设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1657|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    # c% @) D0 \7 K8 t( i% J
    8 I; [9 H% c1 K* I* p4 B0 x! I解释的不错$ U/ g) y& J9 Q" v

    + D. I& A4 k4 V6 w$ x, F9 B( C递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    9 I3 i8 ?) e. k0 @: ^& W- n' j9 H
    . ~/ b  k- u" Q 关键要素
    7 z3 p# }4 n: h4 \1. **基线条件(Base Case)**
    2 M0 D7 e" i) a! X   - 递归终止的条件,防止无限循环
    & O8 V4 [% Z% k5 m; e; O   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 17 \  F) n' }5 _' J$ h1 P

    2 i7 y, ]+ o0 y/ k8 `% d2. **递归条件(Recursive Case)**
    0 l; ^) L9 o* \9 }   - 将原问题分解为更小的子问题8 u! t2 `" [$ |3 j. g/ v
       - 例如:n! = n × (n-1)!
    + c. o# }1 R2 k7 }4 Z; O' K0 n) y8 |" y
    经典示例:计算阶乘- A! ?1 A7 y0 `6 F! E
    python, q5 y- ]3 Q' D8 i
    def factorial(n):, V5 ]/ O# N* F/ k" o5 `' Z4 K
        if n == 0:        # 基线条件
      v" E( e( F0 m) q0 d        return 1% I3 Z* |2 a5 J: d+ J9 J6 h2 b: B
        else:             # 递归条件7 q! }0 G0 u3 l+ g, _4 N7 _
            return n * factorial(n-1)
    " g. T& a5 I+ A7 L执行过程(以计算 3! 为例):
    / {& {4 G; f9 \  V3 Bfactorial(3)+ n/ F% X% Q1 r5 [1 S% @* G" C
    3 * factorial(2)
    ' Y0 z* e9 b( F9 n  E3 * (2 * factorial(1))
    . L" d1 w: r* `& I4 V- J3 * (2 * (1 * factorial(0)))
    7 f) d4 s  I) t: ]$ J3 * (2 * (1 * 1)) = 60 i0 `; x! h; k, Z  |+ [
    , V& X2 F2 P2 D! ^$ b) T
    递归思维要点
    3 J- ?1 t5 K2 ^# Y: [, I# R1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    $ n( E/ n5 k! J& a% a7 P6 P5 l2. **栈结构**:每次调用都会创建新的栈帧(内存空间), @7 n. T) B! X( B0 o. g3 }. u
    3. **递推过程**:不断向下分解问题(递)! O+ L; g+ `! h8 i; z2 e
    4. **回溯过程**:组合子问题结果返回(归)8 x6 u" f& y' m+ q  `  e4 O  F
    # K" y! {* G0 ]* f  W. e- J  {
    注意事项
    0 Z: k0 {6 R* {, f4 r必须要有终止条件$ P% o! w3 I8 y9 L
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)- _1 V1 C% W" |: f8 {
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    - d% [! M' I6 e尾递归优化可以提升效率(但Python不支持)
    + x, K+ b) k! |9 X
    5 Z$ {. G; W& b& ?9 j8 n 递归 vs 迭代
    4 c' N) g/ u- u. y; L|          | 递归                          | 迭代               |
    7 r1 q4 E- e# [( R' q  e7 z|----------|-----------------------------|------------------|
    0 L4 O7 b+ Z# e8 U| 实现方式    | 函数自调用                        | 循环结构            |
    ' d$ i3 q& j2 N) {7 D$ k| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |/ G6 p. K) ^9 H3 p
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |; _' ~/ n- T* X  e
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    $ L3 K2 v6 {0 D# D; F* p. x6 `( A9 y+ C( q6 e' a
    经典递归应用场景6 P0 V1 @5 ]: g- g
    1. 文件系统遍历(目录树结构)* g- ^2 ^: G! `" j: K+ r
    2. 快速排序/归并排序算法: D- L, L; k' g8 _" N- q& s/ b) B
    3. 汉诺塔问题: k0 m; [; }# e$ _. J% g$ ?/ \
    4. 二叉树遍历(前序/中序/后序)
    , l* r& ?" K* u5. 生成所有可能的组合(回溯算法)
    # \6 k) Y" R% F" T  D( W& b
    ) c, Q2 k9 V% H试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    9 小时前
  • 签到天数: 3129 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,' W4 N) `. l" A# }$ \
    我推理机的核心算法应该是二叉树遍历的变种。! P% K' F* d% x4 F
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:7 D6 Z# }5 \% C4 [% ~- D
    Key Idea of Recursion
    8 o. c% C  Y0 L" M$ T. x$ P" c$ }' \) b8 ?
    A recursive function solves a problem by:3 P2 y( s; d# n2 h
    : W: l1 c* W. Q$ L6 T) b. }
        Breaking the problem into smaller instances of the same problem.
    0 E, ]5 M8 l8 v1 o0 M
    $ J/ C0 A0 @1 X. l1 ?; T* E3 e    Solving the smallest instance directly (base case).
    6 M8 U% A8 O/ E8 ?; N& K) g0 {: x3 v9 \' ?* ^
        Combining the results of smaller instances to solve the larger problem.; r6 J# d% a# `- k

