    factorial(3)
    ' v; v& y9 k" o4 @5 e5 _# A; A3 * factorial(2)& D0 K, [. I( j6 T$ ?
    3 * (2 * factorial(1))
    7 t9 M$ z! P* Y3 * (2 * (1 * factorial(0)))/ a) Z) I4 R+ \# L# p% m
    3 * (2 * (1 * 1)) = 6
    0 i1 B5 ~% Y. Z7 @+ O  s; C  R/ c# r' ~$ j
    递归思维要点- w7 Z; W) H* ?4 Y  z9 o, I
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑2 X" r* [, [, _  [2 w
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    $ v, @' w& ~/ j/ j- c3. **递推过程**:不断向下分解问题(递)' e' ?3 e( d& Y' C2 V' Z7 V) L3 R
    4. **回溯过程**:组合子问题结果返回(归)5 H  V, h! g+ `/ F5 [: S
    ( x2 f% K: S! h) v0 u+ J; M) x+ k- g
    注意事项" Q0 c! m" K1 Q; ~' x
    必须要有终止条件. A, y% S' u+ i. M, v
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    # g  z6 ~# ~9 U6 ?某些问题用递归更直观(如树遍历),但效率可能不如迭代
    + @( {9 V4 b+ Y6 d5 ~尾递归优化可以提升效率(但Python不支持)- j2 i3 P% b' E9 C) C
    , b9 q* `+ }9 f3 e+ y4 w$ c/ y7 w- s
    递归 vs 迭代
    " U( v8 N  X9 O9 w1 h; y|          | 递归                          | 迭代               |
    5 C7 a# R4 t; P|----------|-----------------------------|------------------|
    0 @- E. w6 G8 [4 ^) q# i| 实现方式    | 函数自调用                        | 循环结构            |
    5 a2 S3 j; K9 I| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    , E5 F7 C: _* d0 ?% J7 d9 J4 J| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |: d1 [3 k- a) L  v8 h# Q
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |4 B# P: P0 R3 a3 a

    8 |& ]# t& [! K! q6 n 经典递归应用场景
    - \5 R8 z+ H- ]2 K+ f0 ~# t- p1. 文件系统遍历(目录树结构)
    : r$ v* \# G( t* e8 ?2. 快速排序/归并排序算法
    . A2 ^) N/ P) b, k5 |5 N3. 汉诺塔问题. p% o9 v% M$ a% n/ T4 C: C
    4. 二叉树遍历(前序/中序/后序)
    " J+ e+ _% Y- R5. 生成所有可能的组合(回溯算法)
    % e( w$ W  s0 ~7 f: t
    ! P% \: r; R( E  z7 w0 s试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    5 小时前
  • 签到天数: 3094 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,, M8 {6 f, b3 z
    我推理机的核心算法应该是二叉树遍历的变种。* d& d8 J( Q) `/ i
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:0 C. c# f. Q, a
    Key Idea of Recursion
    ; x2 ?/ A- y, J- K* K: C. [! h  S4 G; M* {0 u- O; o, E! T
    A recursive function solves a problem by:
    1 k0 f% N, P) j9 M, `  N* _) x8 y" s& Z* j3 k2 C& j! M, ]
        Breaking the problem into smaller instances of the same problem.
    ( n$ |) _+ Z$ Y) t) O# Q' s: A
    5 @5 B# W  S  D2 w6 [    Solving the smallest instance directly (base case).9 v# i4 V- a1 `1 d% g$ F

