设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1121|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 7 e4 G5 y! P# V  G3 f% u

    . o7 y9 i# k8 z2 |+ g" F解释的不错% x: ~5 h2 L# @) W' V' Q
      l4 }$ N* L& t3 Z
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。) \) @" [# w" V1 X7 Q! E! t

    4 j# a# U: j( Z( M 关键要素5 W5 T( o. f1 O0 _9 @2 U
    1. **基线条件(Base Case)**
    7 e6 \/ J& o* `: R$ j. d4 a& [" Q   - 递归终止的条件,防止无限循环" u9 W8 d# ~5 w& B& S
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 15 n7 b& ?" Q7 u/ V

    : r7 {; H% K3 b. |0 t, q7 w" Q, F2. **递归条件(Recursive Case)**4 S; V0 a5 B+ o. m. Y- U' z6 \) z# {
       - 将原问题分解为更小的子问题% B, \6 k+ g2 C  D# ^- v' R
       - 例如:n! = n × (n-1)!
    , j8 i; a2 z; W- T1 k5 O0 I+ S0 K4 G) q3 ?- I
    经典示例:计算阶乘
    " c" x  W" H- _* d- y8 i5 F2 M( `/ zpython# K3 D$ G$ A& E* B0 z# s$ L& v
    def factorial(n):: A) d. b2 |1 Q8 R2 _6 h9 |0 ~- s
        if n == 0:        # 基线条件& J! @$ G9 t! m
            return 1
    6 G( x- N: ]' r9 K5 F    else:             # 递归条件; ^- u0 r7 I3 T, V0 k& i4 W1 S6 V
            return n * factorial(n-1)
    - D3 f$ G5 \, b+ z1 I7 E执行过程(以计算 3! 为例):) U, c0 e! x0 N
    factorial(3)
    ( o3 k$ z# [3 b+ z5 i: ^/ Q3 * factorial(2)3 K1 L% U2 ~* G3 z6 `+ V! ]* f0 q" J- |
    3 * (2 * factorial(1))% T6 O; h( P/ u+ C1 P
    3 * (2 * (1 * factorial(0)))
    ' R' a: ?$ \7 C3 * (2 * (1 * 1)) = 6: v0 C$ K% v1 X# L
    0 r: F! d+ k+ O2 ?
    递归思维要点3 c: Y) u% a% [) ~- T
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    5 P5 Q% X6 Q1 _2 S6 p2. **栈结构**:每次调用都会创建新的栈帧(内存空间)0 A( E$ ^1 c* S* \
    3. **递推过程**:不断向下分解问题(递)
    . r! @7 _& _" }$ y9 q, T4. **回溯过程**:组合子问题结果返回(归)! X3 [# m6 ^  z4 U
    " A- s4 o5 x" V) b
    注意事项! B2 p$ F8 i  P8 Q
    必须要有终止条件3 f) N" `8 P' P4 ~
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层): u5 X  i/ J1 V1 k  P/ K
    某些问题用递归更直观(如树遍历),但效率可能不如迭代4 H' F4 v) Y3 j+ u+ t
    尾递归优化可以提升效率(但Python不支持)8 b$ Q* [! f6 _- w; X
    5 C- ~4 e6 X8 i* d" k
    递归 vs 迭代/ B: k0 H9 L. r) i9 G% ?
    |          | 递归                          | 迭代               |& I; ^& {: c$ @6 L1 w' ~
    |----------|-----------------------------|------------------|4 X' G2 q) S; o9 t; s
    | 实现方式    | 函数自调用                        | 循环结构            |1 e8 k# `$ I4 H: i1 a
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    $ f+ D( |5 f( q. N; q| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    . r( x6 {) }. o, ~! g! ~9 n' A( T| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |: i6 c5 |; s& G

