设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1532|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 % [1 F# s& f5 A; m
    % v+ L3 `4 F: j' V( T
    解释的不错
    : E+ }1 v+ E% c6 X1 J+ G2 i1 z) w" q4 ?/ h! A: p
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    - \8 J! o3 i( w: T' }) ~" E7 r7 q( R2 q2 d. L! W+ S* P- u
    关键要素0 E$ h1 ~- C2 g8 u! C
    1. **基线条件(Base Case)**
    * W/ u# M( X0 `! }   - 递归终止的条件,防止无限循环! L7 w0 B( P3 K4 r2 M, K
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    / Q2 }. c: |9 V) `3 t
    ( L: Z' C: V; k  g1 D3 G2. **递归条件(Recursive Case)**1 I- @. ?0 G6 f* N& b  V; V0 `
       - 将原问题分解为更小的子问题
    3 m- q5 y+ C; \- A% l# t/ L# n% w   - 例如:n! = n × (n-1)!
    ) A; I/ `3 A6 y; P# @& V6 q! p$ F
    * w8 Y( }% A: m$ L* p' a0 b 经典示例:计算阶乘+ ?# s) m* h1 g5 O! ~/ w  u2 T; @# g
    python
    . T5 J( A& W/ Q! `def factorial(n):0 s, F/ j. l6 y* D
        if n == 0:        # 基线条件
    5 G1 L6 N: `/ k  v        return 1$ U/ J3 Y% v/ o( ]3 |
        else:             # 递归条件
    3 @/ u3 K: S8 G; L- M        return n * factorial(n-1)$ \% ]9 S/ c2 [
    执行过程(以计算 3! 为例):
    7 K9 Q" M* X2 _factorial(3)
    & k3 T" C4 D  `3 * factorial(2)
    . p& x2 c4 q& C0 D8 `3 * (2 * factorial(1))
    1 c4 z$ a4 u" C- ]6 v  P- N1 A7 w+ _3 * (2 * (1 * factorial(0)))( G% r5 D+ r, X* c
    3 * (2 * (1 * 1)) = 6; o# X) g( V! J& Q4 C; C

      E& y7 j3 E! ?! s0 k1 ^) Q  ~ 递归思维要点
    1 n0 M' ~1 f2 S/ p; e* H1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    3 ^" ?- |6 B! m: i) B* I2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    9 \" E2 v( _3 s' g/ A9 e3. **递推过程**:不断向下分解问题(递)8 G# h0 ]; G1 W# H; p4 z3 F, c$ r* Y
    4. **回溯过程**:组合子问题结果返回(归)0 |4 G4 H0 h9 u! O

      b/ \+ n/ P$ Q, H; v' K 注意事项) T; a7 [/ f* P" `6 N" f
    必须要有终止条件, Y& A' A% g: N0 Z1 R- O7 f$ a  H
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)! O$ I! N' M$ M, P( R/ _3 o
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
      \9 p/ t  w. i) m: g尾递归优化可以提升效率(但Python不支持)( Z5 X; p5 j$ b" i- [/ r
    # W. M, q. i, m7 t/ W8 }4 U7 P+ _
    递归 vs 迭代
    % G7 D* a. |; a) [|          | 递归                          | 迭代               |& u- W: J4 s. ~( a/ E( e2 G
    |----------|-----------------------------|------------------|. _' U, u; U; }
    | 实现方式    | 函数自调用                        | 循环结构            |4 V6 ~) v3 g( Z! M1 N+ ?* a' \$ y: B
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    , W6 |3 {0 R/ c2 X4 j3 c8 P% s| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    ; `0 f8 l. ^' G# t7 |6 G' R( s| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |( }, O1 |& B8 ?

