设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1850|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 + J8 @" Z6 j5 m9 ^6 A" }' n$ L
    2 g+ B! j; Y3 b: R( s% L! `/ y% v- ~) @
    解释的不错
    * h8 t* b; _3 K! ?" p5 {  ]' H& g
    - U$ c  H5 Q& ^2 [4 J- s递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    " A4 c% A  |* L9 f% W) c
    ' D4 m" B- M! V" Q) l* l 关键要素  w+ x/ ?; P9 c4 O1 u& P3 N% _
    1. **基线条件(Base Case)**0 \9 G2 U8 Q* [9 d  T3 O
       - 递归终止的条件,防止无限循环9 ^. m: F: x5 F4 G6 \
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    + P  m: s2 ]5 e
    # x/ r' K- J$ p- y' _2. **递归条件(Recursive Case)**: ^% l( X" q. D6 @
       - 将原问题分解为更小的子问题
    5 S+ P# I% Y  }/ y# }, o   - 例如:n! = n × (n-1)!
    8 ^0 I1 `- U+ L7 U) N/ f
    : T: C3 r1 h  B: T# I 经典示例:计算阶乘
    1 C1 J2 u5 T- n( ]python
    ! i: j) ?1 U% r( n) g- e% k( ydef factorial(n):
    + _! N8 u/ U5 D8 Y8 T    if n == 0:        # 基线条件) H( s$ a% C( e: A: ^5 Q
            return 1
    1 L! @8 V) T" x' V    else:             # 递归条件# @) f$ I$ s& R* p
            return n * factorial(n-1)
    " K! l3 ]: @6 s- ^) ?2 q) r& p执行过程(以计算 3! 为例):" Y( \! r# X' H/ a$ p0 t# H
    factorial(3)
    8 h% Q) V) v9 ~4 R& g3 * factorial(2)
    ! a: M7 q$ V  n" W* P; b' ~3 * (2 * factorial(1))
    ! v* i% y6 A3 L7 S, S3 * (2 * (1 * factorial(0)))
    8 g) K9 j* h! J/ f3 * (2 * (1 * 1)) = 6+ Q! ]0 }7 b5 y  L

    ; ]8 b5 A8 b7 ]& r1 e7 f# R; K 递归思维要点2 _6 G9 _3 w' \; ^
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑' `% P# j- a# p/ e( A/ H/ M
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)  d; r' ~+ J# m3 \
    3. **递推过程**:不断向下分解问题(递)
    ' ^, E" R6 {: k% V9 C  `& F4. **回溯过程**:组合子问题结果返回(归)" @5 r; d. B# E
    , B* L7 c" y! t% ?
    注意事项. x. j0 W# x4 l. w
    必须要有终止条件
    3 m( G% h( Q0 j递归深度过大可能导致栈溢出(Python默认递归深度约1000层)) J/ v. {" a% e
    某些问题用递归更直观(如树遍历),但效率可能不如迭代! r, u% \; j: G' q! l5 g8 t+ \$ h
    尾递归优化可以提升效率(但Python不支持)
    ; p3 \. N" A  z6 V3 w( {8 ?; U/ ^  b1 N0 z& t" [. f
    递归 vs 迭代
    6 |) v: q+ w# x" x% v|          | 递归                          | 迭代               |
    0 O3 I2 K+ [1 p  p! K2 x6 p|----------|-----------------------------|------------------|+ ^" e3 N( L! k0 X4 _8 p2 |4 X
    | 实现方式    | 函数自调用                        | 循环结构            |4 I+ n2 x* G: O1 i: Z) g
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    % E7 |8 {$ q- @& R8 [( N| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |* Z8 Q) f6 M. }% T7 A. a5 T( W& I
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |- n6 J) R: |: l+ o7 L

    $ o, k" O" o0 k# x8 |& x! q 经典递归应用场景
    ( L3 }) }6 c8 D1 I( u* d1 d- g1. 文件系统遍历(目录树结构)
    ) M: B- u/ N7 v" C, h2. 快速排序/归并排序算法. \8 V! t& g; B* W9 r
    3. 汉诺塔问题
    ! [1 q8 o* s) M+ o4. 二叉树遍历(前序/中序/后序)
    ( |3 W3 _  }4 b' O% ?. [* Z5. 生成所有可能的组合(回溯算法)  y/ m) C9 ~* ?, ^# j& ^- @
    ' G. b! `  i. z  K9 p4 I
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    前天 06:31
  • 签到天数: 3146 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,7 K! T6 Y2 Y& q+ x
    我推理机的核心算法应该是二叉树遍历的变种。
    6 A4 {* m- \3 c3 J另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:4 ^0 |0 c* k$ f/ i. \- ?& f* e: o; D  e
    Key Idea of Recursion- w3 A- @) J3 }) Z, b+ R! h