    3 r2 A8 H& s, g$ U$ Y" U 经典递归应用场景
    ( U, P) V+ H5 j; c$ e1. 文件系统遍历(目录树结构)
    6 C, a3 M, q$ s! H' }, l* Q" S2. 快速排序/归并排序算法
    4 @  m3 K- r& o+ G) F2 I3 d3. 汉诺塔问题
    , v6 J5 }# [, v4. 二叉树遍历(前序/中序/后序)
    - l! ]6 ]! `+ \; R5. 生成所有可能的组合(回溯算法)
    / c% r, x/ n+ _: ^, j  @, N* u6 L5 u8 ]- O. T3 m; e
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    难过
    4 小时前
  • 签到天数: 3099 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    ) U8 T1 @9 M& @  y9 p& U* x. y  u6 M6 z( p我推理机的核心算法应该是二叉树遍历的变种。# X: t' F* |' p8 s
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:5 @$ [# \) w) l* Y
    Key Idea of Recursion
    $ j  I1 o3 ^* N1 h0 T: E
    6 h1 V+ I- R8 e8 p$ E0 l( hA recursive function solves a problem by:( S# f9 q* V' n# ^1 b9 a& D
    : u3 {, G3 }/ T. L, l
        Breaking the problem into smaller instances of the same problem.
    3 m6 I. D( O9 @+ ^% V: E8 I2 S9 {; \  T1 y' [
        Solving the smallest instance directly (base case).4 |+ J& F6 s( S( t, A4 D
    2 d/ L. O/ x2 A0 g) r% P# x8 p8 d
        Combining the results of smaller instances to solve the larger problem.
    $ z, W3 e7 e/ p: o: l- S5 e! Y& P/ T% i3 Q+ h. k0 Y8 V
    Components of a Recursive Function
    ( t4 w  ~* m& l6 \  m2 i) |; w0 Z/ \$ K5 `, D9 Y: S
        Base Case:& [2 m2 v; Z7 y: t* X( s7 \9 _

    * l9 }& H9 G, L& h" m& Y6 p9 j        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    6 Y* [* M' H$ V% t! _0 i0 p8 \' }
            It acts as the stopping condition to prevent infinite recursion.' r1 ^; I( E7 Z$ V

    4 r( [6 E) y* b: Y4 ~/ X        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.; K' I- Y6 [8 `; Q6 [" r  `, _+ m
    9 q7 N2 t& O8 ]% h* g, P
        Recursive Case:
    & k, }. D! T' u, n8 V( B7 T; i& ?( `
            This is where the function calls itself with a smaller or simpler version of the problem.
    9 P7 h! M; r! ^& f+ M9 S1 P; h9 o! W: B. n- N4 E, D, s( W
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).; _- O7 g6 R' y' Z9 Y* Y  J4 f
    9 y1 }6 z. a: F' _6 _
    Example: Factorial Calculation
    * J( M' K8 b4 j9 W' n7 A+ d4 X5 N% J% {( I! Q2 a& t9 I  U
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:' `8 g& i3 z$ D4 p8 ~

    $ p% r" ]* L( n6 p    Base case: 0! = 1
    5 O! A5 @; f. y6 N: L
    8 b! k  E  I, Z. q    Recursive case: n! = n * (n-1)!
    * H( ~" |# z' Q9 X' e6 j, M2 p0 `: o7 F7 o* Y9 q! ~8 g0 G
    Here’s how it looks in code (Python):
    5 I" \: P. H( |python
    # H3 |5 r% {3 c$ @* C: _. t
    : j" a- v% I/ v' Z( U: [
    7 P4 X+ {8 n( Idef factorial(n):' L' n) R6 A7 t. C4 g; \9 r
        # Base case
    9 C1 j4 i1 u2 F6 J8 X; x# f4 U    if n == 0:$ S' M1 Y7 v( {: \0 J+ z8 o+ L7 A
            return 1, k2 A2 X0 z, ~& j5 S) g0 ~& m" I% z
        # Recursive case
    3 C: W' c1 G5 p+ V" Q6 |: c    else:6 W3 T9 {4 `% w. e
            return n * factorial(n - 1): ]8 R' `4 m3 j% u7 L
    3 m3 d0 d  S: t) J/ l5 r
    # Example usage; C# E& Z4 I. I) N. v/ }/ `% u
    print(factorial(5))  # Output: 120
    6 H, V- [3 k  y5 b9 c
    " N9 s  f: Z/ }+ `& f' AHow Recursion Works" b0 e+ h) C1 p( @
    6 G6 c1 v" T6 ^! ]0 q+ f
        The function keeps calling itself with smaller inputs until it reaches the base case./ m4 n% G# {& o/ D+ P

    4 \; w1 N% T2 l$ c/ Q2 j  W    Once the base case is reached, the function starts returning values back up the call stack.
    : y0 Z/ ~7 g3 b9 s0 j0 S1 _4 b9 u2 b& F; c% L
        These returned values are combined to produce the final result.3 V$ \2 d& x& J! I7 O) b2 {% {  k

      p, |/ K' a; _% x0 P  jFor factorial(5):' f2 M9 O, t9 h

    ) C$ ~3 H5 M4 {! S1 x
    3 g2 ~2 v4 ^8 [% y! r( gfactorial(5) = 5 * factorial(4)
    6 P' M# {* `$ D% ]5 dfactorial(4) = 4 * factorial(3)
    " f$ G0 T, H& U* Pfactorial(3) = 3 * factorial(2)( i" o* N" a7 ^& k
    factorial(2) = 2 * factorial(1)2 B: a- k9 i; H* D3 D
    factorial(1) = 1 * factorial(0)5 c' i' v- @5 l
    factorial(0) = 1  # Base case
    9 `2 ~* m( P, K+ B! v3 R( M3 ]# }- B: O/ D9 ~. ]0 e! y
    Then, the results are combined:
    ) g$ w4 f. X. \' K$ h% a0 ]- s9 G% g) z1 G" u4 P

