设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1719|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    6 i) N/ h: J& \- J+ r  r% k: o$ X! }& v; ]8 o- d6 @1 ~8 j/ q! |
    解释的不错! V* @1 H6 }5 Y1 Q

    $ a. F2 m/ v5 D& h递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。7 b# Y* B6 c3 m2 p5 d9 m

    2 X9 m" |- e! w 关键要素, f7 s0 j: [% q
    1. **基线条件(Base Case)**
      B1 `. q# I+ X5 _0 Z/ }# a   - 递归终止的条件,防止无限循环9 f( y7 E+ f" h# t5 ~
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    : C/ [, M2 |, f4 a$ w0 y$ }
    7 a) F- c! q+ V' W. P) I& }. l: }: W2. **递归条件(Recursive Case)**
    7 R$ v3 c, {2 z; I5 c6 ]! f, e% |2 Z   - 将原问题分解为更小的子问题
    1 O; p! d* t: T- H! P0 |" B! N+ e. n   - 例如:n! = n × (n-1)!8 }& G7 _% C8 I% F$ s1 P

      \8 U* V0 |' z7 i' W6 q/ Y3 D  { 经典示例:计算阶乘
    1 N) \& ~* L3 b3 y$ {# g; J5 w. Bpython
    # `: p$ Y( N3 G+ S* ^) rdef factorial(n):8 j& u$ C9 ]$ B! v! j
        if n == 0:        # 基线条件
    7 P% U/ A  ?& m/ S        return 1
    / I( M* d& h0 J5 |* ?7 `    else:             # 递归条件
    5 _6 m6 v3 h- {6 g* L: G7 H( ?! T        return n * factorial(n-1)  T4 H& B) S  k
    执行过程(以计算 3! 为例):( x6 y/ @/ Q+ [/ ?+ ~
    factorial(3)
    ( I; ~% A; R3 F* A) X3 * factorial(2)
    0 O- w" r3 q1 x8 _* m, \3 * (2 * factorial(1))$ Y1 c  M. m9 }# A
    3 * (2 * (1 * factorial(0)))
    . p! u5 O$ J9 C6 K# f5 A3 * (2 * (1 * 1)) = 6
    # _# D. j6 E0 Z6 s) t1 `) r! E% W5 v: t9 o! V
    递归思维要点. y  q- z% @% S& E3 B5 q4 N
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑# n' q- Q$ e: D% L
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    . g" ]! v: v4 P/ l' q. G3. **递推过程**:不断向下分解问题(递)# C( l9 i, v$ ?4 g$ t
    4. **回溯过程**:组合子问题结果返回(归)6 R4 N2 p6 i3 w) o7 f7 D3 O. E  N
    7 @* j2 [; O8 ^  x; `
    注意事项7 ~5 j" q* Q& ^0 y
    必须要有终止条件
    ; L2 l; X- W* V+ R9 ~递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    7 e! T$ d' W. R  U4 w) ]某些问题用递归更直观(如树遍历),但效率可能不如迭代
    2 E8 z3 ^' N4 |/ y) |" ]8 G; J尾递归优化可以提升效率(但Python不支持)
    $ b+ H0 I- L- b2 P7 {
    / [* H) F  N: y, J+ | 递归 vs 迭代$ x5 e$ |; B6 f1 Y0 {+ S! ~
    |          | 递归                          | 迭代               |! i& ~- j7 o, J) e! U& {
    |----------|-----------------------------|------------------|
    : x, Z, J* W" E2 z% N9 ]+ z| 实现方式    | 函数自调用                        | 循环结构            |: E8 K8 S) q9 N+ ?/ N
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    " U, B' A( l" W" ?  H1 G| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |/ {+ M) H% r$ q, u4 ^% Y
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    * ?0 @6 E. I6 R0 d9 {* H& I( d4 i7 E2 M
    4 f- [$ d! p" `" L4 r0 a9 S4 [ 经典递归应用场景
    4 U2 w' w: C* X4 H* G1. 文件系统遍历(目录树结构)
    + D. l7 O- K5 X4 c$ u2 F2. 快速排序/归并排序算法+ j- _# }' S) ^+ N( i" f4 k, u4 Q
    3. 汉诺塔问题
    6 i6 P$ h# s; ^+ S( ~4. 二叉树遍历(前序/中序/后序)% ^0 y) Y7 S- ]0 C0 Y
    5. 生成所有可能的组合(回溯算法): r: x9 ~0 }- o7 |) E

