设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1964|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    1 }3 [# C( Q5 P: L  L/ y! f$ f5 `3 m4 B" p1 q4 W1 U1 ?
    解释的不错" h  |) ^  A: ~2 h" S

    3 c5 L8 D; I6 P9 {# c0 K0 J0 }递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。5 o- n1 L8 u3 s8 i' s9 S
    7 q; Z9 w0 v; Z0 Y# o
    关键要素$ F5 C* S4 j9 K5 K) {1 @7 ?& Q
    1. **基线条件(Base Case)**' V: _( v& t) S& Y% g% }4 t
       - 递归终止的条件,防止无限循环
      Q4 E" K3 r3 S/ ^   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1+ _4 B- d0 C  ]
    7 R; T! o6 S8 q3 v2 N+ ~! ^* \! w
    2. **递归条件(Recursive Case)**/ z% |- D* J6 q. V5 F
       - 将原问题分解为更小的子问题, J. s+ O. v5 b. o3 Q7 q
       - 例如:n! = n × (n-1)!8 f9 D+ ~  P7 @# l4 w- |. |

    ) {8 m! V3 _& t7 i. n 经典示例:计算阶乘
    7 }% Z" J' c- P. D4 z9 z3 i; Opython) G& T1 `& C0 I! |& W$ ^
    def factorial(n):
      y5 I; N8 @0 U; |4 h, I! v    if n == 0:        # 基线条件
    ( j5 L0 ~: G5 S. G) @        return 1" H- {% ^5 D, ]( i
        else:             # 递归条件
    0 p& q; ?3 g( h$ \1 n' o" k        return n * factorial(n-1)6 j$ [* F7 h* P3 ?; i, @; z5 t
    执行过程(以计算 3! 为例):
    - O5 Q6 Z5 y' D$ Bfactorial(3)7 `" @) b4 c; _7 t4 S
    3 * factorial(2)
    2 k+ q5 \8 V0 f3 l( |3 * (2 * factorial(1))
    # H$ @. E3 a, Z3 * (2 * (1 * factorial(0)))
    ; P' l- ~2 y: e3 K& [+ R/ s/ c3 * (2 * (1 * 1)) = 6* ?! L0 |& w# M: h; [, A

    7 U1 R8 m* [1 ]7 W 递归思维要点+ v) J* O0 x4 F7 }" \" V! Q
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    4 @6 Z+ O& p  I2. **栈结构**:每次调用都会创建新的栈帧(内存空间)7 y  c8 p7 \4 C) p
    3. **递推过程**:不断向下分解问题(递)" g7 ]4 V' h3 g$ }- F
    4. **回溯过程**:组合子问题结果返回(归)
    5 f8 |# P: {& D- M; r/ r6 F: K" b$ i' V8 |/ S! Z4 x! u* S
    注意事项( a$ R0 W5 M+ b" |+ d
    必须要有终止条件
    4 P: p7 s( u5 e. W2 S递归深度过大可能导致栈溢出(Python默认递归深度约1000层)) J7 H, B6 v$ G, T  {4 f. E$ {- x
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    ; V4 ]8 T$ W9 ^尾递归优化可以提升效率(但Python不支持). u% L9 H- G6 P% l" X
    9 J/ P+ g7 u) I; T0 i; Y  @
    递归 vs 迭代) C4 B, l5 O/ t+ ?+ E, O
    |          | 递归                          | 迭代               |
    * ]( U) [# P6 o|----------|-----------------------------|------------------|
    . D8 o6 }* w6 a# ^| 实现方式    | 函数自调用                        | 循环结构            |
    & V- X! i, j3 E| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |5 u' O/ z) ~) ]; K% h
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    5 A9 a  I" `( }7 Q) z) R/ Y| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |" Y: a% o" [& m1 V9 S9 D2 d4 u5 \
    # r1 Z- h& _7 s
    经典递归应用场景. d9 c' R' M% E
    1. 文件系统遍历(目录树结构)
    % ]0 k/ U+ ~2 Z/ o1 Y/ o. }2. 快速排序/归并排序算法
    ) e+ Z& G/ X# [. ~6 X3. 汉诺塔问题
    9 R8 ?# Z% W# L3 H- |+ i4. 二叉树遍历(前序/中序/后序)/ a. d3 d' x5 J8 f; {) j! Q  j7 Q5 x
    5. 生成所有可能的组合(回溯算法)' c  s, R( ^/ o: u5 H2 R