    $ ~7 G' |6 v* q4 v: F* l3 ]: QA recursive function solves a problem by:
    / T& A' l4 s* D% v1 j4 J0 v" ~2 D, Y1 b
        Breaking the problem into smaller instances of the same problem.
    7 k, }0 L: n6 p& S4 t
    ! P; D) ^( r" V    Solving the smallest instance directly (base case).
    + b, \+ z3 l5 q6 r, L/ c; ?& `# K/ z3 Y; r8 T, t! P# V
        Combining the results of smaller instances to solve the larger problem.
    , l1 o$ Y  t+ x, L5 L
    5 Z" x4 }  o, ~! ~, IComponents of a Recursive Function  T; G- E, _- Y7 b- s7 a6 i

    % Q/ W8 o' o4 F0 p$ r/ a    Base Case:# [' |$ ]7 h  U8 P: y' i/ T
    9 H2 D. Q5 q/ A  i& z* Z/ p- \
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.& g3 G- b/ K. C( T/ x2 Z6 F
    , e3 _# G) P/ w
            It acts as the stopping condition to prevent infinite recursion.% r! C9 s! v. h, j+ D
    * t/ B$ ^& E1 c7 ?2 j& q- s
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    ; [! X: c/ z  a( o& {# n" K2 l7 C! {9 a! l5 q
        Recursive Case:3 z# N; s" t. E& R
    . ]6 n$ l, P# H6 ]
            This is where the function calls itself with a smaller or simpler version of the problem.5 h# I7 n1 h* }+ E" H# t3 r
    9 u9 Y+ h* ^# H1 [+ v: j
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    * k" |+ M5 K" B( A, A2 P
    ( O1 i* K% H) E  X6 I2 J; iExample: Factorial Calculation) V- a4 G9 K# C$ k% c0 B

    4 o$ S9 W  ]# l3 M& BThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    ) u2 d1 O8 {8 i2 N
    5 S( d' W# X- R' [9 ?% A8 w+ |! W% {    Base case: 0! = 1, R3 \' J- Z& D! J) c4 u  [

    ) J9 _9 P( o; |    Recursive case: n! = n * (n-1)!
    " p) ~8 i; A# v- X. ?4 q
    * d/ k3 n  J* g; `Here’s how it looks in code (Python):" L0 B2 M& c2 @7 R& e
    python" _- }3 L$ w/ y- I9 M" g

    4 \+ V" l) O. G9 H
    ) |5 i) K. h; [5 Qdef factorial(n):
    4 E, c0 U( w! e9 g" L# K    # Base case
    ; H; M6 y, [" K% g  U    if n == 0:9 G  o/ v3 f6 p' G/ t: n" R% L
            return 1
    0 r7 i) B( Q  Y# Z& _    # Recursive case% Y) W4 y: a9 a! g. V
        else:& V" Z4 Y* c) e
            return n * factorial(n - 1)
    ! b) {6 Z& Y, m8 ]3 A! V8 Q9 _! _
    # Example usage1 G; f8 v% A+ |: }* r" ~
    print(factorial(5))  # Output: 120/ H/ @, J# G6 q0 E2 k

    3 V; n) e# W" Q: t; ^, @, X( wHow Recursion Works4 }6 j! |  \7 O+ v

    7 X' n" m& {) B9 Q' U! P    The function keeps calling itself with smaller inputs until it reaches the base case.
    & I8 u4 S* E' a5 b+ K# d3 p) b" i+ b
        Once the base case is reached, the function starts returning values back up the call stack.# C/ i2 a& ?/ a. `