    - w& C$ E8 a" z% [7 v试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    开心
    昨天 15:11
  • 签到天数: 3133 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,  F8 [  D$ k, J
    我推理机的核心算法应该是二叉树遍历的变种。
    ( a6 y- |/ r  s7 q* k( Q8 \另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    - ^4 `# l! Y. RKey Idea of Recursion
    ! n; x# p% H& _7 T+ v0 H0 B: N* o2 k( I1 G1 g
    A recursive function solves a problem by:
    & K3 Q& K8 A. @0 x% _* c( ]
    3 W2 Y/ f3 Z- x8 Y& J9 @    Breaking the problem into smaller instances of the same problem.
    # q2 v, a. r% `3 q3 v  U
    ! E/ M6 p7 P9 J+ B" r    Solving the smallest instance directly (base case).. v7 v2 w: m1 g& z2 B7 L1 E
    " r( n7 d& q( _9 c
        Combining the results of smaller instances to solve the larger problem.1 X: O4 ?' u% k4 w# _# R
    % t/ w  N5 T1 l# K
    Components of a Recursive Function+ y! d+ Z: w! X4 t  a* i

    4 e/ C; r1 \7 Z" w  H    Base Case:4 R  V; N: M" Z* q
    * E0 d/ P( {1 C
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    3 q! l% E& _1 Y7 _0 j% h# r
    # ^( ~; ~4 W) s7 r" d+ ~        It acts as the stopping condition to prevent infinite recursion.$ t) A3 C- W( E) ^4 L( Y& H4 j

    5 w0 q+ e6 `  H; d1 b6 I        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.* Y) O5 v4 @* X! }& v1 o

    8 y, g4 W4 Q* H' c. L- [    Recursive Case:
    ( X8 \" L$ [% e* N8 d
    6 ~7 k& Q3 f( b' U0 p        This is where the function calls itself with a smaller or simpler version of the problem.; S+ D( Q- X, n
    ) S2 n$ n& q/ A: ]" K
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    / z; W; i  u8 X- t1 v( a' K
    / `/ K' M2 a4 ?: ~6 w8 VExample: Factorial Calculation
    ! G- x+ R' M: u* Q% l/ f6 ^' j5 |4 F& l- {
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    # y! }& i. v5 k4 P& H
    * r  ]" A- p8 d4 u5 _    Base case: 0! = 1
    6 y, _- R7 C  u* C' Q6 n' J
    # _3 G8 g" B8 p; f4 c    Recursive case: n! = n * (n-1)!3 q" V, a- V9 C* }% a

    . O; q' e+ Y/ S4 y3 _8 FHere’s how it looks in code (Python):
    " p  K% C* U% ^python$ Q' e& a% Y' Y

    $ X7 e& T0 s. N- v
    % ]3 b; j3 w. l. k6 Udef factorial(n):
    , L- T& K! A# f4 f' X' _    # Base case. _0 J/ g/ G# r. d2 }- B
        if n == 0:
    7 r2 P- f$ q/ K  d* T( Y/ C9 W        return 1; G/ Y4 ~8 u! _8 G, ?% g1 b
        # Recursive case
    ! }8 h# g4 a5 G# O1 ~0 Q" F    else:0 A# _. L) h. C
            return n * factorial(n - 1)! o5 k5 z* J- K0 ?! J
    % F* d& k* L+ w: _" E6 X
    # Example usage
    1 d& S2 E6 L6 j/ d( j1 I6 `, g/ y4 Jprint(factorial(5))  # Output: 120; h+ M+ t8 o' ]; Y; J

    * F3 L% k1 T% R% KHow Recursion Works1 e: I: {- U, }( u4 M4 A5 b
    / Q# Z) d3 U2 m! [" b; n. C, K
        The function keeps calling itself with smaller inputs until it reaches the base case.+ S7 j8 ~- F9 n- u) @
      K, r& z3 s/ Q3 t( ?
        Once the base case is reached, the function starts returning values back up the call stack.
    3 ^  @0 |" |1 b# _; x4 `) t& V' G3 f  K
        These returned values are combined to produce the final result.
    / G- Z2 w3 D% z6 t, K1 ~
    + E! G, R7 I8 k$ G* h$ U  uFor factorial(5):
    ( F9 n6 k# j/ q( B+ w, S( u* G! I- o( p( {+ |7 W' U; u2 w1 W

