设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1225|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 4 p9 n- f8 l% _* J. w

    8 K7 V2 f* Q& U8 c- V# V, y1 q; `解释的不错
      h6 y2 c' M2 s+ y  t) k- F6 t' F2 w9 N6 C9 E) a8 G2 w
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    . d, X: S+ [2 V  C/ ?; r1 s7 r" O! J8 t  Q+ m
    关键要素
    : j+ E9 X$ Y0 p! S" t4 ^1. **基线条件(Base Case)**- b( {3 A- A: o. ?- l
       - 递归终止的条件,防止无限循环: A9 Y* N# L! h$ w- v
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    , h) C% M( k. n5 ^- A2 c- X0 F) n3 Q" e5 K$ `, S, O- ]+ s
    2. **递归条件(Recursive Case)**
    ' l% B2 Q; r8 m) R   - 将原问题分解为更小的子问题
    , S2 i2 M/ ~; Z& A   - 例如:n! = n × (n-1)!
    9 m3 ]/ X# v: X9 N; b+ K/ R: d1 f9 q5 J% u- h! i7 d
    经典示例:计算阶乘& A1 k9 g: F: K0 C$ x! c7 X  Q
    python
      s5 g- v! e7 W, t4 @# k: a" Bdef factorial(n):
    " k4 T) b' F7 F' ^3 {    if n == 0:        # 基线条件
    7 q4 S" |7 w8 ~7 q: u        return 1
    * ?* H0 ?1 m1 n* ^) U    else:             # 递归条件# D+ H$ F8 {; L( ~0 r5 t
            return n * factorial(n-1)% U; @' E1 M- C3 a& n0 ?
    执行过程(以计算 3! 为例):3 X6 R0 i9 \* g( _' H
    factorial(3)2 P6 X% W& u6 Y
    3 * factorial(2)* ~$ E' `9 O6 K! h1 I: o; p
    3 * (2 * factorial(1))
    " B; h$ ~0 r; I( ?! E5 u- @# S6 f3 * (2 * (1 * factorial(0)))
    + N/ J3 C+ d: d- A" ^( h! d7 k; P3 * (2 * (1 * 1)) = 6! o+ F/ T& p6 S

    9 x6 z' P( E* ]0 P2 ~/ ]2 j  A 递归思维要点* Y0 [7 Y" e* A: {% \% r; H! B
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    # P5 \3 q8 O' T2 J! u2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    / N, A" m8 D! c! [7 E3. **递推过程**:不断向下分解问题(递)2 i! ]1 K% d1 L. `& N- W- ]6 {
    4. **回溯过程**:组合子问题结果返回(归)
    , w  i  m  _1 w* w
    ; R6 {: G/ L# t# ~/ ^0 S" P 注意事项; \2 F1 i$ D( I' C/ q
    必须要有终止条件! ]$ @- X' t# w& x: N6 k$ V
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)$ F4 l9 ?: p; @
    某些问题用递归更直观(如树遍历),但效率可能不如迭代* A" [; f, n* y( }/ C
    尾递归优化可以提升效率(但Python不支持)
    - E) L% D; [% Q! q7 Q1 S6 E; l$ O
    ( }- g/ z: z2 w. s( ~ 递归 vs 迭代
    2 q) c" b) z. q|          | 递归                          | 迭代               |
    % R2 ?" s( v0 s& B1 X|----------|-----------------------------|------------------|
    1 I7 j9 o8 G" w. ~" S0 t| 实现方式    | 函数自调用                        | 循环结构            |
    6 n3 \3 y4 T  e2 {, j| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |" x* d: Y2 z# R* X* O) A
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |) t; I* {3 r1 Z
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |" r# Y# w; F# u7 M
    + G: b) K% d9 g2 P# i7 {
    经典递归应用场景
    - r% j" A) Q3 \" F8 K6 l1. 文件系统遍历(目录树结构)0 h  |, E4 F; i7 P
    2. 快速排序/归并排序算法3 e8 r, C0 \" p
    3. 汉诺塔问题
    9 t( p$ _* \0 ~1 G/ ?4. 二叉树遍历(前序/中序/后序)+ A) O: x2 C/ w, ]5 r. c6 o. }
    5. 生成所有可能的组合(回溯算法)
    9 e1 I! W8 N, ]% u+ C# f! A
    2 I& O8 j: j2 N: \7 r. F5 G试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    慵懒
    昨天 07:47
  • 签到天数: 3103 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    ) Z9 y% v$ g- n! R- ~) s: g* t我推理机的核心算法应该是二叉树遍历的变种。
    ' S. m2 W; H/ o, W* D; X另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:( n9 ~- \! z2 l; l
    Key Idea of Recursion1 W0 D, ~7 C7 J5 T2 g6 f0 E
    1 Z8 g! t" P& _3 J
    A recursive function solves a problem by:+ U% y3 a7 q  N) h
    * s$ \: t9 ~/ _# E
        Breaking the problem into smaller instances of the same problem.4 O" h; ]2 u/ ~; n* `; [7 r+ T

