设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1618|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 8 i0 ]* z4 M/ B# `: t
    ' S0 @  M* x- A, B/ H
    解释的不错3 j' p+ X$ o# B
    . f" I# d7 Z2 y5 L. ^
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    ! [% S; C, X- I; D
    2 s0 G2 Y% _8 D6 e 关键要素
    6 y- E+ v2 o% {  u# C1. **基线条件(Base Case)**
    $ i0 L$ W7 W% F   - 递归终止的条件,防止无限循环
    ' d* q  L. P/ A- ^0 y+ F$ B9 c   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 19 d- ]% v4 Q- |$ l/ {, ?

    0 B1 P0 o3 T! K# r  x2. **递归条件(Recursive Case)**" O; W% E3 h, N4 N$ r; L( O
       - 将原问题分解为更小的子问题( r; a7 J+ H' W8 J
       - 例如:n! = n × (n-1)!
    ! g% ?: V$ Q/ Y( c
    ; k9 E' J: l8 I5 f' y 经典示例:计算阶乘
    0 S: {' y3 q9 r3 R: epython
    8 w7 Y9 i6 r! m$ x0 D. Z' o7 z6 p9 Ydef factorial(n):
    + ^, z0 y! r2 M, A9 k    if n == 0:        # 基线条件
    4 N: c0 D4 U0 A3 ]& J$ n2 t. F        return 1
    ! L: m7 c- E! @" C+ d7 |) X* c    else:             # 递归条件, N# M: x0 X/ f2 E0 i% p
            return n * factorial(n-1)3 ?8 p; i3 @4 r2 v2 ?, G% }
    执行过程(以计算 3! 为例):
    ! P' N) w3 [. \) P( P( r6 i: {. qfactorial(3)
    # \3 v! {+ P  l% H3 y3 * factorial(2)
    . f8 w7 t' B5 ?( |3 * (2 * factorial(1))
    + V  v6 F* |. L: t2 L, P- x3 * (2 * (1 * factorial(0))); U- V* W1 ?2 i) N! N8 t+ ~. F3 B+ J
    3 * (2 * (1 * 1)) = 6
    * L, @6 k4 N  P1 a' {2 }
    : s) e, y( V" [ 递归思维要点% h6 X" }* t" j1 v- ]0 i
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑( t1 B+ @* C5 g1 k) ^
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)$ [! q7 H" P7 o
    3. **递推过程**:不断向下分解问题(递)7 G2 u( W9 R* ]3 ^+ O
    4. **回溯过程**:组合子问题结果返回(归), U/ E' b2 T. l  v' @8 H
    . n; G: \  f8 N, X# S+ v, u
    注意事项( n# W( ]9 L% x$ d3 j+ b/ G
    必须要有终止条件+ C% G* ?) C7 j8 \- ^& O; u# |
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层): r3 o3 L3 r/ H  _, s$ I
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    5 d6 g' I" j5 S9 B7 H) U( s! k5 E7 i  N尾递归优化可以提升效率(但Python不支持): N, Z6 m- K7 R0 p

    ! l8 P) Y" z! y4 s  z 递归 vs 迭代
    9 A0 K8 n4 H0 t+ F; ?' a) U9 g|          | 递归                          | 迭代               |: ^9 J7 Z  _1 I8 J& [" a4 z
    |----------|-----------------------------|------------------|
    9 U/ F# U/ S' V3 X| 实现方式    | 函数自调用                        | 循环结构            |( y( r( V2 c" S$ K
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |& S  K/ T1 o6 E7 X8 x- t; x
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    5 C4 p, e  {, R| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    0 r  u+ J& O( q' g. @0 X, I* Q- Y  a9 e+ n% X- i" k
    经典递归应用场景1 U8 u) E+ H  W- n9 S
    1. 文件系统遍历(目录树结构)9 P2 T3 T5 d0 @! @4 N0 Q
    2. 快速排序/归并排序算法  L! t% W/ p1 G/ J
    3. 汉诺塔问题
    8 U' F. J# A, S5 O: X5 t4. 二叉树遍历(前序/中序/后序)
    ( D7 K& J  M; P, v5. 生成所有可能的组合(回溯算法)' P( d0 s% n9 v8 T6 q
    ' I8 }+ b- N- X' U# n2 s
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    5 秒前
  • 签到天数: 3126 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,' s6 |7 h9 B- o* E
    我推理机的核心算法应该是二叉树遍历的变种。
    : R8 }) Z4 B- ~2 t9 v另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:9 l$ p- j* G$ N: Y' Q. O
    Key Idea of Recursion- i5 b, e/ r  l( ~
    , v) T; f" _9 S- \
    A recursive function solves a problem by:1 c4 s; \: N$ k* ?" G7 J