    & J9 E) K* h* l5 p7 U    Combining the results of smaller instances to solve the larger problem.
    8 ^( t# R3 a  B2 W" [2 l! _1 d3 d8 j# ]7 v2 N+ ~2 z" G5 G- K
    Components of a Recursive Function
    & ?+ H+ b: c; f1 j' E- P
    * _! B' W) j2 h1 b    Base Case:
    . @. P" E9 P3 ]* L* G7 N- }4 u
    4 L( I6 I4 ], }  r. Y/ L7 I. N        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    % ~3 L( }: N0 W; D1 E
    , V* G9 T2 e$ o) D7 p7 H2 J" Y        It acts as the stopping condition to prevent infinite recursion.
    7 g# Y  T( |' ]2 ^1 J  s/ {2 c
    , \0 |+ B# B9 p4 K  S1 R        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    4 n7 L5 X5 a% m3 L: Q" q/ n% @' O  x3 q; l
        Recursive Case:
    5 B& S: P# r5 S3 E) f3 U3 U% i5 C( T! [5 ~
            This is where the function calls itself with a smaller or simpler version of the problem.
    / F& {* M, A6 D# x% [  b( d. ]" u2 e* Z
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).% Q9 Y% T) V+ |5 j' |

    0 C+ J, s! t1 I) ]' w! {# V# ^Example: Factorial Calculation2 K3 t( U  s0 Q, B$ r3 q

    " n) U1 R) l: n3 |4 l! XThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:" o& t, k' p. U: r" \1 x( }0 T
    7 x  c0 m  N8 @' ?0 o6 G$ F6 X) A/ _, E
        Base case: 0! = 1
    8 o9 k+ H: B; B1 e  _- W( i$ {& l' l/ N, B7 _/ E
        Recursive case: n! = n * (n-1)!
    # J  x* g* ~: ], Z5 o6 L9 O) z' D9 U- H9 N
    Here’s how it looks in code (Python):  a0 O' T, s6 h) I7 `6 u
    python4 Q* v/ ?% a5 N2 v6 W! E/ z

    0 ^/ s6 _9 l9 H) W9 q$ v0 O4 X
    4 W9 v8 k. I& V  N9 o7 Qdef factorial(n):
    " O, G) u9 @% I5 u0 j    # Base case* U0 _* d2 }6 v" e
        if n == 0:
    - H& s7 A& h0 ]6 e5 X! d: |        return 1
    , o' [7 R. J2 O% n    # Recursive case
    2 O! ?! V' `; z' H    else:! ?# b0 `4 I1 }! [
            return n * factorial(n - 1)- m1 R- i: X/ g5 L6 J3 u3 ~
    5 Z, K3 Q  K* O) B2 W
    # Example usage
    3 H+ ], @$ O2 B1 e* Gprint(factorial(5))  # Output: 120
    3 c; ]  h5 y* z$ k
    + }3 N4 m" v$ r4 n! S8 ?1 x) RHow Recursion Works
    * s/ P$ f* C2 z- t  n6 k0 h8 @; l1 C5 l/ H' o+ Y
        The function keeps calling itself with smaller inputs until it reaches the base case.
    + }5 G$ R8 `) Z6 Q6 ^* Y
    1 C# ~- q$ K  i4 c* M    Once the base case is reached, the function starts returning values back up the call stack.
    ' ^9 P3 ^$ N5 W
    $ [/ [8 h1 R" B5 f4 J2 E2 z    These returned values are combined to produce the final result.+ y  M4 I' b. x8 b

    / s, n! G) o8 XFor factorial(5):. u0 l, v; b. y% m6 c8 r; j

    1 j: P+ E* g4 K$ z- y- y  Y; z! d0 x) }5 o8 p' R" ^. o( V2 i3 G
    factorial(5) = 5 * factorial(4)
    ) ^" K( E" y8 ]! u2 efactorial(4) = 4 * factorial(3)
    ; d6 }5 v2 P6 `. E1 P2 s8 }. D3 hfactorial(3) = 3 * factorial(2)
    / y0 O+ V7 k/ B# ~; X& hfactorial(2) = 2 * factorial(1)* n; J' t9 W. Z1 j8 }8 U
    factorial(1) = 1 * factorial(0)
    ' X5 x2 ~& J# ^" @7 O8 Mfactorial(0) = 1  # Base case
    " j3 ~# B! C3 b2 i/ N
    8 C( h4 G- d3 X' a6 h3 kThen, the results are combined:
    - G: l7 x; l! B: U; {3 r; Y  |
    # O; m% G. a- P$ B/ M8 L: m# P
    ! w4 P5 ]8 I' K. j( _' ~  M4 Bfactorial(1) = 1 * 1 = 1, G* n9 P3 q4 G- b1 g7 H1 F
    factorial(2) = 2 * 1 = 2: J7 d3 @; o4 ^& K: G; `
    factorial(3) = 3 * 2 = 6, G) a, g' M/ X' K5 f/ v0 p. e1 A
    factorial(4) = 4 * 6 = 244 ^+ N- S; n, `) s+ H4 T
    factorial(5) = 5 * 24 = 120
    - f0 l3 V% U4 t5 y* i
      {6 e; h& v/ x# U& o2 t8 R: KAdvantages of Recursion/ x& u& c7 j- V0 N8 B