    % Q  v, @( C6 X' `  K9 l( i' @, U试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    慵懒
    7 小时前
  • 签到天数: 3156 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,5 S3 P  ~- F+ \8 ?8 R
    我推理机的核心算法应该是二叉树遍历的变种。
    ; I2 a  v1 ]3 z# ~, ~9 I另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:& o  |/ P- C, C0 p3 B
    Key Idea of Recursion
    . R( U( W: n, a$ e3 c, U
    ' i4 `" y4 w5 k0 p: jA recursive function solves a problem by:
    + K. ]. d. C3 P7 Q6 I& ~9 M! \& L2 J7 N" D# v
        Breaking the problem into smaller instances of the same problem.
    / M, R, G4 M5 |$ r$ [* L5 l3 x' g5 d0 h! P
        Solving the smallest instance directly (base case).
    % p- O0 n) n9 m- s. n4 @0 Y/ \; g; U& E+ k8 h& J# P9 A9 b
        Combining the results of smaller instances to solve the larger problem.
    5 [& Z* R* S+ b! d. P; n+ y; e* b6 t  D
    Components of a Recursive Function* Y: {7 I7 m7 D& |" X9 B4 K
    " P! r0 H; i& V3 l. y- B
        Base Case:
    & W. t* W+ ]* i# F% a3 Z5 q* ~4 D" Y* ^
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    : e  Z) I! Y! U( S( ?/ H( l% @3 P7 R; v' }/ S
            It acts as the stopping condition to prevent infinite recursion.
    % c" s$ s# v, z0 i0 x
    ! X5 V5 c5 Y; D        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    3 Y3 g; }7 B1 X5 b1 [5 K5 n! f% K$ P- X2 ]+ }! j% ]9 x
        Recursive Case:+ @6 q, t$ m1 g! M. i9 A

    ' \+ B$ ^# f! W) h% E/ {: Z7 ]        This is where the function calls itself with a smaller or simpler version of the problem.- a; w1 _! M4 l: d/ W3 D
    * @! R2 C" F0 J, w
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    , K2 J7 k+ y' r+ b/ q! _' \/ t
    $ W1 f2 V: ~2 @8 a# n& C! G3 O( }" a8 HExample: Factorial Calculation% b" l9 G# N  O% e

    2 t5 M+ m$ G* L$ F, K% K( SThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:2 ~  i* I/ t# S
    ' \1 n4 \! }% c  m- A$ u
        Base case: 0! = 1# C, H! Z& a; Q8 c. E
    . z4 l( P- p8 B3 d5 T
        Recursive case: n! = n * (n-1)!
    + M3 ], E/ D+ y- t3 A& h- \" N# `; W6 r  y! Q
    Here’s how it looks in code (Python):( {- f( w1 m' B7 `, c3 ?
    python
    / _2 I+ o4 {! e0 }# @- U- L
    ! d$ x  ^# j. U( i6 w
    . b) E. W# F+ V2 w# z  u- c& Udef factorial(n):. P7 b/ k' h! Y! B0 F& c" c
        # Base case
    - C) J6 @" g8 C( K& P) C5 F7 e    if n == 0:
    & }! i2 R. [4 Z4 \1 ~        return 18 S  C* \/ O- x3 u
        # Recursive case. f0 H9 _4 j# G
        else:
    $ l4 O  ?' ~! {* ^- T( Q9 ~. B        return n * factorial(n - 1)0 R' ^0 d& i4 D; w
    2 |4 e, ?5 z9 m+ `7 ]/ |. S
    # Example usage4 |$ n/ a- p6 G  A
    print(factorial(5))  # Output: 120
      `7 H5 @7 t) l7 C6 V. M' M1 S- c6 s2 a% a$ L) c
    How Recursion Works
    4 r) s- Z+ K% z8 b, i* x$ o9 L" Y. ~& F9 R( x/ L. O
        The function keeps calling itself with smaller inputs until it reaches the base case.
    0 W: v# k4 @- c( ~1 v* F' u6 b9 k& q& }0 A( B
        Once the base case is reached, the function starts returning values back up the call stack.. i6 G/ k& f7 y9 v

    : C) J! y* V' W/ y  d$ \    These returned values are combined to produce the final result.
    . I2 G5 y& V# s
    9 K. N* k4 A: C0 BFor factorial(5):. g. C) v4 @. O& ]' F' R) J5 Q. s
    " q. n- M) }- [' ~' j

