设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1124|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 " ~5 Q. q- z) F9 {. e* u8 j
    3 \; P9 D* U( w" n- h; |/ j( f3 W
    解释的不错# R5 m1 k0 R( V. Z3 O+ a" M# J. C

    . P) A! `5 b' D3 i递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。, W; A& ?, h2 a

    ! X$ Z% z" x( k" \1 p3 i 关键要素+ P7 l4 x+ p: d1 c  ~
    1. **基线条件(Base Case)**
    % P( q( S" q$ ~$ K   - 递归终止的条件,防止无限循环
    / J5 x# u; h# M0 u! M$ Y% @" E8 T   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    ; U* u6 y/ q0 ^$ U8 E0 y
    7 l3 W, t: I7 S1 V2. **递归条件(Recursive Case)**
    8 `: g) M  h! v: M# F- }$ }# b   - 将原问题分解为更小的子问题
    # L. Q: u2 A4 t0 `   - 例如:n! = n × (n-1)!2 v* P5 S/ Z6 Q$ u$ V; D

    ; @+ m7 n: P+ Q9 n' `9 L6 D. [ 经典示例:计算阶乘" x, L6 n' h3 z
    python1 Z, ?) V$ w% V; v+ H& Z
    def factorial(n):
    ( E2 J3 \) {2 h+ f0 z# i" A    if n == 0:        # 基线条件3 [- D6 b% D8 B6 y2 F) C
            return 1
    8 O# W* Q6 r. {/ L& O' T    else:             # 递归条件8 a4 D. J- W1 s- p/ j
            return n * factorial(n-1)
    $ j' d8 d9 X5 c" m3 H* P- q9 B! k执行过程(以计算 3! 为例):- p5 y$ f0 m& W3 `! e  {
    factorial(3)7 i4 @9 @& e# `6 X- f
    3 * factorial(2)
    2 @4 F7 J$ H! _2 g% e( i, n3 * (2 * factorial(1))7 T6 D+ d: s. b% z* g
    3 * (2 * (1 * factorial(0)))* O9 b6 l  x8 @/ l9 ?
    3 * (2 * (1 * 1)) = 6
    ' R; h, D. P5 P5 D. b, N7 Q/ l+ Z
    递归思维要点$ E$ J6 W5 C$ [4 d1 F
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    7 v2 o) F# D& H2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    8 S' Q( a; B) I( Q6 E  Y  K' f3. **递推过程**:不断向下分解问题(递)
    + ?, I; M  f+ ~  G4. **回溯过程**:组合子问题结果返回(归)
    # J; O  F* m8 o7 q7 l' Q/ C+ G; c# Q% p" z0 v
    注意事项4 `: x! U2 V* [+ h2 K  ?7 o+ `) ?1 I
    必须要有终止条件2 c) n5 E8 N1 s' ~
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    , }- f7 q& H% U8 d  E某些问题用递归更直观(如树遍历),但效率可能不如迭代
    * f) F1 M& _/ Q6 f# q! @尾递归优化可以提升效率(但Python不支持)
    ' U! e3 O7 P3 }  S" J# }7 S3 ^" @: E2 u4 f, p
    递归 vs 迭代8 M9 n( p8 x2 Z( [& X/ r& \
    |          | 递归                          | 迭代               |0 [8 u  m* a7 T0 ~/ N
    |----------|-----------------------------|------------------|+ b0 T. @8 t% o- V8 d; H9 {1 o
    | 实现方式    | 函数自调用                        | 循环结构            |
    6 i, V, H9 C5 N& w; g| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |% D: |# L* w) X4 l
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    ; t6 |" F# G( R| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |4 X& a( `$ }" P* Y$ N

