设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1640|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 - q" J; _4 o0 W% R# M" G# W
    4 k  ^9 P3 n1 e3 Y' L* ^7 b! M
    解释的不错5 ^0 j; K6 S' a# N  k
    / ^. k4 [$ c- `  @: M! B
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    $ w0 _9 _* A7 F7 f& Z9 I9 r0 B7 M4 J- a2 p0 s, M
    关键要素
    2 F- ]- j" F4 W2 H1. **基线条件(Base Case)**
    5 Z; `# c7 }, h6 I6 T/ c   - 递归终止的条件,防止无限循环+ a! C, `" u, f; g$ \3 m
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1$ V* d0 S5 C: J7 z3 t9 a
    9 n/ T* L$ M$ f( B, L
    2. **递归条件(Recursive Case)**
    # ?) p4 a- S4 q  y0 e6 h   - 将原问题分解为更小的子问题
    ' O9 }9 y& K4 O1 `   - 例如:n! = n × (n-1)!+ l3 J2 Z: K, J( e. ^( r0 E
    ; u$ E, ~# l. m) e. d, a2 o
    经典示例:计算阶乘; W) u6 [, m% \  h1 F3 Z
    python0 _; Q% L; i+ p9 J$ B, Y
    def factorial(n):
    8 O( d1 f( m0 L& m9 G, s8 R5 `% B    if n == 0:        # 基线条件
    1 o- x4 I- B' }& g. ], w        return 1" u' A, D  x' p7 l
        else:             # 递归条件
    ! a& ~; M& I' k8 t- Q        return n * factorial(n-1)$ T7 {* G# y7 e
    执行过程(以计算 3! 为例):2 e- h% e0 L! p$ m) i6 E+ b
    factorial(3)( W$ W' |' L1 V8 @4 W1 q0 w+ t
    3 * factorial(2)( l. |$ B! H4 N3 D
    3 * (2 * factorial(1))
    0 f- y' a- x) G7 ?$ R+ R3 * (2 * (1 * factorial(0)))* ^0 f; r  J$ R0 Q( \
    3 * (2 * (1 * 1)) = 62 B7 S2 U0 \- Z
    " j$ {! G5 ?  g  O
    递归思维要点
    # k- u* U. M1 p+ I6 j/ k1 A* _1. **信任递归**:假设子问题已经解决,专注当前层逻辑- T: `: q/ ^  ?0 B" Z+ N1 _
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    # J- j/ T. f' G$ c; A3. **递推过程**:不断向下分解问题(递)
    4 J) ?! y7 h% s: U6 d8 B" d( ~4. **回溯过程**:组合子问题结果返回(归)
    ; @& Y& Z+ B* ~4 o
    3 {; k3 r9 i; s4 u7 i# [$ Y 注意事项$ B4 G' \8 b5 ~
    必须要有终止条件
    ( T: \, g/ N) v+ V. S6 A递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    - `" o- z$ i$ O/ r5 C某些问题用递归更直观(如树遍历),但效率可能不如迭代7 ?5 h; o# B. |, Y6 ]
    尾递归优化可以提升效率(但Python不支持)
    1 s0 }  y( `, A3 G# e: `7 i& I5 w# A
    递归 vs 迭代2 k6 o( O" f$ t) e" w
    |          | 递归                          | 迭代               |
    . w% }- e7 S2 \1 E$ ]- [8 f6 h8 I& g|----------|-----------------------------|------------------|0 _6 n& p' ^! _7 `& W0 U* g
    | 实现方式    | 函数自调用                        | 循环结构            |
    ; E4 P/ K" o9 X4 _6 W. E| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    + a% Y7 V' m( L8 e) D! @  P| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |5 b* o( f9 W+ Q- i
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |6 D7 v) f1 R4 p- t$ f
    : T$ E( d& r4 g! z$ E
    经典递归应用场景; E/ }+ S( U* g
    1. 文件系统遍历(目录树结构). u0 D8 u1 g$ P1 {" l; g) y) O) H
    2. 快速排序/归并排序算法, m6 {( T' d  @7 W$ l2 O5 R
    3. 汉诺塔问题
    $ T! Y# T; J( R4. 二叉树遍历(前序/中序/后序): n% Z0 f; ^% a  O# j4 V
    5. 生成所有可能的组合(回溯算法)( i6 \3 I& W) W, O4 w( G
    9 b, n4 n" _5 p( `; F
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    昨天 12:10
  • 签到天数: 3127 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    ( f% @( @1 m9 v# \9 g; O* y" {2 V- Z! z  p我推理机的核心算法应该是二叉树遍历的变种。( |" O  e! j: S0 T% t+ ]. E+ [* q0 g
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:+ P* d6 o0 a: ^- Y9 @
    Key Idea of Recursion
    : Q4 x6 B. y. ~: k) M1 N. [4 ?+ A
    / Z5 r) K! ~6 {- V: B2 C' QA recursive function solves a problem by:
    0 k  d2 \/ p% I
    $ j' a; E- ^& s7 E9 M    Breaking the problem into smaller instances of the same problem.1 `8 z& [9 x2 j+ i: T* l/ H- o