    # E4 ^$ r$ n! ^" J7 @4 Q    Solving the smallest instance directly (base case).
    0 Q8 [: w* I$ d8 a; w
    . x" \4 a2 v) G    Combining the results of smaller instances to solve the larger problem.
    ; j. E0 k4 M# b$ D2 d5 i1 d7 E1 C
    " M. y+ D$ h5 U. D! CComponents of a Recursive Function
    + g9 V$ }* O: G# j& ~) V' ]* @! T
    . L: \( U  R' i! t. x, ~    Base Case:! o) h/ h$ c$ t4 H# a
    2 T! s+ Z8 P6 R# Y1 q
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion., Q& L& a$ U9 e: @/ |: z

    % U9 R5 L: o: u- T) W        It acts as the stopping condition to prevent infinite recursion.
    ! f" g- F0 l; s6 L( @1 D& b1 l7 r0 J8 |7 r$ ]
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.+ R0 U- ?" y- v; ?2 j

    ) `& e$ r/ ]+ {1 u' s    Recursive Case:
    ; j  e. g& v% a; G/ h! ~' A+ P; A/ Q; J. ~
            This is where the function calls itself with a smaller or simpler version of the problem.! w: j7 h4 U6 ?9 y9 T

    1 g+ j8 z3 l# E+ q! D        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    ' Z, G, \; d; t, ]3 X/ v: B3 i9 `& f2 P; }! R
    Example: Factorial Calculation
    5 v- H# S( L  i, G+ ]: ]% \8 m4 {2 L7 }- f8 L+ W: t- l% L
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    - V/ z9 n( Q; g( p( Y- ?% [) ^+ z' u5 @' I% C
        Base case: 0! = 1
    0 y3 l* b. c+ n5 R3 M" ^+ J1 ]% d. S( @
        Recursive case: n! = n * (n-1)!' j+ N6 J2 l0 L. |3 E

    / x( e/ q' o/ |  ?! s6 [: tHere’s how it looks in code (Python):- X* ~3 p. a  b7 l
    python
    ! N/ @4 X9 X" x6 o# y
    & v0 Z5 B, O% M/ Y6 ?" V
    % Z% O- }: a9 k+ A8 P* e6 _def factorial(n):: T. ]4 E+ W1 k7 c
        # Base case
    ; t7 F% v+ E; s1 G& l% B    if n == 0:/ B, q. \7 p( |
            return 17 ?/ G' ?* t% x2 O  S9 q
        # Recursive case: y# c, c# J6 p
        else:$ a) [  h/ g7 h/ s: v
            return n * factorial(n - 1)
    ! O- s7 w4 x5 T1 z' d. ]  `& R3 D' Q- w' S  ?
    # Example usage2 M8 Q* _* L( H4 W$ W: \
    print(factorial(5))  # Output: 1206 e+ R( l  N9 j& |+ a
    . F" B# s  B8 t3 j" U6 k) p
    How Recursion Works; @- ^) R6 [/ @1 U- [, k
    - a. s$ ?, z- F5 E% {0 \- [) c
        The function keeps calling itself with smaller inputs until it reaches the base case.
    ' l1 i2 ?* z( ^8 _6 f# `
    2 n! P- }) K+ f% S3 M    Once the base case is reached, the function starts returning values back up the call stack.
    , Z, ~$ Z6 p; p$ g
    4 _5 \; m1 E/ W0 l7 B' T    These returned values are combined to produce the final result.& h" J" Q7 D0 C) Z2 c
    2 J5 a5 q9 u  ]2 r, @
    For factorial(5):' e, R( E. Y: p* y! v' d% ]+ V0 w
    4 n/ |  H" L2 {( [1 C4 b( P