    2 C: V+ `5 C  H# J: X! J  |+ I# hfactorial(1) = 1 * 1 = 16 r# M+ A  M7 |7 b9 b/ E
    factorial(2) = 2 * 1 = 2
    : H' }: Y% b- ?6 V, u( X0 gfactorial(3) = 3 * 2 = 6% E. j; g, x% Q6 ?
    factorial(4) = 4 * 6 = 24
    0 _4 V9 e5 w& @  J/ h8 I$ Ofactorial(5) = 5 * 24 = 120
    " l0 s; l- m  M6 {+ L. l' @
    ) N' H/ ~% {  O+ o: S/ Y9 QAdvantages of Recursion
    ! w; a  l) a% y( Z5 L
    2 D* `8 X2 T% ~- E- K    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    8 i6 o7 S" N* ]7 h6 r# q6 F2 v' s, U. o* Y8 z+ G( a
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    8 Z6 e9 B. F5 M' \  V, ?  B# v& f. @0 L$ H9 e9 p) w- o' X& s
    Disadvantages of Recursion5 i  s: g& W& R9 m. E
    - O6 k3 r7 E1 h0 H( T, }
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    % z+ I: x* o4 K( O" p" G( U
      Y  J: I3 H; k+ n2 j# S    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    3 }1 d4 P0 i4 m! e  G5 f
    : ^6 U' A- c9 N2 x! Q. eWhen to Use Recursion
    1 z; p! H; @+ q6 r! {. |
    9 F! w, ~  _" w5 R  b9 F" f9 z    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    " {3 @& z, z6 R# ]5 a  d" s& U; c1 y8 n) ^; ^$ k! A
        Problems with a clear base case and recursive case.
    ' `* R  J. @2 M0 N& a$ ~% @9 T4 `7 y4 Z: o5 R( ^& e: t+ \6 U
    Example: Fibonacci Sequence
    ' Z4 J' x* h) p0 s9 o, j+ `
    ' Q3 e. ]" ]# u* z/ d: CThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:" L; D1 D7 b" K" B" k1 t

    / s: @( I) v. w) a( a    Base case: fib(0) = 0, fib(1) = 1
    9 X. M2 i8 [1 B7 k. F& p8 k1 |; H
    : `6 o* S3 v* `; m9 [) f    Recursive case: fib(n) = fib(n-1) + fib(n-2)9 k2 h4 n& Q9 X4 J8 B" z' X$ ?+ ?7 z
    5 a- s) {2 ]5 A6 M
    python5 Q# n& S+ [- ?; P

    , i3 ]4 |5 k- ^4 k6 ]
    ( ]. a! g; m. U; Ydef fibonacci(n):
    1 q8 F& K( |: d' A    # Base cases
    5 r1 |! W  c0 M' R( Y0 T    if n == 0:% t! k$ \; H8 s; q% r. U0 Y1 f
            return 0* u8 ~, u2 B0 M/ U. `5 V
        elif n == 1:
    . s# Y7 ~- o) P* w        return 1( x. a& n& {1 [# \7 @- p
        # Recursive case
    # f1 U" M; W2 e9 ~$ W. v$ e. l    else:
    , Z1 f* E- O! d. O        return fibonacci(n - 1) + fibonacci(n - 2)' q4 F# p4 p8 }( I* ]8 F( o2 I. h# Y
    0 v: G9 e+ Z- h  i6 x* f# K9 q
    # Example usage
    ) E1 b! i5 J: ?9 C! x# z6 vprint(fibonacci(6))  # Output: 8& R7 z+ F* K# n7 R$ D1 F

    / Y/ }, n2 f% d2 K. |7 `. kTail Recursion
    . n7 i0 l* N, Z1 H, x0 ?+ z/ A3 H7 p# K
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).8 S7 d; v: ?2 c- g  M% B! x- i

    7 Z' I" B; q+ K; H/ ZIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-22 11:23 , Processed in 0.037467 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表