设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1870|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 + b/ y+ a' [& ]/ ]6 C

    7 h. ~" W+ X; J8 T解释的不错) H" j2 f" H5 t, s
    " Z1 y& f; X) J& K+ r: ~
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    & U1 o$ {3 J) `7 f6 `" ?
    6 @# ~: ]9 l  d/ e8 I5 B 关键要素
    ) _$ B+ |  o* l+ [! X# |1. **基线条件(Base Case)**7 S6 x+ i+ l9 {1 o
       - 递归终止的条件,防止无限循环! r4 E5 t" ?: m# S* F
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 17 a6 O  U. P! X5 P+ F

    % _. h) v- Y2 q3 ]' T2. **递归条件(Recursive Case)**
    9 L; m, Q0 X$ v4 f* F5 X/ M$ @   - 将原问题分解为更小的子问题
    & N% l, K& b+ g5 p- V* g+ T1 C   - 例如:n! = n × (n-1)!0 e1 g8 ~9 I6 U. D) C; n

    9 i; [; X5 j) U: A+ R" D- Z 经典示例:计算阶乘
    % v% Z# b) p' c9 K, z% xpython
    + Q/ [- M8 R3 f6 Q# [def factorial(n):
    " U  k6 f7 N# t2 i( s  y# |( k    if n == 0:        # 基线条件: j8 o# d: T) r1 n7 ^
            return 1
    1 h& o2 }* [4 }    else:             # 递归条件+ T6 r, Y- T& X  y* i
            return n * factorial(n-1)
    2 n: j( }0 E8 P/ D% f: s( Q4 _执行过程(以计算 3! 为例):
    & g9 w4 V- Y+ {4 Y) r! {1 X* Q; Gfactorial(3)
    * S) ]8 u  X! q- i8 h* O, L3 * factorial(2)
    7 Z# `8 N+ g" c4 f& S3 * (2 * factorial(1))5 p! |( r4 K/ I2 n! i
    3 * (2 * (1 * factorial(0)))
    5 Q/ X0 ^5 E' C3 * (2 * (1 * 1)) = 6
    7 }! d8 s5 w) m$ o8 A0 O% E8 |6 e! }6 q
    递归思维要点# t0 S- [; M! H- G
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    8 e: p; ]6 F* K7 W: r2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    7 D6 q8 ^% I# u( `3. **递推过程**:不断向下分解问题(递)
    5 j: l  L) k& n  r1 Y8 g7 Y4. **回溯过程**:组合子问题结果返回(归)6 V# |/ K1 ~; g. O% z2 {! \

    " b7 F. Z, y8 I6 q! N4 z( ] 注意事项
    ) e  |9 j. X2 j必须要有终止条件! u% {/ b+ W- L5 V
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    * M  j% L) a9 Z某些问题用递归更直观(如树遍历),但效率可能不如迭代
    # z0 Y6 [; o. G# _) R8 c% R: |6 X尾递归优化可以提升效率(但Python不支持)
    % l' ^4 s$ ~% d% [2 E
    . c4 T) t( q( x! I/ S3 r, I6 R) P 递归 vs 迭代
    4 m  W* _5 M! k, t$ Q( c/ l1 N|          | 递归                          | 迭代               |
    ( ]! Y+ q5 V4 f0 T! D! X|----------|-----------------------------|------------------|. C& g0 Y4 \2 E# b2 x8 l! ]
    | 实现方式    | 函数自调用                        | 循环结构            |0 ]5 G' |8 f3 n) b
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    : l0 j: I% s1 `| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |, I4 I5 L' a: s" y" M
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    9 x0 {" w# R* R5 |" I: M' U( X9 V) `0 M/ a/ S
    经典递归应用场景' I7 M% G) p0 v7 Z& [3 A1 r
    1. 文件系统遍历(目录树结构): Q+ Y" G" v2 e+ p
    2. 快速排序/归并排序算法
    5 w% M. [  h5 N; Y3. 汉诺塔问题
    7 E% ^6 n, @' w2 p2 ]3 ~( a4. 二叉树遍历(前序/中序/后序)6 b! d, r8 w; K! e7 F
    5. 生成所有可能的组合(回溯算法)+ E5 v7 ]& N! Y4 s) _4 y

    " z" d4 N9 Y, i1 L试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    17 小时前
  • 签到天数: 3147 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    8 [& K  D3 s' G2 q1 L我推理机的核心算法应该是二叉树遍历的变种。
    # y' M( b7 b7 d; w" i+ i另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:, h1 L2 q8 X: U; m' V% c& c
    Key Idea of Recursion' p% y# M" a& H, J2 ]" |& r9 H