    7 `1 a3 y* D) `2 j) ? 经典递归应用场景
    3 _0 w1 p/ z) [1. 文件系统遍历(目录树结构): K9 o- T/ {& A# ?
    2. 快速排序/归并排序算法
    3 Z! ?3 J" @: ^7 B. p, c' j: z3. 汉诺塔问题1 ^' @2 d; y6 C3 w0 y5 ~
    4. 二叉树遍历(前序/中序/后序)
    / l( }% F6 t( E* ?. d5. 生成所有可能的组合(回溯算法)
    ) N0 X" p- Y; U) J3 K0 y
    / f1 k% J- t( f3 F9 w" Q试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    难过
    10 小时前
  • 签到天数: 3099 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    * H" ^( P. N# w我推理机的核心算法应该是二叉树遍历的变种。) b) D1 _! b$ T
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:3 U$ D  f# w& `. Q7 K
    Key Idea of Recursion
    $ x& N- |6 n! D: S& K0 Y& W7 X6 k+ F/ L+ ~
    A recursive function solves a problem by:
    2 E) p) Z9 v# V; a' t; b$ |( j6 d5 n
        Breaking the problem into smaller instances of the same problem.
    / S/ ?. s) s' q. q6 T2 k# Y# b. o/ N) z
      [( Q0 Q3 e9 G% ~  r; E1 D    Solving the smallest instance directly (base case).; }( z5 f9 F! Y) J
    2 V1 V( X8 K( Y6 K2 P8 m+ V: [( Q
        Combining the results of smaller instances to solve the larger problem.
    3 M9 e. q( y- |$ G- w1 U
    ( Y  x! L2 s& KComponents of a Recursive Function$ b. ~1 Y9 h; j6 B% [1 w
    3 r# ?0 _) t$ @! {6 w9 k
        Base Case:
    8 R1 Z0 q! Q5 J$ O2 ^4 v$ N$ ]: T' z/ a9 o- A" j
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.+ j. J5 g, d1 `. E# o/ E1 N

    . g, H, W$ j) O( o        It acts as the stopping condition to prevent infinite recursion.
    ( N, w6 H) I/ x- \3 x' T
    6 C/ B  W0 Q$ y  N        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    / ^1 a5 h' O) w' p0 x* ?2 J+ \+ B% L6 S
        Recursive Case:
    ( Q$ m9 K1 W6 p( ^4 }3 K" U' h' S0 m0 {  I6 a
            This is where the function calls itself with a smaller or simpler version of the problem.' ^2 S  r! K* c' i1 G4 \
    - V" G7 ~* n8 q7 ^: R
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    + w4 W6 E& G9 M& w
    / G2 y; L* G9 {. b* n6 lExample: Factorial Calculation) B# \8 L3 {, r4 ]% r
    6 x% ^* F( Q, H, B0 \1 U; l
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:5 i# A% }; U% W5 G

    2 `3 }& Z5 l+ ]4 r' [    Base case: 0! = 15 W: C, l* _) A5 f) G
    + L7 E7 ]' ^1 e; Q4 J8 o! U  w" U
        Recursive case: n! = n * (n-1)!' ~- W! n+ U! ~% g7 I

    % k, j8 \7 V, [6 c. C/ {4 ~- WHere’s how it looks in code (Python):
    3 j; D- ?7 N& T" ?$ Vpython7 }1 n$ v: H4 r) v2 k2 Y/ }) `

    1 y( y1 K, p$ n! i! @, P9 y. K2 Q7 q4 M$ t8 n3 P( P7 w/ V2 Z
    def factorial(n):( F7 J: c3 f5 n" |
        # Base case
    1 c- e, H7 ?; \. @    if n == 0:( C4 v) u8 o1 D! w
            return 1
    1 Q) ^% n* A6 r  b5 D    # Recursive case# y3 l6 J. _6 t
        else:
    0 \$ ~- T, x0 p/ V2 B& q        return n * factorial(n - 1)% w$ c8 ?0 F5 \0 v) P  F# p

    5 P* J; H/ s% ^% O# Example usage3 `# @' X) V5 V
    print(factorial(5))  # Output: 120) r1 }2 s2 ^3 d

    , C1 {: L5 W$ K5 W% n3 T8 H" k, VHow Recursion Works
    ' M& \9 V( {% C, m. }7 i! x2 e* y( Y5 u' I
        The function keeps calling itself with smaller inputs until it reaches the base case.) e+ Z+ v. _7 F) s9 |+ z1 [

    + w; Q0 l2 \. S    Once the base case is reached, the function starts returning values back up the call stack.
    4 `: }, A' `4 ]+ D3 a0 G) `) ]0 a5 c! z2 M+ K; z
        These returned values are combined to produce the final result.
    4 N% `9 R3 {, `# F5 K4 \0 A
    1 z  R+ {, g: q* b) c6 NFor factorial(5):& y" d+ U0 i) A6 G$ ]
    ( K# G/ [7 W% P7 Q4 ~
    2 V# X3 w% h; a# \' T, ?
    factorial(5) = 5 * factorial(4)4 Z8 q9 p! p' I6 m8 o
    factorial(4) = 4 * factorial(3)
    / y6 l; Q( q' C/ O5 jfactorial(3) = 3 * factorial(2), v  H9 a' J. r' c
    factorial(2) = 2 * factorial(1)
    & [: B+ ^: [, ^: v+ X% a( _factorial(1) = 1 * factorial(0)7 d6 l- C, K& v1 u$ \: y9 E' [! b
    factorial(0) = 1  # Base case9 g( Z' R( l5 S6 W0 G! O/ l% J* O- P! z

