设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1697|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 9 t4 j' ]' X. R5 d% s

    # v) {) O. d" X1 y- ~5 |解释的不错8 @, ^9 X+ ]  p" L: K

    - t- n2 Z1 n$ J+ Z  w2 E递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    8 B" F% _9 e, M% x* J5 X
    % |7 A5 H7 i5 t' c 关键要素! Q/ m6 k, N6 H  V( f1 Q6 [* l
    1. **基线条件(Base Case)**
    3 u* G+ f* R8 k# D3 ~0 k' X  B   - 递归终止的条件,防止无限循环
    & D0 G; G# h% Q# q8 o: a   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    & o: b- W& E- P. A  E' V/ f3 l. ~, x' K5 a, h( f0 q' o. U. K
    2. **递归条件(Recursive Case)**' I) E  p5 n$ v  k  j$ w( \
       - 将原问题分解为更小的子问题
    & A; d' f+ {  g! b, I   - 例如:n! = n × (n-1)!7 j  C/ v4 j4 x/ f0 e. O' s
    % P" o  t0 g$ N% ?6 C
    经典示例:计算阶乘
    - h- Y$ v1 W. i5 n1 i+ H4 mpython
    $ u0 c7 X. T* Z) M2 j: Ndef factorial(n):
    - ?) w1 G) D7 C7 d    if n == 0:        # 基线条件
    / _* x* M* D' t3 h5 _" V5 o        return 13 G2 ^: r9 W% \, g
        else:             # 递归条件
    % y7 _0 I7 Z3 P0 X5 f        return n * factorial(n-1)
    8 }5 H3 p" A, u+ S3 J执行过程(以计算 3! 为例):
    2 Q7 y; F8 @5 W, {3 \" cfactorial(3); F$ \  l& V4 W, C
    3 * factorial(2). L) T2 C0 c- _! `& Q, F3 ?. q
    3 * (2 * factorial(1)). M6 }, Y1 m2 @; D
    3 * (2 * (1 * factorial(0)))
    6 p! a& G( P6 M9 W! M3 * (2 * (1 * 1)) = 6
    0 L/ P, H( S& {' N+ t4 {7 u% E6 W: E
    ) A3 r! |; D+ i 递归思维要点; _! g: F6 c: }8 _* c; c% |
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑3 d5 k9 D5 I7 e. a1 F4 H: [. ?; S' m% o4 W
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)9 z3 z3 ]- j# n; @- e5 V6 \' k
    3. **递推过程**:不断向下分解问题(递)
    ) B6 w2 |1 ?$ U2 i4. **回溯过程**:组合子问题结果返回(归)5 f% R' e6 J4 s. w
    / c* y4 Q+ \9 q! z6 n3 T% b& y
    注意事项
    " X3 v5 E. M6 N必须要有终止条件
      u% B: F2 j- e8 Y递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    2 x( r. V5 Y8 L7 O某些问题用递归更直观(如树遍历),但效率可能不如迭代. z2 T3 Q4 I* q% l
    尾递归优化可以提升效率(但Python不支持)
    9 _  U# }- w, P6 M  @; J! z2 O+ q& y; J6 o) O
    递归 vs 迭代$ {5 Y( Y. k2 {! V6 I7 P  D! y
    |          | 递归                          | 迭代               |+ N) l' E) _% H2 W  [
    |----------|-----------------------------|------------------|
    . k* o8 A; p, Z8 S- d8 w7 P| 实现方式    | 函数自调用                        | 循环结构            |
      s- l/ @4 x1 t! t5 c4 T: m; y| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
      y: }8 D' ?: j9 T5 w3 j$ k| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    + M' K) z+ m1 l  G5 H9 P| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |& _9 E) t" o: @& X* ?% j9 U
    8 U, ]' m7 ?+ J; W
    经典递归应用场景3 F( k2 c0 @4 }
    1. 文件系统遍历(目录树结构)8 Y: q: O$ ]' t5 G; g+ a9 l
    2. 快速排序/归并排序算法! X0 R" t& B- B, `( W. X8 Q7 s0 g) t
    3. 汉诺塔问题
    ) k% z6 `: ?/ M' H* M& b6 G1 P; f4. 二叉树遍历(前序/中序/后序)) Q% |7 h% z  J( n8 `3 M
    5. 生成所有可能的组合(回溯算法)
    " u5 P4 }# f( n. W0 F3 ^1 {  |- }2 T  F1 G
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    2 小时前
  • 签到天数: 3132 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,, \0 R' H& k3 H) c1 k( y) B
    我推理机的核心算法应该是二叉树遍历的变种。1 f: a& L; j- g7 d; c' r2 K
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    5 h& a: P* F2 b+ w! f' WKey Idea of Recursion3 V) I/ ~: H  _2 N5 P/ l5 u
    - H! a3 M! k/ _5 `- Y& c( j
    A recursive function solves a problem by:+ x! V- r1 i5 Y
    - f0 W* P0 g- A7 F/ @6 }% z
        Breaking the problem into smaller instances of the same problem.5 |' c6 j: t, {# ^# c2 R8 P
    ; w' Q3 i+ i! r7 }/ a
        Solving the smallest instance directly (base case).% `9 p# t# D6 z
    . A* H6 W: t+ _$ M! k2 ^
        Combining the results of smaller instances to solve the larger problem.; F5 E1 A7 {' H# x3 o, ?5 \' _1 u( F