    6 @4 d0 [5 L, a: V, d+ X& D5 NA recursive function solves a problem by:8 ~, K$ B3 ?0 L# v' ]& E/ ^

    # a4 e5 P+ a% O- ]% b" ~5 z    Breaking the problem into smaller instances of the same problem.
    ' ]1 H/ V  d+ D! V) l6 v9 }$ E. t( o( D2 e3 x- J, b2 v
        Solving the smallest instance directly (base case).
    8 {7 |  X% F3 O% u( B/ p8 R, i# K- O
    : ~- c  M( ~5 Z6 S6 M    Combining the results of smaller instances to solve the larger problem.
    7 @  {- ~. n7 p! \/ G5 @; Y7 R/ x; M, B
    Components of a Recursive Function
    7 u% |7 u5 y! N; G8 c3 v* c, T4 d$ K) I9 L
        Base Case:
    ; C  L2 {4 j3 h( v, j4 G4 B( f
    ! T2 e2 }0 H. n$ I" G- X& I        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    # N5 ]1 U9 Y  _, ^4 G( ^5 t+ I( M' j' N
            It acts as the stopping condition to prevent infinite recursion.
    $ ?  y6 k& O! G* Y4 Z: S* C
    : O% y( k: W: ^% f# B& l% q9 y        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    . {, w2 B; u7 G) |( e4 o1 e+ p- p$ h7 `+ \0 R% I
        Recursive Case:1 p: p6 N9 Z, _. ^4 [% a9 s9 J

    7 e$ T! s! s- A; c5 {0 e        This is where the function calls itself with a smaller or simpler version of the problem.- U5 u1 x4 I, r- C' d% t

    , K/ _9 o8 Q" V! |        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    7 h' o6 O, C3 M/ s/ F
    / f$ [; {; Z6 b" J$ N! Q8 TExample: Factorial Calculation0 r- X: C( D# n) N9 {& A1 v

    # E; I" o  d9 d! \  R5 TThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    7 D7 U/ H$ u% Y4 }- E/ v9 B
    3 s) N% A) A. q1 l' |, g    Base case: 0! = 1% X% r+ p' Q+ W: y) d4 M# Y
    ) B* N; q, Q, S! m7 i1 u
        Recursive case: n! = n * (n-1)!, O' N$ L  M5 t' \6 g
    6 j& y: F- d. }
    Here’s how it looks in code (Python):
    ' P0 p2 h" Q) Dpython
    ' b5 _, Q8 n. W* K' }" q4 Q$ n/ J9 ]5 A

    + _% ?. G. ?' Y+ Z# C. {' _! Adef factorial(n):
    3 d; I* P$ ^! e( O, |    # Base case
    ' J0 x1 K% Y" @8 `5 Z# R    if n == 0:, h4 ~- Y; b) x7 h
            return 17 b8 [: Q; @% W( c: D
        # Recursive case
    + Q  J; r- E9 }' T    else:
    ' t% K: A( r7 `% J        return n * factorial(n - 1)
    : G% b- a: I. \) I* p' |* j( Y$ V  c
    . D+ F$ N& M. N8 J# Example usage
    3 y( v5 }* X, P0 Hprint(factorial(5))  # Output: 120
    ' W! ]# E6 v* E8 }4 A7 j8 a
    & v8 g1 D& X1 N# O; b& o! C% C8 NHow Recursion Works' E8 P# u" E3 U6 E4 W' f

    2 c) Q* k; t# |    The function keeps calling itself with smaller inputs until it reaches the base case.
    7 ^# w$ g* X, y  ^6 G
    - M/ I, v" m' Q3 l& I    Once the base case is reached, the function starts returning values back up the call stack.' c6 a' ?$ ?( G1 N+ k8 c2 \
    - S5 e5 Q9 f* P8 f0 ?
        These returned values are combined to produce the final result.3 ?6 a: N" k% Y& C6 b+ F; P8 ?
    / {3 Q% I  G; R5 T' j$ a8 t! }: I
    For factorial(5):
    ( m; {; K2 }* R: n; Q# u) ^# k9 c- R( @- J6 ?4 M

