设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1351|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    5 i! e9 n, E% o$ H* q3 g2 ~$ k- @# H) D
    解释的不错
    ( ?6 X/ O. ^$ l4 ~0 f+ C) X
      {1 h" f8 s- }( a递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。3 O% p' s$ o2 C6 q0 G8 H

    + z3 A# B/ p" W/ \ 关键要素
    0 p: v& r& o5 B& _1. **基线条件(Base Case)**! {4 f) Y+ _& C$ S- F* H6 K+ q
       - 递归终止的条件,防止无限循环( Z4 f# V  m1 O! \* F
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 18 y+ V/ ]9 B7 _( n# e) D* w
    " {) ^0 G1 l2 O- V) {& b/ k  |
    2. **递归条件(Recursive Case)**# u/ |5 I" [) H+ c3 E$ M! v
       - 将原问题分解为更小的子问题2 {! s- m( c% |9 r
       - 例如:n! = n × (n-1)!
    / s5 N5 }: Z. ^+ N2 X. t$ M4 u! S- T
    * j, h8 |1 C/ D- _! a9 h 经典示例:计算阶乘' D, W9 w; |$ A: {
    python' J# N2 K# Z4 P
    def factorial(n):
    $ V% Z: n- S8 q! M. o% F5 W* [    if n == 0:        # 基线条件
      V! \* s4 p, n( g  T        return 1/ G8 b- ^4 [1 v- }! S/ T0 P
        else:             # 递归条件- y' @: d. r" {
            return n * factorial(n-1)
    ( N& H6 S# d) i3 H, D5 r执行过程(以计算 3! 为例):
    ' U$ T' z2 u$ s0 k1 v; c$ b# ofactorial(3), x5 P7 N7 Q7 l4 f3 K" \8 o
    3 * factorial(2)% V' n6 v# A! ]* V, O! O
    3 * (2 * factorial(1))
    2 D8 L0 Z0 f& [3 * (2 * (1 * factorial(0)))9 h, M* n6 V$ [  o
    3 * (2 * (1 * 1)) = 6  J( u8 u" W( `* B& N& Z

    # m5 |% b: _# Y$ G, {. V 递归思维要点
    4 U+ d: D  O; ^: b7 Q' T. x# I3 m$ y1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    4 Y8 u6 ]/ X6 I2. **栈结构**:每次调用都会创建新的栈帧(内存空间), S1 D" y6 W- ?. n
    3. **递推过程**:不断向下分解问题(递)
    % K; A4 }0 K( j0 P% G  F/ [4. **回溯过程**:组合子问题结果返回(归), _* f+ q0 E6 ~
    9 d! ]; }: l. g; ^
    注意事项# F: X6 j& {) w- M* Q; P
    必须要有终止条件
    & [/ R/ N2 T! V& l5 u4 ]# R1 W递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    + e* M4 B+ N; A! V5 Q+ }某些问题用递归更直观(如树遍历),但效率可能不如迭代/ @/ N* z/ i/ e' E8 e, j+ E
    尾递归优化可以提升效率(但Python不支持)
    5 x8 E- R: `0 U# M5 N
    ' U! _" G4 B. U* t 递归 vs 迭代
    ) ~2 p8 m' b, N1 {|          | 递归                          | 迭代               |
    6 B9 u2 Z+ n5 }! ?- f4 C8 @|----------|-----------------------------|------------------|
    5 }+ k* l  ~' X| 实现方式    | 函数自调用                        | 循环结构            |
    $ ?# R2 d6 j; g& |; g, j9 I, O| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |; y0 |7 J3 y' E5 F  _
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    ' r+ l  x$ U, ?. i7 A| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    ) y- f+ _5 Y* u2 B3 Z9 J. S0 S+ C2 Y& K5 P
    经典递归应用场景
    & w+ V- U' O3 e8 Y1. 文件系统遍历(目录树结构)
    9 N$ j. L# Q8 o, }- v0 Y) y2. 快速排序/归并排序算法- j& j3 \9 ^8 _2 H
    3. 汉诺塔问题. Z; X! v3 a2 B1 x
    4. 二叉树遍历(前序/中序/后序)
    - b: ?7 z6 z& {) ]6 O7 r5. 生成所有可能的组合(回溯算法)
    4 k, z5 F( A" I0 W4 k- k9 p0 R5 \: _- I9 e: z- Y. g5 V5 a
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    14 小时前
  • 签到天数: 3109 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    1 j+ J1 L% W0 u2 P4 V我推理机的核心算法应该是二叉树遍历的变种。( M+ W( r( T. Q+ J( |. X
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    & N( u* s. M! N# P, q) W0 \# XKey Idea of Recursion
    6 Z7 \+ [1 D2 ^; d5 K) _
    8 K& X1 I8 R1 QA recursive function solves a problem by:
    0 h" g0 l+ x  o. \9 W1 q2 U* p
    7 [7 Q. K6 a& ~    Breaking the problem into smaller instances of the same problem.
    " E$ f: B; {& a2 S& h4 H' @2 A; |' A5 b2 Q- f. E3 ^
        Solving the smallest instance directly (base case).
    ; ?2 U; U# l7 }2 P) X
    9 A: B: _& M$ }4 X$ m" P" u    Combining the results of smaller instances to solve the larger problem.
    5 z) o- B1 x; v$ q6 z; M9 h* r2 S# Z, T$ p1 H( M
    Components of a Recursive Function
    3 `* |( l9 x/ x9 a9 [2 ^* I$ l4 z5 D  S$ V
        Base Case:8 e  l8 X3 n9 ~7 o: D* U% A8 w
      u& r* `, c- F/ \1 C: {
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.8 S6 ]+ L' m7 u; Q
    % h+ x" q3 `. C& p8 m' k
            It acts as the stopping condition to prevent infinite recursion.8 u' \- c. z2 a
    1 z( E7 ~5 @: q
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    $ o! @* J( K2 P( h# G4 k  F5 ]. O3 z$ @8 G" z: K  ~
        Recursive Case:
    + y' C$ \3 f# B7 w; D. V
    2 O) y3 I# v& b( F        This is where the function calls itself with a smaller or simpler version of the problem.9 O4 H3 ?4 b$ j/ w0 ^! _$ Y0 S
    , v3 r; O% l5 `6 f7 ~
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).% v% n& {0 h8 z0 _

