设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1802|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 : o' u+ v9 G3 e0 k" M6 e
    : x6 e, L2 s, G: y. }
    解释的不错& ~6 r! |& Z9 `9 T; ~$ W
    ! e" \* p) |. J, `8 C7 m
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。7 C% w' a- X3 |/ _& F- k

    * j& |9 G. l8 P 关键要素
    8 C$ I, D& m+ l' t$ j1. **基线条件(Base Case)**
    ; T' P6 g7 F( F6 H4 Z   - 递归终止的条件,防止无限循环6 e2 x# z# g8 B4 j1 A" F' t2 Y
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    0 l  p7 ~' T  U' l6 C
    8 J3 e6 L; B9 W8 R: f' ?4 p# R2. **递归条件(Recursive Case)**
    $ }& a) m# a; V: f7 h1 u) N& c5 E2 |   - 将原问题分解为更小的子问题
    5 @, g( T8 |8 o# ]3 j. |   - 例如:n! = n × (n-1)!
    8 E# _" ~" e) @! Y. E
      ]. ~" o, D% ` 经典示例:计算阶乘) B: X6 c# [, m* |
    python
    ) o% n, w. C/ R  Qdef factorial(n):0 p/ S* j, C" [/ j- R1 K
        if n == 0:        # 基线条件
    ' `1 ~% t8 i# E0 _; L4 _# }6 i        return 1
    & W5 g4 J0 z" {    else:             # 递归条件5 U, P5 X" R  q/ P/ {- s
            return n * factorial(n-1)4 f/ _' F9 K8 B9 N/ g; f4 M% P2 W
    执行过程(以计算 3! 为例):
    / A+ R' \& T9 Tfactorial(3)+ {' I9 b3 K1 M% W5 h% x6 s
    3 * factorial(2)
    % N/ A8 Y7 M- F, n! n3 * (2 * factorial(1))
    ' k4 s: {' y7 \. f2 ?3 * (2 * (1 * factorial(0)))7 s# c0 u1 X$ ~7 Z+ P9 m: l1 q
    3 * (2 * (1 * 1)) = 60 k# R2 O& i* U
    , b6 i- y( v, H' B# r. y. _! I
    递归思维要点8 D3 i* H5 x$ P* u( ?8 w! i4 @
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    1 }- s. @, r+ a8 Y$ L" o. l2. **栈结构**:每次调用都会创建新的栈帧(内存空间). J8 g2 P1 s. D: d: {' r" p
    3. **递推过程**:不断向下分解问题(递)
    ) q2 H8 _( j7 K0 f  z/ H4. **回溯过程**:组合子问题结果返回(归)- \+ k* ?3 s) M( M
    ! F8 B0 y- v$ ~% r. u) a: a
    注意事项/ M) j9 |5 ~% r7 W& Z2 }
    必须要有终止条件
    5 Q' @$ R. I' W7 o& [; p! L递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    ' I# L" P! J! c. E$ P- S5 V  O某些问题用递归更直观(如树遍历),但效率可能不如迭代
    $ i/ A8 y$ E# |7 X8 T  Q% G尾递归优化可以提升效率(但Python不支持)7 B2 w5 d2 l6 [/ I" ]1 \

    " w& |5 Y" N& A! V 递归 vs 迭代
    1 ^+ n% k) p+ a|          | 递归                          | 迭代               |
    9 z1 z2 ]' [3 v  k+ j  g: A|----------|-----------------------------|------------------|/ |0 r$ ^; F( W, C1 W
    | 实现方式    | 函数自调用                        | 循环结构            |
    5 Y7 K9 L/ ]1 J8 Z5 V, \| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    - h, N* E% L5 |4 _& [7 ^/ j| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    $ }( a  U1 y, T9 w6 `| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    ) a6 S* W0 l- {0 H" p
    1 x+ Y! F) M* j0 g 经典递归应用场景9 j* E; L  d2 H" Y$ K; L
    1. 文件系统遍历(目录树结构)
    0 j3 C" C' D1 [2 [2. 快速排序/归并排序算法
    , Z7 W! \* g6 N/ _  \3. 汉诺塔问题/ I+ j4 s" `, A6 [. x$ [' v" Y0 _
    4. 二叉树遍历(前序/中序/后序)
    5 c* G, P* l% ^' M7 z7 S1 Y& q5. 生成所有可能的组合(回溯算法)
    / U- e  a" \5 Y, z2 }, ?" m# p/ j& @0 y" z9 E
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    难过
    14 小时前
  • 签到天数: 3144 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,( \2 A, Q& W9 c5 o% l
    我推理机的核心算法应该是二叉树遍历的变种。
    7 O0 s* M6 G$ w另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    ; W9 ]6 P1 e8 L" J$ V: dKey Idea of Recursion
    3 v3 E% x  m% h5 \2 }- q. m" l4 z/ ~' q$ x+ z7 s
    A recursive function solves a problem by:) A3 L( G+ j- c- C6 S: ^# ]$ z