    ! t/ v: s7 Y- E$ D7 Y; uComponents of a Recursive Function
    7 U# m' L2 X7 n; u* `6 K6 n% {$ o8 U& r
        Base Case:8 V6 z3 V5 K% ?/ |3 B9 h
    8 Z3 k9 L4 E& y5 q
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.3 e; C+ I( g- I, i; {/ Z

    + T9 ~1 B, t* V9 U" N. u        It acts as the stopping condition to prevent infinite recursion.# _" X5 o+ H& {) V1 |) q# u) H
    ) J2 {% l' w) g" t% d5 h8 F. D2 b
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    8 v7 a) U- @% R8 y9 H+ `7 [; ]8 ]! w  ^! u, N+ b6 c
        Recursive Case:
    5 {0 g, j$ h) R6 y* s
    + s4 G5 W5 P) v0 T8 T5 }" |' b        This is where the function calls itself with a smaller or simpler version of the problem.
    5 p. R1 e# o" `, R( x
    7 q7 \2 m" \7 O4 o3 c        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).6 x# M) K' Q) J$ c+ k4 y
      a' S5 n! P5 A0 c% N% J
    Example: Factorial Calculation
    / U* D& q4 v# n! y6 j0 }7 F/ ^& j
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    2 H( q! z. |: t4 l& n9 \! l# ~  [- F  k0 R# c; m1 k$ Q
        Base case: 0! = 1" V  R# `; H  a7 A: p4 {
    ! h$ Y" f3 |  |; L: H+ A4 f
        Recursive case: n! = n * (n-1)!
    , M0 \( B/ i: l: X( E4 d' f& U' l* {6 l/ u, k6 h
    Here’s how it looks in code (Python):6 P) m# H) _9 E$ p
    python; n" M. s: n! I& s/ }9 ?( W' V

    % I; p2 X, R3 }/ ?  t
    3 t# q% E: t  }: @, F6 t; T1 cdef factorial(n):
    7 w! ]* z- t! m- h8 a# s    # Base case. t+ y$ F8 T1 d8 i. p
        if n == 0:
    ' v/ Y4 n# I4 Q3 S        return 1
    6 R" B) o3 ~9 F    # Recursive case( i  J7 y- k* N- a- S! R' v3 v
        else:/ ?, f9 H+ ]: i$ Q- B. [
            return n * factorial(n - 1)- W3 k% |) Q0 b9 {6 E* K6 d$ [
    ! J2 j6 h) K8 m0 _4 l
    # Example usage
    " a( g( b# x; \# V+ M8 o- Bprint(factorial(5))  # Output: 1207 b- L6 z3 F0 ~& O8 l% A

    / l4 I9 i* u3 W2 [+ }# {2 _How Recursion Works
    8 @9 ~6 b) ~+ t7 T: f/ z
    9 N- L3 y! H) N9 p0 o2 k    The function keeps calling itself with smaller inputs until it reaches the base case.
    8 _) C( j: L! F# r- i8 ^; K! a8 {, N' |  t9 e
        Once the base case is reached, the function starts returning values back up the call stack.2 X" a/ d  r. n1 w4 T8 h
    8 k9 u2 f% x( ~' ]
        These returned values are combined to produce the final result.
    & m7 ?* k& k3 U5 [
    + B& `/ |8 e* e4 H) @For factorial(5):5 w* }! D2 g3 K8 U6 p, ?' m6 K
    * m) u1 q* o- q# H0 w