    ( W* [& S' ^* c" \! n3 |1 Q# mfactorial(5) = 5 * factorial(4)
    % P& O1 v2 |2 R& k" ?" `# f7 n7 W# mfactorial(4) = 4 * factorial(3)$ P( n  h: E' {
    factorial(3) = 3 * factorial(2)
    5 h9 t  x# M% @8 }$ d5 ~factorial(2) = 2 * factorial(1)8 k7 Q0 C5 f; i7 v8 y7 d" P. J
    factorial(1) = 1 * factorial(0)9 |. B* X5 Q' f# v2 ]& a9 [
    factorial(0) = 1  # Base case, j5 J  N1 K* k$ C, {# R( j0 x- ]
    3 A# R6 n6 }4 t) e
    Then, the results are combined:
    ) G# S7 M& n- [4 H2 ^. y0 B: e$ Q- r6 s: P# \4 x( }
    , ~2 D5 i2 B8 @: r. J. ]
    factorial(1) = 1 * 1 = 1
    9 ^5 A9 v! S; ^3 E7 V% Hfactorial(2) = 2 * 1 = 2
    + s* q- A4 |9 e8 Z1 V, Ufactorial(3) = 3 * 2 = 6! f( Z9 ?. u- I! y1 v! S) M
    factorial(4) = 4 * 6 = 24
    ; S" G7 N5 k7 u. h# h- lfactorial(5) = 5 * 24 = 120
    0 _- J. j9 g% x: X! z$ N3 Z1 r1 ^$ Q, w' N/ [0 }2 D
    Advantages of Recursion
    8 I, x& c! j4 u( o' [# L
    7 {/ F9 E2 i! B8 H+ K; m    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    * `- \! ?; [  I( H6 H, S7 g5 S% v5 F
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    & n! Y/ N0 v/ d. F# i
    ) A- f' D6 @4 P9 eDisadvantages of Recursion
    ; z0 I; v7 S; _3 H$ Z
    3 h5 g) S! u; u9 g1 d    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.9 @* M7 I) h+ c4 C2 S8 T- ^. }

    ( d* _: A# f8 @( T. A) G6 u    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    / m" U$ s$ J- r6 ?. H! H4 W2 @
    - t' }) \+ |- ~* ?) nWhen to Use Recursion3 Y( m0 N2 t2 a1 t" @* j% J* V* O

    & D5 }9 a# [5 P    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).. ^2 \3 C; u# E  T, P* ]4 M

    ! y* }* t1 X+ C. b9 y! e    Problems with a clear base case and recursive case.
    5 a( _+ R  ~5 ]& E1 K9 o# ~+ Z6 A1 t9 s# N9 E
    Example: Fibonacci Sequence) s; w5 `8 f% z, }; y
    + [0 d6 E7 \5 t; T$ p8 B
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    ) a& x3 z, a6 [, n
    ( ?) j' D4 G. |( \' E* z, R    Base case: fib(0) = 0, fib(1) = 1
    $ d$ v; o5 k3 F3 _/ S5 ~1 u  N8 u2 Y, H8 L8 `
        Recursive case: fib(n) = fib(n-1) + fib(n-2)% o7 H" S) X4 i8 V
    / q" r, V, L5 Q
    python
    " J; n% X2 t: n  e" I& n, B7 n; |6 U
    ( B3 L$ |9 v9 d# C" y5 M' a
    3 T  ~' t) K( D3 f0 Ndef fibonacci(n):
    ! |0 q. Z- L* ?3 M2 i    # Base cases6 p) P- c) [" q' B0 d# t9 P% v
        if n == 0:
    6 ?, a# T/ I- }0 p/ i, }1 m        return 0
    5 m0 y8 s7 D. J1 P$ O2 e    elif n == 1:
    8 `" W( J, J% f8 p6 S3 k2 i9 D        return 1
    , F, j$ j$ N1 I3 O# L5 a    # Recursive case
    3 \! J" k! r& W+ d) ~. l  Q6 v    else:8 n: o' B' J8 d# \: |8 X
            return fibonacci(n - 1) + fibonacci(n - 2)
    & d( T9 u& P7 `0 E0 t/ s- g# l4 I( m; p- t5 Y; Q0 ^
    # Example usage
    / m! E4 E: B  k3 y% D$ @; Oprint(fibonacci(6))  # Output: 8
    ( Q# A* N; L$ J9 E+ B$ a; h, B/ h, n* l% ~5 K2 |
    Tail Recursion
    0 N/ R* G$ {, {# ]) y9 K* L+ w; g: B( A; a$ A* \- s- a4 @& T) r
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion)., s, q! Y+ X4 L- Q* s% c+ J, l
    % l$ |7 C4 a! x8 C$ {1 C
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-2 11:20 , Processed in 0.031055 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表