设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1829|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 * o& T( `" u% K" m6 J- n1 m- y2 k
    , f2 X2 v3 E' ?% j6 f3 n
    解释的不错
    * L& v& B, w5 {0 g1 F8 M* o5 D: p- u6 K( F5 E
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    : I0 j2 V' ~. H6 k! V" ?4 S. i6 C/ N  M3 w) p$ q! ~9 S/ s& D
    关键要素
    8 a: z' g% E$ P+ i1. **基线条件(Base Case)**
    - [6 n# u6 a6 z0 y   - 递归终止的条件,防止无限循环
    ; x0 y" V. E8 [4 O   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    2 A4 u, n$ X: P* z, T7 u  p) t
    ; V' x# T4 }4 a0 J2. **递归条件(Recursive Case)**' {; i- C' c# ?# U' \: E4 k' j$ X
       - 将原问题分解为更小的子问题8 x- R" z7 ~  _+ l! K4 x) R- }
       - 例如:n! = n × (n-1)!
    / W/ F' V: Y5 S# A( Y# O
    5 o. g0 K8 L( L3 I: U% z* w$ M 经典示例:计算阶乘
    0 H, f: R/ [! qpython) O( {2 z6 J) B2 J4 o  V
    def factorial(n):( Y  N" x! S1 l
        if n == 0:        # 基线条件
    9 h: z; B4 K0 ~        return 1; X7 x. Z1 e9 y. d9 v) f
        else:             # 递归条件: `1 B6 b7 l* p5 M) V0 ]8 ]" S+ n
            return n * factorial(n-1); n; w' Z# {" Q3 ^
    执行过程(以计算 3! 为例):* o9 N9 H+ b3 `! |7 Y
    factorial(3)( c) M2 W+ t8 H/ H) c: J# V
    3 * factorial(2)# H! n* D, Q6 L' F  j3 j2 e
    3 * (2 * factorial(1))
    ' ]' D! |* \; O" I3 * (2 * (1 * factorial(0)))8 O1 M( T. [6 U; D+ t7 ~
    3 * (2 * (1 * 1)) = 6
    $ Z5 Y' {# y6 Y' t8 V8 e6 G" }. t% ]5 L
    递归思维要点8 X% o# i  Z2 g; @
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    : `: V' g5 @7 L0 W5 j2. **栈结构**:每次调用都会创建新的栈帧(内存空间)% ?! C: \, y5 |5 H. ~; \# a
    3. **递推过程**:不断向下分解问题(递)
    6 Q  q( w9 s" v, a1 N; z4 g3 y4. **回溯过程**:组合子问题结果返回(归)
    - ~+ j( }) a. a/ s" ?6 L0 q6 N  _% @1 n' T; |
    注意事项
    * i+ A$ v( X5 ^) {( o7 T; E必须要有终止条件# k8 w$ U% `+ j$ V4 q6 \
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    2 Y# K6 F/ v2 N- j) z7 E( J( i8 H某些问题用递归更直观(如树遍历),但效率可能不如迭代
    % V, d$ |4 Q1 n8 e尾递归优化可以提升效率(但Python不支持), h& s, m; \8 Q7 R
    # N5 A' g) p" \! D! s
    递归 vs 迭代, n6 i% h4 v- v* Z( H: ~
    |          | 递归                          | 迭代               |) n" i# c6 ^* e; J! d
    |----------|-----------------------------|------------------|- |# l+ e- B& `% ?2 x3 q
    | 实现方式    | 函数自调用                        | 循环结构            |7 t6 V7 N# A" p6 j9 O& M
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |1 _0 x- c" }  q1 h' \; _3 K: }: o
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |( n& e) n* G% D2 a9 ~1 p- S
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |: J, N$ d; I6 ]$ b* L
    : ^, k/ ~8 {- [" J# }1 t6 Z) U  \
    经典递归应用场景% |3 J6 S8 b3 J, L
    1. 文件系统遍历(目录树结构). X# H9 x$ S3 x/ N; T: c; p
    2. 快速排序/归并排序算法
    # e- ^- d# k6 h9 i5 F9 y9 M% I3. 汉诺塔问题6 s. C0 }: W7 I* x8 E5 C* ~+ N6 S
    4. 二叉树遍历(前序/中序/后序)2 g8 v1 M0 m% P2 W1 g
    5. 生成所有可能的组合(回溯算法)
    $ V, E; ~% q! \! b7 B6 H0 P5 C0 L1 i% F) T5 N
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    8 小时前
  • 签到天数: 3146 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    ' @' [! s# ^9 E4 T+ w( K, }我推理机的核心算法应该是二叉树遍历的变种。
    4 V, @% Z5 X6 s. Q1 W( s1 f: K' l另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    $ A( x( I( L' B; @; h, U7 c% H0 I/ cKey Idea of Recursion
    ) g+ D3 W: p3 `& V  Y9 c5 D, E  B# z1 I
    A recursive function solves a problem by:
    " s- {7 H; w% n# _% y( }) Q  L  I
        Breaking the problem into smaller instances of the same problem.; |+ L$ K8 W& o5 Q) l5 t% z
    7 Z/ f3 f0 n7 }4 E' K( n2 W
        Solving the smallest instance directly (base case).
    1 V, y% b7 W6 Z2 f% P3 T) w
    / g8 e/ J8 n0 F4 ?    Combining the results of smaller instances to solve the larger problem.5 [* d# |! b$ z6 `; M