    $ i3 _/ c+ s* L8 `7 Xfactorial(5) = 5 * factorial(4)
    $ p# R- v9 Q$ m% Z  q7 Q* pfactorial(4) = 4 * factorial(3)
    " y3 q- R; E4 s, `, i, q0 Afactorial(3) = 3 * factorial(2)# w5 a7 H% p) t4 y5 ~' y! c- }
    factorial(2) = 2 * factorial(1)* p% B, _" b3 N7 f! z( l4 `
    factorial(1) = 1 * factorial(0)2 d% t' y9 E+ U3 w, S( E
    factorial(0) = 1  # Base case: |: }2 Y# E' u7 K& \& |. z& s
    $ y0 _2 G. C/ d+ u+ f
    Then, the results are combined:
    0 K: ]5 J9 F; Z' S$ t1 Y5 F" J
    ! \+ R+ E5 |" e3 v) n4 V3 J# }! l
    2 v1 r( ]; Q8 J4 J* L) o7 \factorial(1) = 1 * 1 = 1& Y* v5 i& j& N8 K
    factorial(2) = 2 * 1 = 23 T( k. s. b" F6 k3 E7 E
    factorial(3) = 3 * 2 = 6
    ) O- B$ q; N, C+ Bfactorial(4) = 4 * 6 = 249 N% K* F4 Z5 G* n9 O/ T8 X) U
    factorial(5) = 5 * 24 = 120
    8 ]$ y- `% u% |( ]3 i9 l$ l' R1 ?$ N4 Z9 P
    Advantages of Recursion& [) Q% w: U: r

    # b% M+ a8 L& o) X( x3 |    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    3 W3 S( `9 w5 d& g3 X% j# V* X' R. j  E
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    & I8 x4 ]7 V1 n/ [! v
    0 c9 O9 T+ ?8 M* ~! ?. H* wDisadvantages of Recursion
    $ s; H* P( F8 C& O9 b" i2 A! @' e( E) D1 @" j% K
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    6 c. a) H. l2 z* U
    ( \& h, k/ D8 w5 m    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    * E6 |/ t: c, F- s; @* h, d6 O* ?  F( y# z3 m/ @
    When to Use Recursion
    # o3 z5 Q8 z; A& s2 `( ~
    4 ?; a% d3 U4 U8 y    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).9 E. G# |  @6 k( K8 @3 k+ p
    , ]; z' g1 ^0 B1 H. b' X* S
        Problems with a clear base case and recursive case.
    , D- U6 d" P5 x% j: \; p% [1 @' _( o* l* L! p
    Example: Fibonacci Sequence
    + w2 R( f# ]3 K! c8 o; o$ ?
    ' ~' D3 ^6 M0 M5 \3 pThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    # f- s* A& S0 `! g& _, ^
    # ~" s) _5 `# n" A: J* I    Base case: fib(0) = 0, fib(1) = 1
    ) E8 @. x( e& ]4 W3 Y$ O5 f; Z4 H* j1 a% Q3 _
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    , s: F# [( D1 _! f! q' \+ K9 W
      @3 U2 ?, H8 `; ~$ S  upython
    9 O1 g* y, Y# U5 E, ~( d! Y- Q9 E0 m" y* e. j9 Z
    . O; T0 X; ^: r+ n. G
    def fibonacci(n):5 N; K# f3 ^' o, f1 Q) `4 e, H( y
        # Base cases
    + I2 K2 P' I& L+ ~. Y! @* ^3 p    if n == 0:
    ! K- Y1 @! a% R: q( o; O. x        return 0! f$ K! n8 n$ o& G! H% K8 S, M, x
        elif n == 1:
    / s- }8 L# B+ i: p        return 1
    % n+ A. h: a+ _$ T% t& w    # Recursive case* p, T; F& v+ Q- X
        else:
    ' X, E" @2 L) Z5 |        return fibonacci(n - 1) + fibonacci(n - 2)
    ; f& T; I3 Z# [( O/ f( L) s
    ; C5 g4 z: k# @7 W# Example usage: [5 \4 v) R1 J$ V/ k0 f! T
    print(fibonacci(6))  # Output: 8
    9 A3 |/ t) W+ h% T: K$ P* ?/ H+ F, O$ Y4 K1 d% F2 e
    Tail Recursion9 {" t9 |2 S' b6 N& f7 w

    5 P3 L" D& G6 d: Q+ bTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).% n* `0 g# B3 z/ M
    5 K3 S1 ~3 c$ f: N
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-29 06:16 , Processed in 0.033781 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表