设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1146|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    0 k2 u% m* |) B* L1 o! }+ P+ H8 L6 I0 o; G6 M+ l
    解释的不错& J* E! i3 ~: C; A. H; X. [0 Z( Q
    ) x- U3 o# j' B
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。3 `. a4 Y0 n4 H" q1 K3 s8 }  S. A
    / [4 T$ M8 N: g/ M4 d
    关键要素( u# t8 g; d2 x1 {- h
    1. **基线条件(Base Case)**. B5 G- f1 e, d9 Y/ h9 S
       - 递归终止的条件,防止无限循环
    3 F6 ^+ h8 W7 m9 t' {   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    ; g% s  {& B" [& A2 ^- Q% E" [4 F- q* R8 t: I  j  _
    2. **递归条件(Recursive Case)**
    ! _+ Z# J* K5 F5 S9 ?, F& G6 c& n   - 将原问题分解为更小的子问题
    + L: V" ^6 e' @; d2 h9 G  s   - 例如:n! = n × (n-1)!
    / c8 {7 T) C  ^0 N# v2 f# m" k: I
    2 o6 c2 A' O( G5 e1 ]3 X 经典示例:计算阶乘
    , _/ I- W$ b( y  o5 {python4 l' Q: b8 _9 \7 _2 i" s9 S1 x
    def factorial(n):
    - o# E5 h8 S0 L( v2 z    if n == 0:        # 基线条件
    5 h4 J) [+ d# L* V% `3 O        return 1
    - A* A; A1 g3 ~% V9 `* A$ `$ V    else:             # 递归条件
    ! P9 F( h" L4 p, w! Q        return n * factorial(n-1)
    2 z6 X9 }& m0 B7 t% ~! l3 p执行过程(以计算 3! 为例):# P4 c, Y+ Y6 M* f) B0 R
    factorial(3)
    : o. c* y$ K! z& ?* v) S3 * factorial(2)* k( T2 k  K0 ]- M
    3 * (2 * factorial(1))" J# ^; j3 V1 o& V7 s
    3 * (2 * (1 * factorial(0)))
    ( I7 k, d: b8 }% {( T- c! e3 * (2 * (1 * 1)) = 6+ n+ H, A1 G0 F* s4 ~

    3 ?9 m% w$ I  o% z6 }2 `1 |$ f 递归思维要点
    6 G% m& V& k3 |1. **信任递归**:假设子问题已经解决,专注当前层逻辑6 P& m! v( l8 H0 a
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)9 X! I% O$ X, z
    3. **递推过程**:不断向下分解问题(递); X+ }8 J7 M! N! s
    4. **回溯过程**:组合子问题结果返回(归)6 n" {* A# K! ?/ E- A0 t

    & t! R* J; I7 S4 O* R9 F3 p 注意事项
    8 U, o2 F1 V9 E$ a) n0 i) `必须要有终止条件
    . F8 v. [$ i8 J6 H+ x递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    - s5 T0 d% f. G! r5 \2 c某些问题用递归更直观(如树遍历),但效率可能不如迭代5 t7 T- X8 M7 B( `
    尾递归优化可以提升效率(但Python不支持)7 B* N. ]1 z/ B+ Y7 L/ ]5 s" _. j, x' C

    3 {7 h2 ?8 b, s+ M 递归 vs 迭代8 t: W  J1 f: c/ W+ ]5 h
    |          | 递归                          | 迭代               |
    ) Q6 f/ ~4 _, o4 @* z& h3 O6 U|----------|-----------------------------|------------------|
    ; v& M7 A" P% C& G4 S2 B; v" Q0 K| 实现方式    | 函数自调用                        | 循环结构            |2 U& v6 H/ i3 Y5 Q9 g! O
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |0 x# c3 j  |& F+ Z% v# Z: ]& j
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |1 h2 _8 l* H" @% ~2 \3 Y
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |1 j! S) X% t* Y( |

    ! e; V" l$ V# E3 H5 a" r& b& I 经典递归应用场景  g0 W% n" M6 ~# f6 d' T
    1. 文件系统遍历(目录树结构)
    9 q- V8 x; m8 Q* E/ {$ N2. 快速排序/归并排序算法
    , g- }& ~' \" M7 ^0 l1 I3. 汉诺塔问题
    1 r; H' v' i' ~4. 二叉树遍历(前序/中序/后序)
    7 }( W& V3 ]9 H4 b  \5. 生成所有可能的组合(回溯算法)+ R+ V% \' q3 [- m* Y0 g
    1 S( {* m# w1 A
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    4 小时前
  • 签到天数: 3101 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,# K' s% z( S5 a" P
    我推理机的核心算法应该是二叉树遍历的变种。
    $ U# B) ?' d  ^. E3 H; k7 f+ d5 u另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:0 J2 G" X# }0 I% s# E% n: y
    Key Idea of Recursion
    $ p/ m3 H4 p7 I! V: x2 D1 z
    7 ?( |' u6 _+ s5 MA recursive function solves a problem by:  E0 k2 M) _6 p& r3 `
    # J) l: J4 W- }: W
        Breaking the problem into smaller instances of the same problem.4 G$ P8 P% ~8 i8 k) Q; }