    + F6 F" D4 {# _: _+ I* gComponents of a Recursive Function! r, P5 o# p9 D1 z" B
    , w4 F: O4 Q6 y/ o/ R
        Base Case:
    - V% ^" p# T, ?. ^0 `
    1 x3 o* |: U5 Y" W        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.+ M- W3 ^$ w7 d* T4 m$ x# y% @
    9 k1 `, ?5 J4 p& o$ w! e
            It acts as the stopping condition to prevent infinite recursion.
    9 {2 i1 w( u6 O& M) J% I2 K* m7 \3 h, u) f1 Z; W/ ^
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    . `+ ~% B# P0 _) g5 a: [
    7 X* n% \6 ~2 P- O$ c    Recursive Case:, J/ G* a. \6 F: _, \; w, G# o
    ' c$ @7 K1 S( X7 Q
            This is where the function calls itself with a smaller or simpler version of the problem.& r/ \. c! A  z8 f- T

    ( t1 _% u$ L" k$ I        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    0 V$ _' t! E0 D" ~0 j  D, D$ X
    Example: Factorial Calculation
    1 y1 Y2 Z! ?) i) ^7 @  @' x2 Y0 r3 t" T. u- R0 H
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    0 n6 b# u  ]0 W% [; @& c0 L, v, q! C7 [/ L
        Base case: 0! = 1  h+ m7 h3 `4 h5 F' k: I/ u

    ) M$ a, x$ _; b% Q" _% `' d    Recursive case: n! = n * (n-1)!
    & _  O0 o+ b. d5 l, _# o8 M" F1 J( a6 d4 F, j
    Here’s how it looks in code (Python):( b: n* J$ a5 N8 I1 N
    python
    & }8 Z  }8 M& b5 _5 Q( J" N5 t
    " c9 e3 g0 w4 b% U" A( R+ p
    def factorial(n):
    6 t" @5 G$ C' W( ?) q  B    # Base case
    , J6 a+ E$ J3 ~    if n == 0:
    $ d' ^: G6 ~4 ~. u& G- X3 D        return 13 R9 p. Y3 f+ b3 \
        # Recursive case
    $ L0 `. H) S. x) p" ?' j    else:
    8 `# Y- v' d2 h% p. s        return n * factorial(n - 1)% I) N: T: p3 [& s

    ! v2 K% [6 e' A- h" t& L% @4 n8 s# Example usage
    ' r1 T/ ~5 a- l  A0 Aprint(factorial(5))  # Output: 120
    & j/ o- Y. i% P, m/ p' o- h; v/ `" m8 }9 K# A! `/ W
    How Recursion Works
    , j1 @/ a% A) i2 U; i. H3 ]( {$ M+ s9 s% X, h% t+ Z* V( h
        The function keeps calling itself with smaller inputs until it reaches the base case.- p2 C+ a+ ~. B. i  n( x
    0 M8 u2 H; t9 S8 j3 S
        Once the base case is reached, the function starts returning values back up the call stack.5 [- ~; n# }* Y" G( V
    5 l  O; E: ^& t4 i
        These returned values are combined to produce the final result.$ _$ y5 B( c. A1 B# [, X8 r
      r" ~, n0 D2 y% m9 {% I
    For factorial(5):
    / x) f+ u6 S. @2 Z9 T! H) T4 S+ v8 H! |% u- \
    / J4 N1 n# L9 H2 o
    factorial(5) = 5 * factorial(4)3 F3 i9 C0 J& P% n( Z( c
    factorial(4) = 4 * factorial(3)
    5 q9 i1 ^' J5 ~1 q! c5 ]2 D" o; hfactorial(3) = 3 * factorial(2)
    % A. m$ M2 b$ J/ E/ `factorial(2) = 2 * factorial(1): K: R" d# o$ o4 S4 }" e" ~! T
    factorial(1) = 1 * factorial(0)
    / T) \3 r6 d; z! g9 Sfactorial(0) = 1  # Base case
    & K: y+ U- g2 y8 U/ G+ u3 ~
    & y, h, C! d" ~4 k6 D3 Z# K4 \Then, the results are combined:2 h. q1 ?& P+ O+ ?  ^
    % R  d4 ~% v" y- ~& ?9 @( W1 p