    5 X5 q. _8 k# r: r    Breaking the problem into smaller instances of the same problem.! [2 O7 j% D1 M5 [2 I

    ' t/ N1 v2 m1 R2 Q: W    Solving the smallest instance directly (base case).
    " t& A4 r9 E3 p% A9 e- @- E) c! N6 E2 P" W2 H$ P; N5 v
        Combining the results of smaller instances to solve the larger problem.
    3 u2 t! g) |2 G% j$ x$ T  z* D5 }" a& [! C, \5 D/ ?
    Components of a Recursive Function
    - y7 `" X' o. R& q. m7 B
    9 u. z% G9 c- Y" O7 x' z1 N    Base Case:4 V! e/ U' t! ^& u

    7 m' p) Z3 g; e1 i9 k' p9 l) {        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    - V  m+ {" O" j# Y8 w; N: d6 w/ L4 i
            It acts as the stopping condition to prevent infinite recursion.& I/ N4 m: p5 q$ e7 z

    7 T  q" D$ z6 j2 U: g  l, A3 C* a2 t- }        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.* R0 C/ L5 ?1 z; W
    # I- K5 f) `* f6 k2 v5 v
        Recursive Case:
    & U" i! e$ m4 g: e# H9 ~9 y; V, v8 Z5 ?# ^
            This is where the function calls itself with a smaller or simpler version of the problem.
    % L; k/ |$ l8 `, G7 l" }4 E
    - J0 g- V( ]9 s: u  e* o- w; H9 G        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    % h4 c- v! {2 y0 L: M7 x( p* e9 }' m) N
    Example: Factorial Calculation, z4 D/ p4 y: i6 [
    9 x  Y6 c3 V: z" b
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:- {, E' c5 L' A  V1 b0 J! d
    3 W0 K( \$ M, [3 k  C5 H! Z5 X& ]* w
        Base case: 0! = 1
    ( V* y4 c+ ^" w* S% C/ v
      p: m  h$ \: w3 b- \    Recursive case: n! = n * (n-1)!0 e' `6 |, T0 A/ P
    ' {: l) X/ j4 u% j0 a$ p
    Here’s how it looks in code (Python):1 V! Y+ f/ l) ^. o9 D
    python
    9 g! Z3 C( {4 a$ U+ |& j8 ?
    % G4 w6 {5 r3 L5 N
    # ^  c: ~% A5 t: Edef factorial(n):$ Q; k7 ^  O) o3 i5 s
        # Base case
    9 J: K& T% M# H" d3 H    if n == 0:
    " e/ \1 L0 F  P8 H8 m        return 1
      p2 f' d; t( A  D    # Recursive case, v- E+ [7 i" p8 Y3 E$ m( ~
        else:  l$ r1 D8 z' j
            return n * factorial(n - 1)
    ) m- E! k: E( b/ B) f! C. F) j
    % O" Z) x( b0 W  R: R# Example usage" O6 A8 ?4 b' R, X1 }
    print(factorial(5))  # Output: 1207 P( J9 j9 w* F+ u3 S! I' x
      N6 w' Z8 g+ C( `& b3 f+ @
    How Recursion Works$ t# i/ R* j, J* s' e% v

    9 s3 D2 O" f2 @' Q4 E9 ~. f- ]7 Y    The function keeps calling itself with smaller inputs until it reaches the base case.2 T5 A! V5 R! ~" g
    ( U1 }; @$ \+ ^0 i6 q
        Once the base case is reached, the function starts returning values back up the call stack.2 E7 T6 d2 U3 q% s, r+ I
    8 S1 S+ E' s6 z5 C4 K
        These returned values are combined to produce the final result.0 X% p& w; Z7 v/ i3 j4 T! G. j