    ! K, k5 }* x" P* SExample: Factorial Calculation  |- h9 t# X: U

    / D, p1 Z+ P$ r4 {  cThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    / L0 p8 m4 j4 Y4 _: L0 u7 k; n9 x' f
        Base case: 0! = 1" h9 I* p. [0 f

    & f' Y: j8 k, }( n& C( k4 t    Recursive case: n! = n * (n-1)!  x+ W- y* l# D5 q
    1 U& }6 e" e5 e! j0 Y* [4 l
    Here’s how it looks in code (Python):
    ( y  ?5 d- H  G# u# g' H# |python& z1 m, m8 z4 p$ y; `' h

    5 _% a% F" E. r4 a, y% k& c
    0 X: t: d& E6 e! l7 w+ bdef factorial(n):
    $ @. W6 O2 w) w' T    # Base case
    ) {: x  ^- C- y: k0 H  f    if n == 0:
    5 i0 q6 I3 Q, @, x8 Z' H        return 1# Q4 B% K: P6 u) k: @# q* Y" m
        # Recursive case! e* J8 {* R9 W/ b7 g; N
        else:0 Z# T2 M( H/ R8 ^3 D0 Q
            return n * factorial(n - 1)
    + u2 O  l& I7 R: |) t' [; o' P
    : p* P; S8 {- [* @# Example usage2 c: F7 o9 I9 S2 \6 m
    print(factorial(5))  # Output: 120
    & R# w+ }. Q$ g7 y# I7 `/ c, N, ]# |  o( y0 J/ \8 N  g* e. u8 t8 E
    How Recursion Works
    , N/ \8 C& H; ]9 I( t2 {& Q$ o; w6 G2 Y( d& ^1 F
        The function keeps calling itself with smaller inputs until it reaches the base case.
    2 ?- y( W1 v2 H
    7 Q6 d7 l! }* Z- h    Once the base case is reached, the function starts returning values back up the call stack.  A% W4 h+ D4 i- y) i

    - o! i/ e2 m) D    These returned values are combined to produce the final result.
    ; j: [8 h4 [# m6 J( f* R2 @* F& M7 ^* A7 ^
    - L# {: `3 S; T$ m& _+ w5 zFor factorial(5):6 F$ A5 f, L- V  A* K! ^2 O