    & V; h. a" ?6 m2 E6 `9 B$ U    Solving the smallest instance directly (base case).2 T2 M; x  Y/ }
    $ y. d# A" O$ j' W2 q. b
        Combining the results of smaller instances to solve the larger problem.
    ( A6 k& L$ c4 D9 [  `
    ( N3 ~: \& ]$ C* Q0 }- Y+ `Components of a Recursive Function- c: o7 U) L3 B/ R. `  M

    8 l& V2 y7 s! w4 k7 k- U    Base Case:0 T* ]4 `1 }; O6 [1 M
    + Z  c3 m; `+ U6 g7 [1 t5 v3 X2 Y( T
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    * ]4 A+ ^$ I8 O( Z  a
    , B2 e& z8 \5 W1 J0 C6 Y1 n        It acts as the stopping condition to prevent infinite recursion.
    5 s, J  ^+ W# ^0 p% t
    6 e3 O  w' t/ d2 q7 U- a% x5 W        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    6 Q. G, g# n) M& S' M2 x4 y1 K6 m1 b2 y
        Recursive Case:, A0 Y* m9 O! K7 [5 s" j

    " i8 v/ }+ P- R$ c1 ?- ]: l0 T6 c        This is where the function calls itself with a smaller or simpler version of the problem.7 h1 e  U* x( V) q: a: w
      d; j' I. L2 ~" `+ W
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).# r9 e) @) U4 l1 H8 I
    7 D! w9 ]5 c, W; K% a  h
    Example: Factorial Calculation! F8 z% b1 y5 f) _& L

    * G  R& \! g  [# D" KThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:" J9 y4 m! m* Z1 O9 j2 B0 L0 Q7 f

      t! t! l1 K4 V0 F& |5 Q  P- O, l+ D    Base case: 0! = 1
    ' J+ J3 w4 r9 v+ R' m/ I2 ^( v
    : _8 n+ M# k1 \' [3 t    Recursive case: n! = n * (n-1)!) O( _( H9 y! C- x2 V; E+ R' f5 \

    : K1 y7 Q6 O  T. hHere’s how it looks in code (Python):2 T+ W' w7 j2 B* D
    python, J1 R& ]$ a, J* ^  \

    : u& `# a4 J" R/ Z0 D; f- `% K! \, ?4 a
    def factorial(n):
    3 N" W. t! F, L; z' S/ O1 G2 v. x; o    # Base case/ k, `  {, g( F6 @8 b  Z. A3 _
        if n == 0:6 y' k8 M3 f1 ^# u6 u0 F
            return 11 x* L* R' K4 K
        # Recursive case; r! u; i9 b& r
        else:
    2 l) N0 L( ?7 T% G$ {        return n * factorial(n - 1)
    , d, d6 s0 h; D! d2 o
    5 `* v" ?+ j' v8 Q# Example usage
    9 w0 D- a: T3 ^' Sprint(factorial(5))  # Output: 120
    2 j0 c) @7 E* C5 [( O2 t/ w" w
    7 S) h( l. F' |# PHow Recursion Works* m4 C! D; I8 _/ H& O1 x* }
    : E3 w0 D( g. R9 I, d. V( S0 k+ }
        The function keeps calling itself with smaller inputs until it reaches the base case.
    0 P3 S8 A, A# Q, r" [4 j0 X, k6 K$ E$ ^8 P3 `" E  o" Q
        Once the base case is reached, the function starts returning values back up the call stack.
    - |- p& X# [( f3 E& ]5 p% y
    0 t- q5 P1 L* m' @7 N/ v6 q    These returned values are combined to produce the final result.  M+ T; ?) x7 H$ w3 ^0 M
    1 X) u* G, ^# G; H
    For factorial(5):
    4 s# t' p+ N! q* P( U6 n' f0 q1 [4 Z! _' g/ I

