设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1137|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 9 n. S; P- m1 R4 K% Z3 ^, l9 K

    2 c) {1 e$ Y, R% {: y$ W, l9 q% B$ |解释的不错
    ; n( ?6 T0 i5 u# \
    ) z- M$ ?- {. V: E递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。5 p2 v8 W: @$ v8 e9 c
    2 z6 U) z% f! z* {8 p" N) W
    关键要素! E* m& D3 H8 o
    1. **基线条件(Base Case)**& R& N7 j3 t! I3 q# o
       - 递归终止的条件,防止无限循环8 m6 H* H0 e5 X7 l
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    ) L$ T9 I6 ~6 K4 _' J& Z# t! w8 v( B1 S" s' ]4 f; }. e& y# f
    2. **递归条件(Recursive Case)**# H0 \8 f. R" @
       - 将原问题分解为更小的子问题
    6 X8 T  x3 k, R   - 例如:n! = n × (n-1)!( x; N1 b; D" L
    : q- I% @1 D% n: B) n
    经典示例:计算阶乘
    - \2 f, `1 }3 w2 R  q; L& Q7 Y" k* H; wpython  q: x5 U# v$ H( c
    def factorial(n):
    ; x( m7 W, e# x6 F  }9 A! u. z2 o; h    if n == 0:        # 基线条件2 I2 U$ E# F% @1 k) s/ l3 N
            return 11 n& A7 w' s( f; H
        else:             # 递归条件7 S6 e. f9 e8 p4 D6 P$ M  Z$ D
            return n * factorial(n-1)8 I& W7 y  X. j  r; F+ M# b
    执行过程(以计算 3! 为例):2 w: s3 p( X- R8 _5 z6 k
    factorial(3)" _" }/ f+ V% l8 H; ^$ \
    3 * factorial(2)1 {. x1 ]* f5 a$ c/ Q
    3 * (2 * factorial(1))' P; A# }: A# H, \
    3 * (2 * (1 * factorial(0)))
    # v0 \) k% z  t6 B3 a# @. _8 G3 * (2 * (1 * 1)) = 61 X$ x6 j$ g* Y- R; `

    ( J' K% k" o1 \: ]! R 递归思维要点4 u. k# S6 h/ d0 F7 B) G; C# P2 d
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑( k: |+ F7 i8 G3 g
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    ( h6 [7 s9 k* [5 Q& _# S3. **递推过程**:不断向下分解问题(递)
      `5 }" v5 E% {4. **回溯过程**:组合子问题结果返回(归)
    , R3 {. o/ n& \/ B! T( v9 l: a! i
    注意事项6 H% c4 p7 O! R* ?+ q- v2 [
    必须要有终止条件5 u! I, P' z4 Y3 n$ c% }* Z
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)' W; G+ F/ w! l# A: F
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    + N' R/ E% `; Q% U! |0 E* M尾递归优化可以提升效率(但Python不支持)6 [8 g6 W+ C; L: V1 g% p6 C

    ; U2 f* B$ j; W7 ^ 递归 vs 迭代0 }* n+ i8 W7 T
    |          | 递归                          | 迭代               |. e% h: c8 Q$ O2 l" S: h
    |----------|-----------------------------|------------------|
    / _2 r7 a5 H* |" ^& Z| 实现方式    | 函数自调用                        | 循环结构            |: h. Y, ~% L4 j* f6 v
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |. F3 [# f  A# B, ~9 |) n
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |; [! L0 e  C) Z* @0 q+ L
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    9 a6 g# |  T( D, T/ D- K9 r* ?3 l1 N4 n2 ^5 w  I$ _1 N
    经典递归应用场景
    4 m. ]+ p0 s  \. R6 L3 ]1. 文件系统遍历(目录树结构)
    0 w6 \% }) r% `3 V8 `' P! H* j7 J2. 快速排序/归并排序算法+ W8 k4 q2 M8 ^! N
    3. 汉诺塔问题
    . M3 i. n( a9 j  a4. 二叉树遍历(前序/中序/后序)
    ( \& D# N+ p; g( F5. 生成所有可能的组合(回溯算法)8 |9 |! @* r( G# I* H4 x
    5 d$ N6 }- e3 o1 N
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    郁闷
    22 小时前
  • 签到天数: 3100 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    / k7 [( W$ J. ]) N* E4 h. D我推理机的核心算法应该是二叉树遍历的变种。
    6 b" H8 V6 }5 J另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:7 T6 k& l* V; U4 x' S. }
    Key Idea of Recursion
    2 H% ?( e% R; h" e& h6 r8 P( W. }# U4 }- a
    A recursive function solves a problem by:
    8 B% t# J$ x' j3 ~" e6 `+ q- t  t- |" A8 Q( ?9 I+ P# e
        Breaking the problem into smaller instances of the same problem.
    - s& T" h1 }4 C
    4 s, @5 h4 x& @  g5 z    Solving the smallest instance directly (base case).
    4 X1 f/ o* K/ X' y5 L! t4 W4 J  @6 `/ Y; b: V* ^
        Combining the results of smaller instances to solve the larger problem.
    " b! C8 d7 b- D; D2 F: w% [+ g
    " N6 X. Q2 V8 Z7 ?6 yComponents of a Recursive Function
    ; c4 g4 L: [! f4 v; p
    ) m' U2 b6 b( N% \# j" d    Base Case:0 h# a! m; X! e, D' f
    ! G( X, F" W5 n( t* N/ e: e
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    4 u3 Z  J( z; }  g3 j) x& c
    % x% h- f5 u4 v* W6 k6 V        It acts as the stopping condition to prevent infinite recursion.+ C3 `! X- J& H7 V