    ; |4 @! ]7 u4 ]factorial(5) = 5 * factorial(4)
    : |' B9 v. ^8 ]9 k  e* Efactorial(4) = 4 * factorial(3). {0 ]( g9 |9 q% U$ [
    factorial(3) = 3 * factorial(2)
    ! d/ X2 |0 e' n2 z3 yfactorial(2) = 2 * factorial(1)4 E4 U6 \) q  y
    factorial(1) = 1 * factorial(0)
    % P$ P& w1 c5 C" k$ @" S: Q. yfactorial(0) = 1  # Base case
    7 ~9 A1 o2 g  r9 H
    9 s9 k0 I1 E) u! O6 EThen, the results are combined:
    7 }' y+ {! f$ X3 i7 v( ~: O# p: i% P4 o5 ?5 h) ~; R
    % C( G; a1 s1 a  M) A; j' M2 F8 ~: h
    factorial(1) = 1 * 1 = 1# P4 X: J, R6 I: _7 s
    factorial(2) = 2 * 1 = 2. d! Y# ]5 V6 A9 M
    factorial(3) = 3 * 2 = 6
    ( }1 R1 t( C9 Rfactorial(4) = 4 * 6 = 240 `) c& E: I  L0 ^& I3 O- m  f
    factorial(5) = 5 * 24 = 120( J3 y9 w  ?+ E. t0 q* b

    0 i) z$ R2 H4 |- S/ VAdvantages of Recursion/ Q# `. K( }; j  Y/ R. r( R

    3 R, W. U2 H& ]  ?0 Y8 w    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).) y( U  _2 J/ J/ z3 W
    . e0 T, C& S% q
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    - p/ O+ F/ _% r* z+ C/ f  J  \9 A9 ^+ }2 U0 ^
    Disadvantages of Recursion$ n1 Q$ ~# j8 }+ Z' Y& Y
    1 Q9 ?5 A7 D$ X- e; n# Y! y
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.' c& A. v9 E; `9 o+ Z- K
    $ K6 O0 G% f7 r
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    ! o( q/ }2 d- ^, a$ h' W! F0 ]& X' G0 M. U6 D2 l1 l6 z7 j
    When to Use Recursion
    ) }/ b8 ^1 E; i, _2 F, @
    7 r! ~5 a* i- g  x2 T6 Y) a    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).+ n2 @, |+ W( E" b! z; o
    , q( [! S' z  y1 `3 i
        Problems with a clear base case and recursive case.
    ) x" R8 _7 s2 B2 M6 @
    ! l; n7 Q/ ~) XExample: Fibonacci Sequence
    5 x' t! q# p. S& Y) f2 E* H6 K1 a. A& h4 N8 ?* m
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:9 |( e7 e# M) j, y9 n5 m" h  i# p
    ' o( e( t7 n" \, l7 F6 h) v
        Base case: fib(0) = 0, fib(1) = 1
    ( j) |4 S  d' F8 H; o8 a  Z" X4 c) l
    5 i- {6 \# P2 M' ?8 `1 G9 n3 m3 t    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    ) e$ J$ B( Q4 ]3 O$ @' o6 h4 {" o) Y$ j4 Q
    python
    6 O* q5 b" v( P$ _4 O# i, g! k
    - Q2 d4 M, W  `4 K4 X. h) n9 z
    9 @. ^3 b2 `& z" d  e0 ndef fibonacci(n):' F0 v2 F: U& V/ f
        # Base cases
    $ c# w0 ~2 k- Q7 x% Z    if n == 0:
    ! z# w9 ]+ M: f1 \0 K- G% v0 c        return 0
    ! u% ?) o  I. @  I) m    elif n == 1:
    7 ?( z/ J! H2 {) i  t6 }6 @! F        return 16 {$ X7 X! H& U+ p7 p$ d$ L
        # Recursive case
    $ Z/ \- ]3 C  @9 f# s# R' m; {  i    else:8 S5 W: j; W# p6 I% T- M
            return fibonacci(n - 1) + fibonacci(n - 2)
    + W" B: J8 h4 X% W9 T8 ?, n* J$ D, g1 X0 G4 T! \5 ^
    # Example usage
    / u+ v, v6 Z: P/ ~print(fibonacci(6))  # Output: 82 b; M& ~" ]7 Z2 L# G0 ]
    4 W" k1 |& b3 E1 `- G! k
    Tail Recursion7 I& ~( B, @8 j& c- G" W# Z) T

      `8 L* B" _' q9 X3 bTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion)., t9 Q& b4 Q5 ^3 U: u1 Z4 B

    - \5 K# b7 l6 v& }5 WIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-17 23:48 , Processed in 0.030815 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表