    1 Q4 ?, `/ R2 W2 a    Solving the smallest instance directly (base case).& V! {* u/ d8 X$ c' ?7 n
    . N6 ?' ^4 l5 a, R2 p
        Combining the results of smaller instances to solve the larger problem.
    ! o- Z" Q- q9 X9 T* Z( r. L" |# F
      j! h$ D9 e2 a% T3 gComponents of a Recursive Function
    + `7 V' B! U7 \- D5 F( M2 ?4 X# i4 T, k- L$ j! O
        Base Case:
    * ?2 S' f$ Z2 _0 s
    # ]3 S; U( q5 H0 O" D6 B        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    6 @) n& W3 g) \7 u3 b) B+ H7 ]! X6 j9 T8 \, f5 [8 ~! B* s' [" I/ |) p
            It acts as the stopping condition to prevent infinite recursion.
    6 \* ~5 @) x5 {4 W6 w: v, [9 C5 l/ M  z9 N" n
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.! P9 T: n; J( s/ y/ P1 K. z! x4 s
    6 |, k/ ^+ k2 n5 N
        Recursive Case:
    3 O7 ^& @" i4 P$ ~' f! {, s, _" \$ T! |, j) p; N# m0 G
            This is where the function calls itself with a smaller or simpler version of the problem.
    # g. k1 Y# x7 _7 Z7 z
    ( |/ p' j2 U7 a7 [: r0 _* A3 @- q        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    , A' c7 k+ s: c. d! T
      `3 z, H8 I+ R6 G* V1 IExample: Factorial Calculation: O( v5 r+ U6 t
    7 ^1 ?) P& N: H* g& f, `7 T
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    1 D' |& P  t$ A  X1 ]# B: V. F1 ?- a
        Base case: 0! = 1
    9 j& j$ v8 S- F6 _) R1 {
    ( }9 F8 S2 J" s& O+ j  V    Recursive case: n! = n * (n-1)!4 E' H; t% ^; N* M' {0 N; \7 k
    0 w/ z2 E/ B9 \- n' @
    Here’s how it looks in code (Python):
    $ e7 f4 I2 J. Wpython+ Z( U" I' D+ N  _6 \( C2 G. w

    + r6 l% i( C; |( c8 B4 J' {* t
    : z& J3 I3 n/ S' ?def factorial(n):
    ' \. |2 H9 I  X( r# B) u" Z    # Base case
    + _2 d+ G( R; d& \    if n == 0:1 t" O, d3 t; O* m. f
            return 1
    0 ^' S2 j  K* E; m* ~    # Recursive case  P; B1 V7 G# _; e! C9 g
        else:
    8 o3 d9 M% w6 L& z0 s' L/ I        return n * factorial(n - 1)4 G0 r. O3 Y: X3 i# i% {, t- c

    ! C. r$ m- G, k' h" J, X# Example usage
    8 W6 N  ~7 Z" _( A' k( Y; bprint(factorial(5))  # Output: 120
    " l+ l8 x8 ?4 O* \& A/ ]( ~3 r2 @0 I" ]4 m3 Q6 h/ l
    How Recursion Works
    + `* D/ |' w2 M7 H
    # |! ?! l6 k! _- ^) J9 d5 h% n    The function keeps calling itself with smaller inputs until it reaches the base case., |5 W2 I4 L* |6 P/ T
    , \  H7 X" E# D* p6 J  j
        Once the base case is reached, the function starts returning values back up the call stack.
    0 O! g  R4 f; i, n+ W& i; C- _) c! A9 N5 c% e+ d/ ~9 F+ p4 c* }( }
        These returned values are combined to produce the final result.1 E& g0 B( S" ^  m- G5 j+ o3 D  o