    / W  O8 Q; \" H2 I7 }    Breaking the problem into smaller instances of the same problem.
    2 A' n$ ~4 N/ _6 s/ b" k. l. S% i7 G* I# e5 d
        Solving the smallest instance directly (base case).
    + k. M% Q6 s! [( Y  f/ j3 m( u+ G. p+ u# y% p1 M- |0 a
        Combining the results of smaller instances to solve the larger problem.
    8 f6 b7 V, v* F0 A+ u8 q% V1 G0 ]& U# e7 }
    Components of a Recursive Function# d; b5 W+ D3 B& U: X7 o

    - @6 p. U+ ~* m/ A4 e; _/ _9 E0 |    Base Case:
    6 q/ \2 k( _% X1 A& u& N; S3 U  Q+ q! G5 @: H
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    : m3 E) a1 V! ]" z/ ~1 r- [5 c8 J
    - J0 E7 q# E7 j- K        It acts as the stopping condition to prevent infinite recursion.- Q# @  F- r6 k0 |6 S' g) U4 q
    ( h) P) C. X/ f& v4 J, T) A! V
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    / `; s8 N& I+ s$ w: v  [# w7 _5 F  n
        Recursive Case:! I3 Z: b2 W+ S& k

    9 I* J- o4 C- u/ T# O5 c! n        This is where the function calls itself with a smaller or simpler version of the problem." I" n, w/ W/ q4 a$ P* Y5 P

    : c; x7 x8 c& ~" ~; b/ V0 `        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    : w5 B1 \) k! c* D
    5 h( E% F2 m! PExample: Factorial Calculation
    , p3 z. g& M% O# u8 X3 H$ u" b% f6 V" |) C
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    9 r+ M3 d5 `+ c! n8 y
      j! }1 L2 t% Z: i2 i' j0 y    Base case: 0! = 1
    9 s" J: J, k5 ?6 l( B  m: l  e$ [7 G3 {& p7 ?2 T7 F1 d- u# y
        Recursive case: n! = n * (n-1)!0 A9 J& b' o& ~# ~$ w7 w  m
    & s' E7 M$ O$ @$ g
    Here’s how it looks in code (Python):
    7 b4 i  X3 ]. M6 Hpython
    ! V0 V: p! X- S. t2 w6 o, ~2 h- X+ D" ?2 p

      G* x- c1 G8 _# W+ `0 Cdef factorial(n):
    + J. k, p) [& \! Y. _    # Base case
    + Y" @* c% ~$ d4 a" A7 i4 P    if n == 0:7 Y  c( }4 M' h- o
            return 1
    7 x' [0 L* \+ k4 h. A# ^    # Recursive case, g: t7 B2 @" d/ n. m3 j
        else:! F3 [( u& s, t. Y. x3 d
            return n * factorial(n - 1)
    1 i0 P; p1 \; w; v  h+ F! O
      s- A' Y6 x2 g" `4 d6 `# r: |# Example usage
    & \, @  Z/ l' X2 v8 ^print(factorial(5))  # Output: 120( A; D# \2 R0 D3 V

    4 \( h* G9 P" {" KHow Recursion Works
    5 F- ~1 m3 S; G( T9 i5 a. P* G. d: D
        The function keeps calling itself with smaller inputs until it reaches the base case.0 E9 m3 [6 g2 A2 i2 y/ b5 s3 h3 U
    0 h+ Z6 v% r: k3 q6 p
        Once the base case is reached, the function starts returning values back up the call stack.6 n7 B6 T# ?' t1 e6 Z/ Q7 K* u2 {# h
    3 b% e4 b) {/ v0 V
        These returned values are combined to produce the final result.
    2 X  J. \; b; y9 U: C* Y
    # l8 ~3 i, C" [0 @& {For factorial(5):
    ; f7 u% ?& X7 o  A% n# b/ _. U- i% g8 M& I7 @: a5 @5 i
    - Z1 w3 _! p. o& K# X/ w0 {" ^
    factorial(5) = 5 * factorial(4)
    1 w/ I5 c- ~! Y& L6 P- K9 @2 Ffactorial(4) = 4 * factorial(3)
    ) k6 O. s" i' e5 Ufactorial(3) = 3 * factorial(2)
    8 H: Z4 c( v6 g4 ffactorial(2) = 2 * factorial(1)
    ! v# F2 m6 f$ z7 F- ffactorial(1) = 1 * factorial(0)
    ( ~4 x) t2 [* _& Xfactorial(0) = 1  # Base case0 T7 e) m- l$ G: Y+ T: n