    : O! Q$ Y' O" O* a- }/ W% L 经典递归应用场景
    ; _5 c# c3 [. m3 \) s) _1. 文件系统遍历(目录树结构). r2 ]1 x; a: c/ x
    2. 快速排序/归并排序算法7 F7 O4 u9 c. [1 }4 M
    3. 汉诺塔问题" [8 v5 Q0 h" j$ S. n. T
    4. 二叉树遍历(前序/中序/后序)
    / s9 E& ?! A# p( n3 b/ W5. 生成所有可能的组合(回溯算法)
    % P1 ]! D$ u# X0 U; n
    $ ]% o; W+ c0 ~( D: P& H+ J' M9 L试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    10 小时前
  • 签到天数: 3119 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    6 f( u- i8 i+ D( h3 s我推理机的核心算法应该是二叉树遍历的变种。& D* T# H) a9 G# g, G9 j( X
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:  j* z8 c! q3 i! X* V
    Key Idea of Recursion
    $ R1 v9 |4 {1 H  [; v
    1 T! ?1 h6 c4 b5 U4 Q) c1 ?+ QA recursive function solves a problem by:
    8 S7 L3 u6 |+ U$ o* s8 c" J
    7 ~$ U, x. n- R' M    Breaking the problem into smaller instances of the same problem.( Y; V2 n! D' F( v  T  B" p
    % W7 `8 U! l% S! Y* [! r4 D! a
        Solving the smallest instance directly (base case).
    6 ~: y- ]; l, t+ x* D2 ?1 u- v  a4 y
    ; V( y. g# k" a3 G# w    Combining the results of smaller instances to solve the larger problem.: I5 r/ w7 |$ L# p; Z  f' R
    ( B$ [" g3 v5 |) o! C
    Components of a Recursive Function0 d  |6 E5 c* M

    + f5 @) t$ c4 A5 N' t* d# U    Base Case:& {6 p$ H4 E* r( B7 ]
    2 a) N/ y' D. O6 e
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    ' l7 W) i+ b2 Q' f6 M* o: [
    6 t! _# e7 A( F; l8 H        It acts as the stopping condition to prevent infinite recursion.
    + V6 T5 C3 ~* {, ~. t/ `4 j
    # `( [% l! Y  z7 G" R7 Y0 T/ J! \        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    & i' j/ u- p% v- J. ~1 Y, ?8 C( X( _4 Z$ l0 o' a
        Recursive Case:8 \/ v6 q6 a; V/ r8 ?
    0 H9 G: ?0 g/ [( Z' t
            This is where the function calls itself with a smaller or simpler version of the problem.
    $ d3 k2 Z% n. Q5 }; b/ i. D- @1 m  F3 T
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).& V, C7 J6 v5 V1 N3 u

    5 S7 w& n, a; ?0 Z/ uExample: Factorial Calculation* Z3 r; o, A9 J) A! d) K- X

    7 S1 m; {" F& @* \! V9 ]The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    # Y3 D9 `& y% V9 f4 l% Y8 j, d8 i# G0 O& h' t7 X/ s; r
        Base case: 0! = 1
    % g  c1 {1 F: y3 `
    $ }. `0 Y; \: [* }    Recursive case: n! = n * (n-1)!/ i2 i* z  D# m) j0 q$ e
    3 m  k( L" |( k- K( d4 R7 x" j
    Here’s how it looks in code (Python):
    + c' m2 r3 L; @/ {4 P5 ], ^python- ^+ |8 X# w: Q( p( E7 X8 e

    ; M! [+ w3 o5 H4 G2 q% H
    , x; }1 ~2 u; J" jdef factorial(n):/ j7 h' s% ]1 E
        # Base case
    $ [( E& z, t1 C+ n. O: m) h9 }    if n == 0:  o' n' ~' A7 E
            return 1
    ; f  R$ V+ r7 C; n    # Recursive case
    5 }3 S0 N+ B4 F/ G& [    else:/ P' A3 X9 U* b# D* f
            return n * factorial(n - 1)2 Z6 N; I; i0 t+ o2 ^' x; j
    1 l- h9 ~6 |# Z) A  L
    # Example usage
    ' E/ W6 j* _4 f$ Y2 Eprint(factorial(5))  # Output: 120
    , D: `- }4 l, i( t. y; c& z- P, W6 M, ^7 S
    How Recursion Works# W. c' D' N) Q+ L. Q  f  z

    : }+ [1 z* j5 E    The function keeps calling itself with smaller inputs until it reaches the base case.4 y' E. H% ]& B4 X