    1 i  N! ?: {3 Y/ I! f7 r, c    These returned values are combined to produce the final result.
    9 G0 x4 z9 O3 F. S  T( X, }4 V& {
    For factorial(5):
    ! G, @5 M( c1 T1 P# a/ c
    ! @% ^  p- _8 a; o( r. K+ F6 n% g5 O0 p3 m
    factorial(5) = 5 * factorial(4)/ R% X1 Y1 h: Q8 g
    factorial(4) = 4 * factorial(3), T8 ^$ g- m" e( {
    factorial(3) = 3 * factorial(2)# _0 V2 e; j0 u- Z. S
    factorial(2) = 2 * factorial(1), }1 s& N& r, n, \9 b6 N
    factorial(1) = 1 * factorial(0)/ a9 S1 s2 o, Q- h# U
    factorial(0) = 1  # Base case
    - q6 ]3 y7 y' f0 d; [- m$ r3 _. x2 P, t
    Then, the results are combined:
    9 r' H+ }- @5 U; |* Z7 B# _; Q% M1 C4 k1 z) a
    8 v" B1 a2 b# Z4 D3 d
    factorial(1) = 1 * 1 = 1
    7 L8 d$ V6 ^9 P' Ifactorial(2) = 2 * 1 = 2. d( n  Z, ^, w( A' V
    factorial(3) = 3 * 2 = 60 z+ e6 z# A+ d, r
    factorial(4) = 4 * 6 = 24
    * ]/ }8 ?# M- F  X4 ~3 Q0 S: i3 ^factorial(5) = 5 * 24 = 120
    3 m4 M+ v4 m$ f1 H. _. `- b4 @: r4 D5 Z
    Advantages of Recursion' p5 ~/ f& @/ L3 `; v% H7 S2 a0 B
    + P1 F$ o6 g) C9 M+ j
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    4 \$ q  D% H; H6 c  E! j9 K$ s
    0 q* S" k/ M4 e  |- M    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    9 _/ u3 V; A# f) {$ x! E. L& D, m: ~" Y3 c/ j: G+ `/ ]
    Disadvantages of Recursion- I  e+ P$ H" q3 B' V
    % g5 j, {7 z: N
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
      U2 P# n  \6 S  U
    : E0 l4 Y& _* R0 g    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).& o3 m) `* ]* `1 c: B1 [% P

    5 Q- f9 X; }& v4 u( W& `/ EWhen to Use Recursion6 j# E3 v* ^" y2 e2 ~' b

    + ]( E- h% u- r. \    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).1 A0 l/ G6 H& H) ~

    ) N* X. r6 \* `1 o, j6 r! w    Problems with a clear base case and recursive case.3 W5 @: p$ `! O9 j

    8 B# v& z' |; Z' c& ~1 a: UExample: Fibonacci Sequence  e3 @/ A2 R1 o
    ! z  R* {- q( _# D, W
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    $ k$ g! N  k, J% s
    ! t( [) O8 M; \7 T    Base case: fib(0) = 0, fib(1) = 1
    * Y$ T5 e+ s$ s3 |  s9 s! p* B% z- d: V6 y% E$ h
        Recursive case: fib(n) = fib(n-1) + fib(n-2)0 Q/ x+ M2 O; B7 G6 e% }5 b5 ]9 r4 f

    & T" {5 _9 b4 qpython9 s: C' \. T# l: {. G5 ?, e# c# ], x
    ( v9 D- m2 `" R3 U* f& O- k
    2 Y. z& s9 Y5 j0 i/ V3 v% j; u5 m
    def fibonacci(n):
    4 z0 a, J( y. w: _    # Base cases
    # A- T1 M( }/ [. h    if n == 0:5 V2 G* ^& u; q2 \
            return 0
      B2 a  ~/ w$ d    elif n == 1:
    2 d* d1 S$ C8 _/ e( I8 ~        return 1
    , t' a! X7 i" n4 i% Q' v# S" C    # Recursive case
    ' `) K: q5 G. J2 t: a5 Y    else:
    6 ]. w& b' Z7 S9 D        return fibonacci(n - 1) + fibonacci(n - 2). w" K0 r8 p8 r. \/ D
    0 o5 {  q5 Q* B# |2 W
    # Example usage' W- l2 X% l: H: y# J  q6 |% |  A# Q7 B
    print(fibonacci(6))  # Output: 8
    ( n6 M* k; B, X5 Y4 @( {- p- I9 F
    Tail Recursion: j3 p6 s) X8 E% M7 i

    ; Z: q. m5 J; ETail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).! k- H! F5 L( @5 ~( l
    : }2 `, |+ |8 W' i: L* {1 R
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-16 12:23 , Processed in 0.029392 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表