    0 J) }% Q, @& w, l3 Q8 U* \' Vfactorial(5) = 5 * factorial(4)
    * W$ F) J" ~% q, E. N7 C6 Nfactorial(4) = 4 * factorial(3)
    $ I; ?" c7 M& t, f! D( {factorial(3) = 3 * factorial(2)& v! I; ~! g+ x! S
    factorial(2) = 2 * factorial(1)
    9 z% |" |* \$ b& Ffactorial(1) = 1 * factorial(0)
    ) D% J, }' N! `factorial(0) = 1  # Base case
    * b, }* i- w5 J( z: L- N6 A4 n' H& \7 e
    Then, the results are combined:
    1 [; x/ I6 q* [+ E( j3 c8 D& Z) S( X& A2 T- F5 I9 v7 D- R7 V! t
    1 F) r! K% E9 w$ @5 V
    factorial(1) = 1 * 1 = 11 A( d0 C8 P* h; I2 G) ^
    factorial(2) = 2 * 1 = 27 D9 D! U& C5 c0 K  [
    factorial(3) = 3 * 2 = 6/ t9 R  y! m" |. o* _. Q; m5 c1 @5 l
    factorial(4) = 4 * 6 = 24; V) h# u, d1 o  h
    factorial(5) = 5 * 24 = 120
    : W' u- B6 @3 K* n8 Z4 X4 k8 U7 k5 ?& B8 r
    Advantages of Recursion3 y& h4 i9 m, E, A8 s' J
    5 h' u" j, h* _6 O
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).: P4 G9 f* t0 R  _/ l9 ]
    + s& }, x3 V" k6 X
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    ' _. M' t, }6 N  {- D, _* A  O5 _& p! Z3 _( q; z& Y8 h8 K! T( N$ {) A
    Disadvantages of Recursion
    ; w  v# ^! P1 _4 a$ E7 U' U
    3 Y. x& R% t/ y) c! y3 ^* L    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    4 [' e0 z6 h' v
      }0 Q) C/ p' ?7 x    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    ) Y# m3 A( e% Y) S8 z' m0 C1 ]- d4 q3 [1 v  T! U  {+ f, L
    When to Use Recursion
    $ W- W* i% g) H# ?+ H5 ?, |: ?2 B1 l! @' K2 X* o) }: N
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).2 D0 F& J) g0 T
    6 ?  o' @9 A  y: f, G+ o+ O
        Problems with a clear base case and recursive case.
    - l$ r, O( _/ N3 Q/ }$ b" @9 A$ O
    + v" _. z$ `  u- M- H9 R$ |% DExample: Fibonacci Sequence1 P& S4 n! j3 R: d% T, O3 _

    3 j  M6 q# N1 ^The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    7 H3 s3 Y" @" S! h- h) E4 ]$ g9 V  B0 S6 x+ ^- w% J* J6 W, e
        Base case: fib(0) = 0, fib(1) = 1
    - S' d% |6 p. N4 p
    6 z8 N  ~) [% H+ N  Y    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    : B+ f$ r5 M9 I7 [
    2 y6 L% Q9 j  \$ B; c" spython
    6 H- M" ~2 T9 n* c5 R$ k, x
    4 @; C7 [6 V' w3 C; ^# F( f+ h) _8 P. ~4 V
    def fibonacci(n):' d" E/ M2 x" b: I
        # Base cases0 y. n; j9 f5 E, I7 M
        if n == 0:: \+ X$ A3 Y$ I% ^
            return 0
    ! j% t0 F' o# r/ s! O    elif n == 1:
    , u7 s2 Q5 |/ w& A2 e+ ~        return 1/ y3 q) M0 u! M& W( z2 W
        # Recursive case( {" I# d5 W$ a. a
        else:
    . [$ Q9 @% E/ V, E  y0 S  v        return fibonacci(n - 1) + fibonacci(n - 2)% T/ |) H! X. G$ I4 A

    ( m; X0 t+ |3 P9 [6 n$ F# Example usage
    ( v! \% [) w, R* J% O  Kprint(fibonacci(6))  # Output: 8
    7 ~" F0 {& I1 d" t. x0 O
    ) {0 @6 `/ C& C5 TTail Recursion
    - X7 @5 M. q1 [3 N6 a% J6 R1 K0 e! |& p4 w7 b: s/ c  A1 L' H
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    ) M  S: E. l# Q$ u0 l7 |9 _
    # Y7 Q7 D4 z! ^In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-27 16:17 , Processed in 0.029425 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表