    / A% ?* n$ X; S, f/ f8 w    Once the base case is reached, the function starts returning values back up the call stack.1 L: b3 f4 w  B; k) K; ^
    ' `, L- m3 F% Q0 K! m6 ~
        These returned values are combined to produce the final result.
    0 `% _5 x4 q% M; G" K( k' B( b2 A7 G3 ?: X0 m
    For factorial(5):
    + I! O7 N4 t; D9 I% ]& C! j. n: A0 p/ b+ j. H4 ~
    # M0 U, j9 h) U, ~
    factorial(5) = 5 * factorial(4)
    ; m9 L9 F* ?! E( S2 N4 Afactorial(4) = 4 * factorial(3)
    2 |7 R2 ]- m) g  z1 ~! Wfactorial(3) = 3 * factorial(2)
    : K4 a( x7 ?# V! s1 ifactorial(2) = 2 * factorial(1)/ Z7 b; M4 l  H; e7 _" m+ V, i2 w
    factorial(1) = 1 * factorial(0)6 r, u0 Q3 k* y0 ~
    factorial(0) = 1  # Base case
    ( `1 \, v' Y5 O- O  }3 B, Z; u; y- K" O+ @& ?! v
    Then, the results are combined:
    - A! C; [; l) F, O# Q
    ) z5 J9 ?3 k0 ?  s$ J2 |* U3 `, e; \
    factorial(1) = 1 * 1 = 10 E1 M/ R* t7 p# J
    factorial(2) = 2 * 1 = 2
    9 u! ?0 ?, c/ i; u9 o( D6 ^factorial(3) = 3 * 2 = 6
    8 P( o" D6 w. \- D3 y* Nfactorial(4) = 4 * 6 = 24
    / d' U- D8 S" a/ Q6 ^. q3 u4 q6 {# pfactorial(5) = 5 * 24 = 1203 q! U6 f2 ~8 S4 T
    3 n6 U, J/ o" g
    Advantages of Recursion# Z! G0 |  N' v+ i7 H; a  j

    ; ~' u8 O2 h/ i9 i/ s6 y    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
      h& d; t3 Q2 v* v2 d
    8 K3 |1 A/ C1 Z5 p9 K    Readability: Recursive code can be more readable and concise compared to iterative solutions.7 D8 k; n  k6 R- B5 m
    " ?/ N" C' I! A1 {, u
    Disadvantages of Recursion
    ! H/ J% q3 Z& x8 E- v+ f+ m: ^. [5 U' |, A% H1 p
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    9 @  j, d/ w3 D$ [1 K4 c$ B& i
    & D$ b3 Z& _* q$ Y    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).- `  b) G0 K0 M$ @: x

    ( @" B4 i" y% u, |1 SWhen to Use Recursion
    & W/ j# d7 X: i. _4 l  d2 C
    9 T! B. v, O, x& Q    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort)./ q$ }5 f9 _  ~9 Q: u

    : M7 P' g9 {8 q( H" [0 z- A1 m    Problems with a clear base case and recursive case.
    ' ]4 W8 m: x/ i/ l0 Z+ |
    ! c- ~+ H9 y- A& `3 F! ^! n  ]Example: Fibonacci Sequence
    0 z# f- Q6 o  l/ o. p3 \
    5 s; `: [2 ?1 {" m- AThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    - A( ~( T7 S* x' A% w. ^& r5 Y
    + x# K- F' N! V9 w" }, t( C0 c. L. Q    Base case: fib(0) = 0, fib(1) = 1
    3 V+ m( I5 _( _& l9 _. n2 e0 h6 s: J# i- S: r
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    8 Z" A: Q. }  C- A* T$ x' q+ A
    7 H$ }- H8 q! @8 z1 r; Jpython
    6 N; `) L4 t+ C) F$ M! y' x( e7 T5 f% a0 e! M! F
    ) u' x( ~! E) Y$ r0 B8 X
    def fibonacci(n):
    * E: l4 t" U; t; S2 _. g    # Base cases
    0 e+ d+ d! H* d6 f( t# u    if n == 0:
    # m# h" U1 y1 }" P        return 0
    2 W( N1 u! a# D, p& w    elif n == 1:
    8 W% c* @  r9 n: K1 m0 Z% A  r        return 1
    ( m4 R2 g. _; M5 ?, ]; Z    # Recursive case. K2 k8 P5 W% ~) G. P5 P, i9 S4 H
        else:0 c% j/ W7 ~: Z" e
            return fibonacci(n - 1) + fibonacci(n - 2)
    + [/ K/ E7 |" C5 S: l3 t# Y
    % c3 N% ~2 Z+ T/ q% g8 a# Example usage1 S. }% I/ d. c6 C+ p; z% K, H+ v
    print(fibonacci(6))  # Output: 8/ }: c6 a0 T7 r* A

    7 @3 ^: D4 l% {- {2 i1 h; X+ yTail Recursion+ D3 y# W$ A) @% v, ^- X
    6 r  q0 |* X6 i8 L% m# I7 w+ n3 X2 s
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion)./ k) k5 e0 ]. e* V8 A

    0 u- U$ W% q3 i7 @8 c6 F% iIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-16 18:22 , Processed in 0.033089 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表