    0 C, M3 ^9 @7 M4 NFor factorial(5):
    ' e# c% M8 I7 i7 f9 ]; @' a% k* @0 Q% P/ |7 Z
    0 u  T- n# ^+ W9 ~& ]3 j& s# k, D( ^
    factorial(5) = 5 * factorial(4)% n  [" i5 b2 K
    factorial(4) = 4 * factorial(3)& u( ^# @. z+ w! q* d8 t
    factorial(3) = 3 * factorial(2)- s' U, \  ~4 a
    factorial(2) = 2 * factorial(1)& h+ k9 K4 I6 ^# N6 x- E; k& o
    factorial(1) = 1 * factorial(0); f8 O6 d: Y7 H, d5 l
    factorial(0) = 1  # Base case
    8 y' `: {; a( e0 x7 e
    , @, |( g! z0 ]' m5 o2 |, v* ~2 J& SThen, the results are combined:! ~6 |0 I) o" m. m: ?1 B
    ) t" w1 G* O7 t5 d2 [1 A5 g

    & g% I8 T9 {: D/ Ifactorial(1) = 1 * 1 = 1
    # `, T$ ^+ M8 nfactorial(2) = 2 * 1 = 2
    - J- h8 k2 V1 j: d+ q8 Vfactorial(3) = 3 * 2 = 6! x7 T0 e7 r4 f# a  e
    factorial(4) = 4 * 6 = 24
    ) i' }% Y# |- Hfactorial(5) = 5 * 24 = 1202 }3 N! V' s1 `; r2 a9 n
    ) o, Y1 C* v* L
    Advantages of Recursion8 M$ D& g8 N* U6 u0 S

    0 c4 S% }: Y( B+ ?) y3 [% k    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).4 y; U) F7 t6 m, T% n8 ]

    ; l/ U+ s; o- g8 A( J. M& x' A8 u2 N- D    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    % h" Q4 |. y1 b7 T& Q/ K. Y& U& B2 e, Q/ p
    Disadvantages of Recursion& t  C" m; J, {# Z5 u

      b% ~5 V) h  a  q0 x8 u& y    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.0 R* ]( t" ^+ H% u' n/ d% G) q! X
    8 u( ]9 x" ^# |) r0 I, U& y
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    " P, ]3 w' R+ Y9 M* Y& y- t  p! o
    ! `, \# X: D7 r5 QWhen to Use Recursion+ h& R# E) y# }+ E

    ! c" ]6 l( u; T9 h1 L6 k. _/ C3 U    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ! \4 L2 \7 d- a: \) |0 q* B7 ~% D. S8 k! K7 V3 F
        Problems with a clear base case and recursive case.' b2 M/ ?+ S: U( @* p  ?1 e, J6 |' y. y

    0 {/ \, a7 N! z) ^9 N  K# F9 ZExample: Fibonacci Sequence
    8 C& b; R9 y( b9 t6 x3 g+ J% f' l. ^5 G% W0 A' l0 q9 q6 ]
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    " \! n8 ]$ [. _9 F& A, X
    5 W% m- v5 `) F2 a  R9 T    Base case: fib(0) = 0, fib(1) = 14 K. C5 C. T3 C1 H# K

    , ]4 R' q% z1 i4 D0 S    Recursive case: fib(n) = fib(n-1) + fib(n-2)( _; \9 M( p2 e
    ( ^0 E4 E  A) |& s1 G7 ?
    python4 H: u" `. Z' B) A6 V% `" \

    2 V% q" c! c; V9 j& H$ k+ A$ `4 x8 u$ o4 c* U
    def fibonacci(n):
    8 n) i3 L* s$ X# X) S    # Base cases
    / u6 M0 x; D9 |4 D    if n == 0:
    ' z' Y% o* m$ |9 }; W! f9 h9 `        return 0' {# p0 y, \; x1 Q4 [
        elif n == 1:9 b8 o+ w$ R; Z/ Y+ s6 m. D3 t# k2 [
            return 1* ^* G" Q& [( a
        # Recursive case
    ; a% z2 I* y. B! M1 [0 S    else:6 t! N) v# ?! x$ J) Y( ^# V/ X, P
            return fibonacci(n - 1) + fibonacci(n - 2)
    7 V. Z1 }2 q. v' }/ N. _0 G# s3 I, w
    # Example usage4 @; R) ^( `4 s. ^( p4 ^5 g" y
    print(fibonacci(6))  # Output: 8
    # |2 D9 |& m, C& ^5 m/ b0 \1 \# K$ K! {. D) @( v5 f
    Tail Recursion
    7 s' y" M7 K3 P) w- Q$ l0 ~3 [' Q1 e% O% B) Y
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    9 K5 b' T' C1 C0 x9 g; U
    ) e$ F+ O. \# ~In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-24 11:34 , Processed in 0.032549 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表