    3 y! P$ B6 D& \+ k  P5 E- c+ c1 d; R+ w4 |& b1 F. b
    factorial(5) = 5 * factorial(4)8 ^/ `; Y, F1 K7 C8 C
    factorial(4) = 4 * factorial(3)* \. Q! ~% o) x+ D. r
    factorial(3) = 3 * factorial(2)  V: o* O8 m3 H& a
    factorial(2) = 2 * factorial(1)1 W* q4 Q, K5 z: Y) {/ ~" I4 `* c
    factorial(1) = 1 * factorial(0)
    $ k1 g9 ?5 O6 M) {7 e, o) c* afactorial(0) = 1  # Base case
    6 T% |' Z( M' `
    6 ~- h2 i* o" ^2 p$ M, B4 j' KThen, the results are combined:* A9 p, a) c4 u" P. @7 J

      a: V8 J! m, Z. c  ^1 T. O
    9 B( j+ b; h5 m. T+ p% H$ zfactorial(1) = 1 * 1 = 1
    ' [( z) Y0 Z* t! G' I" vfactorial(2) = 2 * 1 = 2
    & ?% _, x' U& c9 b4 ffactorial(3) = 3 * 2 = 6
    " u1 s' P1 ?1 M0 ]- o* Hfactorial(4) = 4 * 6 = 24! R/ @$ d8 H) v9 V1 V1 r3 [
    factorial(5) = 5 * 24 = 1202 l+ I5 L0 n* _1 C1 U
    ' }# u' d4 s+ ?, u; m! B5 w
    Advantages of Recursion$ U& L# M$ @$ {$ l# b

    ' o- v' K( i; e2 C$ p& V; T    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    4 w% S0 [& I2 G! w% p( J8 X- I5 \+ H/ }* k
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    7 u, m8 V$ X# {5 A! Z) }7 K* o# y& w, c% ?4 M, X' X  O1 E
    Disadvantages of Recursion
    & h9 {1 M- \, ^6 a9 a& V4 C) ~# {  d! K
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion., T' B' o7 m8 D; P
    . L3 v/ D- y" o8 P
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).% @7 G: N" u/ l; G
    ( N) L" L  l* b% q6 A
    When to Use Recursion
    ' {- e* z2 r0 y  N+ Z/ E; N9 A% ^% C4 p( }- B4 H
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).* X! G2 T+ q. s* J7 }& k

    6 _* W/ I8 C3 }  @    Problems with a clear base case and recursive case.
    ; _: @& Q/ h. u' W& L4 w" V  W
    " D  s2 y# ^, K5 R" F# r" W! qExample: Fibonacci Sequence$ W, a6 n2 h0 Y( h

    ; w1 G+ I8 O, RThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:: }: N9 q$ k& k

    " @! g7 n1 j* L" f    Base case: fib(0) = 0, fib(1) = 1& n3 e  i4 P, B

    8 M% r* w9 Z8 U5 f    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    ; L8 y/ c7 w2 K; a6 f" r: ?$ _, Q% L* I+ V& t8 b4 x, f( I, j3 B
    python- }3 M- ]; ?# K
    # ^( t4 n6 h0 Z: l  R

    4 F8 s  x6 R1 @/ C) fdef fibonacci(n):
    6 t3 P3 g3 H9 t% P$ _$ L4 R7 A    # Base cases* L/ n) t+ H9 `9 ~" H
        if n == 0:' d1 `: @) X0 i8 W  c; ]
            return 0
    : l! c% @% s& g& j& r1 N    elif n == 1:# L- u% n7 z8 A- t3 U. a
            return 1
    " O2 W, v: L4 I4 n    # Recursive case
    , W9 z0 k. P8 n* g0 T! @    else:
    $ x* q% K7 F# v9 Z5 w        return fibonacci(n - 1) + fibonacci(n - 2)- j# h9 Q8 q" b9 V" h1 Y+ |( G8 g% ^

    ) T& h* H! W* F/ U0 m# Example usage4 Z# w1 {  l* D- z' w! t  F
    print(fibonacci(6))  # Output: 8
      r5 x& v' W2 ]- @4 U' F  [/ U5 J4 z( E. N( h  o( }1 }
    Tail Recursion
    $ y: R# T/ u) s, ^1 Q
    ) p: r: g$ N- c7 V% qTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    ; T. f9 M6 G9 {7 [9 q0 _' G7 _, p# `  u9 F( x8 V: E8 ]
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-5 23:05 , Processed in 0.030748 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表