    ( ~8 S6 ~* ?2 p% ~Then, the results are combined:9 o- e0 K( |6 k/ n$ ?+ Z

    , q& u9 f1 I5 ?- p6 d0 E; `7 F3 R! w0 ]
    factorial(1) = 1 * 1 = 1
    ' _9 x* ~; K. ifactorial(2) = 2 * 1 = 2
    0 e: E1 y, g6 G/ ]4 n+ E: ~factorial(3) = 3 * 2 = 62 B, h, W" G8 ^6 X! W6 M% s, D
    factorial(4) = 4 * 6 = 24
    ) ]3 [! o3 A8 @factorial(5) = 5 * 24 = 120" v, O- ~9 f3 R( o' W6 l/ v

    - Y( p/ ]! e' s: T$ ^3 p; p% l2 DAdvantages of Recursion9 E% f8 n! M$ v/ @3 j$ o
    $ o$ V, ^7 ?" p6 {! p- V
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    . \" O8 H3 K8 z) y4 h0 H  p0 Z6 w
    4 z5 t3 a; c( c; C9 z    Readability: Recursive code can be more readable and concise compared to iterative solutions.% l3 y$ D% f* s0 P5 g

    + t2 B7 B  S1 n# E" ?Disadvantages of Recursion7 }8 C9 r+ m# ^- b6 B3 ]7 H* X

    4 a5 d1 a) o: `$ a# u    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    5 L1 g( B0 ?  s; h& _
    2 M/ Z: g# [0 B0 `/ s- b& p) y    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    2 S9 u6 {9 D0 O: O3 S  w6 c5 Y7 D5 f0 N& E! ~) d5 `
    When to Use Recursion
      R& }/ P/ W0 J, X# I. p4 J
    4 h3 x+ @! j3 w4 D8 t6 t/ R    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
      U8 `) H/ |! K8 N7 D) ?
      ]6 ^1 o7 x: N: e: G* z    Problems with a clear base case and recursive case.
    5 |: J8 ~5 M' o7 G
    $ ~6 a0 X. w( b& T- G& X/ L7 ]2 |Example: Fibonacci Sequence* b, n0 j) R& K, Z$ x7 |
    ' Z, @( n  b, M; ]8 B! _
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:3 h: t9 r; k5 {2 a* }

    $ V) v3 m& M9 [6 ^; e; o1 Q    Base case: fib(0) = 0, fib(1) = 1) R4 e5 C# H" f0 |

    # C2 I- b; H& m  ?6 T    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    * \1 u3 s7 e+ o) b2 M2 S: k8 a1 \
    + a1 l7 {  ]8 }, s1 npython! G2 y5 o: G4 ?3 C+ c
      A9 [" L9 w; S; l
    8 D8 a( V* g; K! K% ]
    def fibonacci(n):
    1 e& V, v- j7 J- H0 E    # Base cases: E2 ]2 X& X! o: {; [: \: l6 F  k
        if n == 0:
    & [7 Z! ^, q" X  n' m        return 0
    & J# t1 D/ ?1 f. i8 o    elif n == 1:, |" z- n" P3 q: `4 d
            return 1
    0 b, @# x; F- \+ }    # Recursive case
    - X3 T4 Q9 @- V) U; [+ ]    else:, N6 N, i* Y  i  K
            return fibonacci(n - 1) + fibonacci(n - 2)6 U* j6 J( `) ?+ R. T) U, V- E6 c+ k

    6 D& G* F8 L: q' I0 P# Example usage* U% e2 l/ L, f  f
    print(fibonacci(6))  # Output: 8% b  a+ ]2 W4 }4 @1 i
    * |* R; q1 F) O+ D& _
    Tail Recursion
    ) C, ?, r6 A! G; i
    8 `, y  U- Z8 G3 a7 M/ q6 u* ZTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    3 L9 Z8 q0 ~( |' S9 |# D3 e) ?4 i+ S/ p! W
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-12 22:13 , Processed in 0.029818 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表