    1 i( m# J2 O9 Zfactorial(1) = 1 * 1 = 1, _3 b# }6 H$ l0 {* V8 Q
    factorial(2) = 2 * 1 = 2
    1 Q# o  |4 M# J& Gfactorial(3) = 3 * 2 = 6  Y+ M* ~, l/ L
    factorial(4) = 4 * 6 = 24
    9 q' I; ^$ c& N) H0 pfactorial(5) = 5 * 24 = 120
    / ^' N4 c  g2 `+ v) N2 K
    9 }: F9 D( z/ V- I" yAdvantages of Recursion$ w7 H0 `1 |0 k6 R
    ( F- ~/ m" O! j  |
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).0 U$ h0 e4 }7 E1 J

      q' U2 W. f, K' H    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    / V) m' D+ _1 ?: P: H# R
    ( \$ T- p- r1 N  [; \0 j, y8 h% WDisadvantages of Recursion
    + u. {! O( T' l5 d8 s
    ( t4 d5 R# i  H  ]; T$ h3 k    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.1 x! t: C/ F# b
    . S. _3 t2 ?5 g: T" v7 a
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    5 ^1 K0 d! Z4 |$ ]; m  p: k4 V2 w
    When to Use Recursion
    6 _; z$ v. u9 Q2 `' H
    ( X0 H7 P# o2 U, l    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    4 h8 z0 u, \4 K8 e/ ~/ m
    * u  E& p$ C$ G7 p    Problems with a clear base case and recursive case.
      j  A! O  t. @2 }4 \% A  b& f/ \
    # b7 O8 ~" S& ~% tExample: Fibonacci Sequence
    2 L" X5 _; c8 A1 B  B1 R& m* i" c, f% \: ~# g/ G2 _* q
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    - D- s+ S* ^( k2 Y+ d8 s7 v  f& [( I! }$ X
        Base case: fib(0) = 0, fib(1) = 1
    5 D% B( H( }& ^/ R' \" R2 S& }" g; r2 g; V% q
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    1 }9 @) p8 [% V6 K! r7 W2 V# T, x
    python
    2 R" v" a) y) \; C  H  ~+ q5 m5 d: G! f; |5 T9 h' c, G
    , O" A) K7 i( P6 d& M$ ]
    def fibonacci(n):5 W9 ~2 s/ H6 b. e
        # Base cases
    , |; b" E; s4 T. t    if n == 0:
    , ]2 d' y) R) B$ o( D! @8 U) b; i2 S        return 0
    - o! @0 G7 X- x/ |, m    elif n == 1:
    . J2 J: m& L1 @& W6 {1 q5 U6 w        return 1
    9 o/ B4 _( P. J; [    # Recursive case
    % E" H8 ~, T" o/ O6 b    else:
    / N# Q; j8 l: T4 Q        return fibonacci(n - 1) + fibonacci(n - 2)
    ; ~  }" y  c- j+ O5 \- [7 k+ }( {  U5 `; X/ I$ n' P2 ?
    # Example usage
    ! [& W8 f$ \& L0 H* ~" ~; {print(fibonacci(6))  # Output: 8' P5 K0 W$ d) i  D9 M1 _: S

    # @+ L  J4 C5 ~' H! R& z; F4 z5 uTail Recursion( P+ d+ G+ [! y  F

    / V1 R9 b2 X. h1 ?- BTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    6 \2 v9 R$ ]0 l) ?6 U' @, |
    * L  [4 ?# n0 s2 MIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-31 17:29 , Processed in 0.029240 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表