    - t8 V' ~/ O, g) Xfactorial(5) = 5 * factorial(4)3 K9 Y( K6 n! ?- ]
    factorial(4) = 4 * factorial(3)
    0 L. L+ }4 ?- y8 Z# K' ]8 Gfactorial(3) = 3 * factorial(2)# j8 L+ g9 j0 d* v: p
    factorial(2) = 2 * factorial(1)) Z0 q8 Y. U' R/ g$ ?
    factorial(1) = 1 * factorial(0)' z# |& Z  K  B% l: H
    factorial(0) = 1  # Base case( _" [- d$ u5 U! D/ M
    % J8 z9 Z: O2 ?
    Then, the results are combined:4 q5 v4 Y4 Z: A
    2 Q- s, G" u0 s
    % `5 u# E3 }& j
    factorial(1) = 1 * 1 = 1# h2 y1 O: b% M- W) Y/ @- H9 d
    factorial(2) = 2 * 1 = 2
    ; H" R3 c( h6 {, lfactorial(3) = 3 * 2 = 65 t7 Y# `) @; o% Y; c% Y2 [; b3 H
    factorial(4) = 4 * 6 = 241 e9 l/ S) p3 ^# b0 g
    factorial(5) = 5 * 24 = 120
    : G. k! z) A; j& X
    3 h; q# \: L& I* n7 ?7 _6 Q6 n9 BAdvantages of Recursion
    " W& h5 J- E2 s8 r& A+ m, T6 t8 o: u, h8 O! x
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    4 N7 O; _! m8 A, x" _% @) q5 o( A- L# j$ w, X9 z6 Z# o% K3 ~
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
      |: z( R! s. A" l2 J8 b6 E1 I
    ! K# M6 i* B+ s. q) ^$ k% i/ q/ r  v' h+ PDisadvantages of Recursion4 g0 N; @8 H- d" ~

    7 N) ]. S/ P. `4 L( U    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
      E2 R; u5 M" y, D' b6 {0 s9 [8 S3 {% K: U* c! G, t
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    3 x0 K, R6 x" B; j& y7 d2 u
    7 H' }7 i$ `* B5 ?' K# x' qWhen to Use Recursion8 [7 D1 S7 U; E$ z) |- I, N& t) t

    % X$ D) s! v! U6 Y" A4 y! p    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    + x0 F- l* w9 a& f5 a  ^6 m$ G- e* {! \2 R
        Problems with a clear base case and recursive case.
    : U  p0 b* _2 U* W$ f* M9 x3 E  ~
    ( Z2 [, E/ W* Q! g4 m& sExample: Fibonacci Sequence) Q5 e1 e3 D$ f+ [

    $ |8 i7 }; d" c3 GThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    3 g4 u" _: {* K
      }& G: r" e# |6 J    Base case: fib(0) = 0, fib(1) = 1! C! ^2 w# d3 N# P8 }7 N7 @* @

    + j& s; K0 ~4 U) a& Y  j* Y" b- W    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    8 p% E) d. ]/ y- W# `4 r- R' `; g6 Q6 P2 z2 r4 m; X' @3 o
    python* m' e9 n1 l4 D/ |4 u; c

    $ E( ]& n+ P- i0 Z
    ) J, M( B: R/ ^5 ]def fibonacci(n):
    # z0 x+ Z7 j# S& N6 \/ ?5 z$ C    # Base cases
    4 E* \: H+ T# [- l9 c( _    if n == 0:& Q6 g9 l. ?0 P$ \
            return 0
    + O6 @( X# Q6 o% x) l    elif n == 1:
    6 h# V) P2 q; L3 g) k* e1 y& b        return 1
    ' x; z, q5 v: }. k& d; M    # Recursive case
    4 G0 f+ m1 g3 @; V3 W    else:
    9 d9 Y$ O7 N. Y6 D( i9 G        return fibonacci(n - 1) + fibonacci(n - 2)
    - r7 h# }" ^& x
    % n/ ^! l+ K/ `0 K& A+ [  L# Example usage, f$ k- N7 z* ~. k: \8 z; x
    print(fibonacci(6))  # Output: 80 q7 ^( ~: a) V: b
    & M8 C1 g  s) C: `. |1 Y- _6 z# _; X+ a
    Tail Recursion  |  n' a" A2 w; C# S6 h  ]; P

    5 q! i/ {+ A, Z2 P6 jTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).: R6 j9 K' H, h" {& M: R
    # S. v* N5 s. y  @/ w5 L; I, b
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-26 01:32 , Processed in 0.058337 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表