    ( J0 ?) b* y- E        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    3 [0 a+ M7 V+ g0 [- @' h6 L5 v- o* S0 B2 v1 d6 a- B- Q, d
        Recursive Case:
    2 M% F; ]4 i: b# k- a) t% a' C' d8 n; q3 D; B
            This is where the function calls itself with a smaller or simpler version of the problem.  w' R' ]5 h" t
    2 w0 ?$ G4 t- t! d' t  v
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    6 A) a: D- A3 H- v' p, {6 i
    ( x  a1 s' k4 d* m. G4 c& q! cExample: Factorial Calculation
    ; k) O. y* @3 S* U
    ' j0 ~9 Q$ k8 o, RThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:! ^+ q( i7 |, [( w! o/ g: h
      i4 |: z8 ?; r8 X2 f8 S
        Base case: 0! = 1
    / H5 R9 a. H: I( F* P5 k6 ^3 H( U1 x& Z' b% y% z8 M0 L
        Recursive case: n! = n * (n-1)!
    3 k% |3 v  S# R0 O; s- s/ c5 R% @0 s5 Q% E+ }# |6 U
    Here’s how it looks in code (Python):
    8 Q6 Q* x& P( B1 Y3 u( t( b) C8 Cpython9 ^/ L5 t- Q3 S3 b1 j+ o+ e

    * N, V( A: n8 W: c( x/ |2 z$ N: a6 M& ]5 c2 j, @7 n
    def factorial(n):6 |' _7 o( c# q( N
        # Base case
    2 \" ]% M( c$ A. L, Y7 X2 [5 R; T    if n == 0:
    8 s3 O( F8 ]0 |9 l" ]        return 1- ]; E' H; v$ _3 r  h) |
        # Recursive case1 c  @6 }& a& O$ d
        else:- }# T% A# W9 c2 f% P) W
            return n * factorial(n - 1)
    8 `! N+ Y( g  r' {% o* H6 W
    & e1 U" D9 }# \9 n' g( i1 _# Example usage+ t+ ?  z" c  t) {. ]
    print(factorial(5))  # Output: 120
    / q0 b. p! |& c7 |' _; M. J5 ?0 d4 v1 t: K) W, E. p
    How Recursion Works
    4 Z% G1 x& H2 E% Y- e" R1 _+ A. U+ `
    0 L1 R$ A  a7 a- g1 f# M    The function keeps calling itself with smaller inputs until it reaches the base case.
    5 _2 Q& U2 b3 P& B' _% W# j& O& I7 s& L
        Once the base case is reached, the function starts returning values back up the call stack.5 [0 v* S1 k% m
    ! o1 T5 K6 q; P; L# @
        These returned values are combined to produce the final result.
    + n# o9 U% i, B5 y. }6 [* }& x" N4 q% k0 i
    For factorial(5):
    ! Z- U5 g. B9 E' S# F( m2 N: S- A! z! C1 g