    * m& ^/ D8 r, W, Y0 Kfactorial(5) = 5 * factorial(4)
    $ C# ]% y0 @% `factorial(4) = 4 * factorial(3)
    / e& B% z- b' _: R$ Y8 I; Sfactorial(3) = 3 * factorial(2); S6 Q+ K& G- A$ l0 d- M7 J0 l
    factorial(2) = 2 * factorial(1)7 `8 U: V3 [* k! ^; m; k
    factorial(1) = 1 * factorial(0)9 J, e$ C* J1 x0 F- m
    factorial(0) = 1  # Base case; N( g4 e8 A8 `5 ]2 L
    9 ^$ M% A  c  c" r: `
    Then, the results are combined:2 u( x2 C9 m* [& m. e

    7 {% N" \5 Q# I: S% j. q: s, a' Q; F: T+ J% i3 u
    factorial(1) = 1 * 1 = 1
    ( Z  n4 k/ J2 W2 h/ tfactorial(2) = 2 * 1 = 2
    ! x8 G& U) Z# n- y0 G+ Ofactorial(3) = 3 * 2 = 6
    ( P+ B1 ~- J( X7 g- cfactorial(4) = 4 * 6 = 24
    # P7 v2 U. O3 jfactorial(5) = 5 * 24 = 120
      ^* ~- s% X* ]% y% v! V! t# X6 }/ h9 J! ~
    Advantages of Recursion' ]3 O7 e3 n/ r

    ! I& e9 [% C2 Q4 [. s6 A( Y" I# i+ ^    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    * l' j) Z- n* w* X
    + ^6 Z" ^0 f; q0 b1 l- A+ I% e    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    + W5 ?/ y& ]1 ^7 c/ Y# }& Q; P7 Q8 p1 P/ c% Q) j7 `0 [6 f* M3 N: {
    Disadvantages of Recursion+ l3 M6 s  A; S+ Z

    $ X4 A8 G, `  f    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.& A( t) y1 o1 [, w' D9 J3 E
    ' H* N$ ~+ \9 r2 b' c5 P
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    ) i+ l+ z1 m! l$ Q) @
    , |0 Z1 z" @+ e: d8 R$ u6 }When to Use Recursion3 S/ o! D- J2 S7 X, ], U6 u
    3 u6 e1 z8 Q8 A, o
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    $ J/ }  N7 v$ }; H& k3 K& y2 r
    : v# Z- d3 y) e5 m4 l5 I    Problems with a clear base case and recursive case.
    2 V6 p* Y  w+ o" v% H6 }: b/ d6 b+ x: j3 C
    Example: Fibonacci Sequence
    ' Z7 q3 @3 L* w2 e! f, s% U( s3 T# W* A: T+ G8 l/ j
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    , k: p2 g9 o/ ^/ U: u4 J' K) Y  g. e1 T' z4 u
        Base case: fib(0) = 0, fib(1) = 1$ a" v9 w0 r' N% G" Z9 g* G; ?4 ^

    0 L4 j; u  J7 c- x  O    Recursive case: fib(n) = fib(n-1) + fib(n-2)' D9 w/ x) d7 n/ \
    # U" @+ A6 d  y- V
    python
    / L3 y6 m% a1 a, s
    ; e3 K2 w/ b, e; ~$ u
    5 Y1 ~( {4 o8 Z" }: |. Z5 t* Ldef fibonacci(n):
    8 V% |, ?% l, v    # Base cases  T' F$ c, Q. ^+ i) |( L& L) x7 e% Q
        if n == 0:
    ! x; E3 w5 l4 X        return 09 m1 Y/ _4 t. b( a# M; o8 b
        elif n == 1:8 S2 A8 f% j' t4 j
            return 19 ^% t9 W0 E7 ^+ ~6 Y
        # Recursive case
    % K6 V! F" p- X0 C, I% u: I    else:# B0 _6 U! j8 I$ R. S
            return fibonacci(n - 1) + fibonacci(n - 2)/ Y# B2 K; M0 b, U, N/ k. ~& v
    # x5 u* |) q9 r% |
    # Example usage
    ; n( ^4 R% R8 X5 kprint(fibonacci(6))  # Output: 84 ]* R9 o7 \4 O. `/ G8 @1 }$ c) u, {

    ( k# E$ p) i3 j6 zTail Recursion! q7 |0 F/ E2 S& m% Q- H, U& p. W; r

    3 `9 z2 N1 W' |: ?2 H+ Q/ NTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).5 ^& S& h9 l" N

    + F" |7 M* Z8 q. p/ T( y  vIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-28 15:04 , Processed in 0.060166 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表