    * Z6 q" P3 o# YFor factorial(5):
    : v5 V, D% X" A
    $ u7 ^$ v* \& y; T7 I" ?
    . s8 d4 }: @6 A2 \5 r" a# p0 Q7 zfactorial(5) = 5 * factorial(4)
    ' [% W' ]' j5 |: q+ sfactorial(4) = 4 * factorial(3)
    / {" Q. Y& V# cfactorial(3) = 3 * factorial(2)
    ' W) T7 x8 e6 E# v9 b4 _0 ufactorial(2) = 2 * factorial(1)  J. V8 H; G( ^2 ^
    factorial(1) = 1 * factorial(0)0 F4 g$ y* T0 m$ I% W/ Z  Q
    factorial(0) = 1  # Base case- r5 i, N/ v. w+ k, I: Z4 s

    3 t' Q6 w% M+ t1 }Then, the results are combined:
    # Y) w: C8 @# k  R7 _2 H& A1 e* ^7 i* ]5 c
    , n3 ~2 T$ f! @) a; v
    factorial(1) = 1 * 1 = 1
    $ A' {9 M. _0 k+ dfactorial(2) = 2 * 1 = 26 ]! X4 L6 o2 D# g9 f; k" `  F. j
    factorial(3) = 3 * 2 = 67 w5 B  q! h7 g: m
    factorial(4) = 4 * 6 = 24
    7 E& w; @" u& Z7 {/ ffactorial(5) = 5 * 24 = 120/ |$ Z" k6 z1 p# N+ ^5 ]

    * ~$ T. J. W( w$ [$ U% P# eAdvantages of Recursion
    % j" e9 K" K, }( A$ G5 P, \9 c. Z9 w+ b5 |% Y8 h3 ?& N
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    : H' [5 F- ]' l, W% u  E; S, @& Y1 D
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    9 a, P% W# B7 w" h' L- J
    5 H4 r4 N0 N1 q+ a4 f( _9 [9 ZDisadvantages of Recursion7 J3 ^3 s3 k' H2 s% y

    % ]( Q: u" a3 F    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.! x) F! ^2 ~; d: y4 O  K3 t, y

    2 ]# T/ M# s, ]    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    1 R2 f1 e3 ^. f9 {
    : |$ I4 H1 g# z& i6 M+ j2 f( b  \When to Use Recursion
    + Y7 o5 B! t) s7 @2 J8 P
    2 e1 j1 o/ A5 o# w9 W! c+ g' Z, a    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).1 D# X" n6 H7 Q4 c

      Z1 s7 v' `4 w$ r. k0 T; R    Problems with a clear base case and recursive case.5 i! T& k! Q5 z$ _& ?. e3 }

    ! s: \! f$ D: D' p) ?2 {4 g( L8 OExample: Fibonacci Sequence/ C) q. ~* E5 Z1 X8 T3 {0 e0 G

    & d6 H2 m  ?! [* V0 i3 _The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    , `& L- r4 ^% c- c  U  h- j8 o/ P  s, X& ]" U* }/ O( @
        Base case: fib(0) = 0, fib(1) = 18 z. [) l/ U/ y
    8 e$ z) B7 l$ T3 Q$ s5 {- U1 g$ @* @
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    8 h& a. ?2 w8 ]
    3 P$ \6 s6 E4 |8 G/ G. wpython
    3 E7 {; d" p/ o. K
    ) X, `0 Q+ M! D4 U( R
    % i& C, w# A4 Zdef fibonacci(n):& f4 o% Z  j4 C/ u' ?- D
        # Base cases5 i% k% N6 C' o9 b& S
        if n == 0:
    9 Q2 ]% D2 \1 N" C        return 0
    8 B0 F6 j% z- |' q7 `, V    elif n == 1:
    ! y  w$ U7 w! c        return 1
    1 b5 u0 O  f/ N  F2 Q  x2 ?9 M3 V    # Recursive case
    # ?7 [4 {$ z- E8 q9 d9 O$ p    else:0 D* ?# `" |# z# Q$ F/ {
            return fibonacci(n - 1) + fibonacci(n - 2)( @& L! \, b+ p1 ?
    , S/ c! W2 b7 V$ u2 J: o" B
    # Example usage5 n* C5 A7 L1 Z, w; S
    print(fibonacci(6))  # Output: 81 H2 a. l8 y" N" B) N0 H9 v/ d! Z4 r& A

    6 f# R8 r+ T, eTail Recursion
    ; d, k; E; M+ q6 K7 D  l( Y/ V, w2 e9 @: p) K" J
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    $ u! ^' ~6 a/ C& T  y2 h9 ]
    1 w* E) k& g1 h5 zIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-24 08:02 , Processed in 0.028860 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表