    + `1 y$ T5 S# Z4 M% OThen, the results are combined:
    6 C! f# F" _4 Y9 w- H' G0 Z/ D9 P: @; ?5 X  b

    ' j' N5 F0 `" X8 ~factorial(1) = 1 * 1 = 1
    - i' S$ Q4 G4 c; {factorial(2) = 2 * 1 = 2
    + B+ e, `- s# p4 d+ ]: p# g7 ?factorial(3) = 3 * 2 = 6& a2 N% i$ n" z0 \
    factorial(4) = 4 * 6 = 24
    / W7 r) \3 Z" u9 D% Pfactorial(5) = 5 * 24 = 1208 R" p6 B3 G7 @' F8 V! b+ R
    ; s0 v5 p! u$ q3 g$ b! m
    Advantages of Recursion
    # ~2 B) h3 R2 R4 q& v& y: P/ F- E% h2 _+ j8 _0 c  P
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).4 d0 h/ F' F3 D7 O4 g8 W3 r# f3 G& Z" X

    3 `8 j, U. O, Z5 j    Readability: Recursive code can be more readable and concise compared to iterative solutions.! q. x6 F4 t6 h# w

    4 P8 A) N/ n8 D4 q2 l6 \9 x3 h) gDisadvantages of Recursion) K. [; t0 Q& f9 o7 m5 _, G9 z

    1 r: ~4 k$ X3 h8 m. Q    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.; Z) a, x) W) J0 K# N1 @2 C" h

    . f. y6 k( M9 x7 C1 {9 W3 U    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    : a* _& J+ y+ }' K- m4 O3 a
    1 ]1 t' H! B# W" W( oWhen to Use Recursion
    9 p" T2 ]" t/ j: U% d& E& s6 l' A  k0 k
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).% z) H' a  [! }7 \) `2 N3 f' S6 D

    ( G7 R$ a1 l3 X  Z5 a    Problems with a clear base case and recursive case.9 A: K- N) c2 J. i/ }8 w# f

    ' G( U3 Q/ ^3 z. x- ZExample: Fibonacci Sequence
    : f0 }2 _3 b' |  t8 ~4 E
    . x4 a) Y8 W/ |  mThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:+ J- V4 I% t$ h+ }6 K8 t

    - @1 |: D4 |/ B; S0 f4 D% L7 ]    Base case: fib(0) = 0, fib(1) = 1
    ' T7 \2 I% U9 V: r# |- [2 a3 F+ k
    ! v. n; z9 j, P. ?. x: l    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    2 Q% U: b9 J1 |1 c; g+ m3 I4 Q0 J8 i+ R4 ^5 `6 T
    python3 n! `- R& N2 j+ C; F  N$ L: {6 `
    5 X, N$ a6 y( o% o% |# X
    , G& P, y, K+ y( B8 Y5 V6 U! T6 M
    def fibonacci(n):
    # l/ s0 Y- b  k" Y$ L2 \( H    # Base cases) |* M8 {0 F6 H- @/ j
        if n == 0:  u! v( G1 ?- w* c5 k0 `6 B7 O7 Z# t
            return 0
    : G5 s9 d" J9 V- ]4 e! w    elif n == 1:
    6 E3 ^8 ~6 T* u; @' v        return 1
    ' t- Q* w. m9 A. v( J; U    # Recursive case
    2 i* |- I8 [1 I0 y( X7 a- V    else:  i2 B* c, c% q6 o0 E& N
            return fibonacci(n - 1) + fibonacci(n - 2)% P% T# W# a6 O& n9 p) \

    & m, e- J  c% V9 @- u) Q& \; C# Example usage) R9 K/ T- V6 |% j
    print(fibonacci(6))  # Output: 8
    0 _2 F0 T0 S5 p& O8 z
    8 P7 N" u; H8 q3 A$ cTail Recursion- |9 c" |' Q# y8 y2 Y4 {4 U
    7 O4 s/ p. v) `# D% r1 ]0 B# [
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    6 B1 s5 i. l% H  y* R( I' x& o6 r# T% E! g  y
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-22 17:53 , Processed in 0.041551 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表