    $ y' P) A+ U% H( `+ l$ b4 ffactorial(5) = 5 * factorial(4)
    % Q: s1 s8 G; g0 c4 y5 \& Qfactorial(4) = 4 * factorial(3)$ e& g8 B& k, H# q) Z
    factorial(3) = 3 * factorial(2)
    ) r; g! N, y/ ]4 D* o) |$ N. [+ Cfactorial(2) = 2 * factorial(1)
    , S, P3 T. n/ J6 s7 q, qfactorial(1) = 1 * factorial(0)8 ?2 o) T- K4 x6 }* R
    factorial(0) = 1  # Base case! q" j: U2 \! }) z+ l, {
    , a0 c9 ~' \6 I6 ~% a; S2 L
    Then, the results are combined:3 w: r) D8 ~( ?% ]: N5 O# L
    * f$ n8 Z- F" e5 u1 G; E* l

    9 D0 I( L  m" J$ Y/ tfactorial(1) = 1 * 1 = 1" E# n- ~% u, w7 f: [4 G6 D% h9 t  B
    factorial(2) = 2 * 1 = 2
    % d  E9 p0 v! H' G4 Y0 S. |3 wfactorial(3) = 3 * 2 = 6( d4 A1 C  S  J1 H
    factorial(4) = 4 * 6 = 24
    1 a7 w9 @7 {: z7 U$ G; z) yfactorial(5) = 5 * 24 = 120
    2 v$ f' j8 a# x# W6 F( i6 K' R( N, p: P+ y& ]
    Advantages of Recursion
    1 ]/ ^( ^0 i1 U& g& ^& H. p3 u! R; T1 N. S6 d4 s' A& q
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    6 _! u' H& Q& i$ {, F: W  R9 ?( G' m! ~7 p  x, F- L9 I
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    3 Z. [  g( s* A5 c" j* k
    3 U+ S% a! y0 eDisadvantages of Recursion
    ' i, C& r$ ?9 c1 y% ]& [
    + [, P9 _& O6 I% x% U2 J) T    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.  q$ X' F" h4 h+ |' D: j3 ?" I

    5 e: m( I. o: U    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    : f- H+ l5 W; c9 T4 F1 u" ?6 _- s( K- N6 a1 Z) ^  n6 I
    When to Use Recursion
    . E; a6 Z0 V9 q4 H& o  C: m
    $ p* R: y) Q, v* x, G- K5 F    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).0 V! n7 L& g) G7 N* m8 I$ k  X, K3 z
    0 D9 g! p5 o" l' O8 K8 Q
        Problems with a clear base case and recursive case.( t! Q  ]: X- v1 |% w) ?

    0 K  |6 [/ A% N- }* ~7 B5 CExample: Fibonacci Sequence! U, N5 d! D$ b% V

    . Q0 H5 ]/ [8 C( f+ P3 q/ HThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:% V+ R4 e$ P, [. [" r" G$ k+ a

    ' z! B2 w& _1 [( M" W) r4 V    Base case: fib(0) = 0, fib(1) = 1
    ! v7 A- |* X" z- [, i& [! q* o& L4 n1 S& t* ~/ H. ]
        Recursive case: fib(n) = fib(n-1) + fib(n-2)3 v. A2 S% m0 K

    ( u2 E5 C* G' _python
    5 @. r: N! C, ~2 [: T5 k* o
    2 {7 |* N) X/ C$ }) V
    + v8 h" Q$ L) h) z" @def fibonacci(n):1 @6 G0 p! U3 k
        # Base cases( X1 H- B8 h3 T3 b
        if n == 0:
    4 ?( B* V0 j* J        return 03 {  T* W# \  A& K2 z( E
        elif n == 1:: B7 H6 I% `% G: }, p
            return 1
    : @( R& l$ W% \+ ]) G" i/ d" p/ K9 R    # Recursive case
      i3 A: F" m* C3 C+ M    else:" d+ Y3 X5 Q' R! _: V0 Z9 C
            return fibonacci(n - 1) + fibonacci(n - 2)) t! O3 g% j  U" g4 F0 e& I' C! g

    ; r" A' n$ D" \6 `# Example usage
    : z- v; e; S4 I7 N: N, Pprint(fibonacci(6))  # Output: 86 H" J3 i$ R( A1 U
    ! I! ~5 H4 ]! ^2 \  k" q! x) Z
    Tail Recursion
    1 k. l; b" w. J
    3 k5 ]! l9 Z) x! ~+ OTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).) {( Y- e& a5 |) A1 D
    8 h4 e& L7 s3 I$ K7 E
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-23 22:11 , Processed in 0.032976 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表