    - w: l+ Z, Q1 s/ e    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    + a5 k% L/ |6 q: C9 ]) {  D7 }1 P1 r, I: L" c# i
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    ! L: y: s+ l0 y0 @" }) S. X! y/ S4 a. f' N1 Y
    Disadvantages of Recursion8 `: i5 A+ R% y* Z

    6 Q. I6 d. N2 i# o. j" P6 k. N1 F* ]    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.0 j7 a/ f3 B7 ]  s; r7 @

    0 b' K* |* [3 a4 m+ N6 F0 f    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    5 V3 N! J4 Y2 K9 B" l$ s; h7 H1 T
    When to Use Recursion
    $ ]0 P8 `3 Z8 n0 `$ D4 i- U3 F. n$ x& r1 H& Z* v8 v
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ; m2 C$ S$ k  E5 j( ~& A; U8 C7 B' R/ c3 O+ D2 M0 U) Y# `. T/ y
        Problems with a clear base case and recursive case.7 }/ O; F5 l  f5 Z

      ?/ Q/ C$ a9 k/ U/ z# FExample: Fibonacci Sequence
    # O! x+ d8 f. W# A
    2 ^3 Q7 q& G7 D- ^" |The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:" v( m( G  v& @8 |

    1 |$ D% c( A0 c: ]( z! e    Base case: fib(0) = 0, fib(1) = 1
    : j3 U9 _5 j" y% a9 u- [7 S
    5 E' K& e0 b( [* a5 E    Recursive case: fib(n) = fib(n-1) + fib(n-2)' I# ]4 W. t" k% B3 r1 y2 u

    ; }! G/ I4 h& t5 r. Jpython
      H% |$ n7 ~. [5 o7 l% L
    3 Y* p' L/ Z* W$ Z
    ' h( B; b' z4 pdef fibonacci(n):
    # D0 N7 k  |0 S8 _. j4 D6 h    # Base cases9 M# f& @9 v6 y9 @/ y
        if n == 0:
    - g. h# D7 e' I! y        return 04 ]  i3 L0 X3 D' a& \2 A7 F& s4 ?
        elif n == 1:$ I9 p: C5 h1 J- V
            return 12 ]5 K3 Q, |/ j% C8 Q- [& F1 J0 u
        # Recursive case
    3 K# F1 s* H$ }# e    else:
    ) c: {& j+ [: W5 v# k8 L+ x( i        return fibonacci(n - 1) + fibonacci(n - 2)( f) ]5 ]; z( B* x+ j. q( \, j
    $ ~; r6 Z: e" `4 l4 Y9 r
    # Example usage
    ! g( M& h* v! ^* x/ h' c- F) [print(fibonacci(6))  # Output: 84 Z; L5 ~& {: c( q* b
    7 w6 j( R+ X# K6 ^# g" ?
    Tail Recursion0 e9 x' @6 `7 V6 b2 R) r  |

    " K4 ~1 F4 ]$ `6 ?, L% h/ m3 ATail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).. D; I: U! f0 c8 ?

    3 j; l) J8 l1 g! g/ ?$ @! dIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-16 12:12 , Processed in 0.034127 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表