    & Z9 O0 j7 `. u& I& f# A, X- |) @Components of a Recursive Function! h' W0 x# b/ q* B6 V5 X

    : `4 [! a5 I+ P8 L; i+ g1 u+ u( j9 ^    Base Case:3 ?7 w6 s+ R5 S- W& R! ^# D

    ; p) a( Y! ^- |, m& _0 ]        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    7 L; ~6 \1 {7 t) S5 \. `6 C& i# Y8 n: u8 R0 v1 r2 ~5 E0 i
            It acts as the stopping condition to prevent infinite recursion.! |' D, F* [* T# @$ f2 Z( w

    0 k" G3 r# {7 Q! H: D1 d4 Y        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.7 {) I3 e# V" D

    2 f9 v$ L# Q2 |9 {5 H  i6 V    Recursive Case:
    * h0 @5 z7 I4 H. S8 {% Z* D3 x2 H. n( v# s4 l& X$ m+ f
            This is where the function calls itself with a smaller or simpler version of the problem." X6 P) A8 D! i3 V3 I2 f+ p

    9 i  V8 N% B$ @6 z: G- i+ e7 A. c$ ]        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).3 Z4 v: |+ }* Y' x& @9 d; _  g
    $ Z& |3 O- G$ l: [. k7 W
    Example: Factorial Calculation  ^6 a  q  z; j/ ]- Y8 b

    9 B# {( ?* \. r* d5 Z3 t+ ^' `$ IThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    $ i' n1 M, o2 L  h; c  v4 y3 A, P7 H' n9 Y4 B# x# G* C7 X
        Base case: 0! = 10 B% u) \" d& L3 B! x( u& l
    ( l3 ^6 x$ G5 T1 J) u% p
        Recursive case: n! = n * (n-1)!3 ^  Q5 g" |$ T0 O+ d' H
    4 B1 K& L9 n( ^1 r: |  c
    Here’s how it looks in code (Python):% _3 W$ P7 S5 E; [
    python$ J! h9 C9 q& H* U  _

    / M) i7 ]" j3 D  q- s1 Z7 E3 n5 r
    % Y: _& q' R2 ]9 S  @def factorial(n):% r/ o7 r! B; a, ]6 N
        # Base case- X! z; ~7 b8 O1 Q1 u
        if n == 0:8 J7 V7 E' E% i& q8 B
            return 1
    , @0 I5 {+ \$ F    # Recursive case
    , C2 v5 ^3 k& R+ K; `    else:
    & s1 W3 [% X  O% j" o6 L7 ~! _        return n * factorial(n - 1)
    ! @- B) p! u8 E7 T% d' R2 f
    " d3 I/ s' C9 {9 E7 T1 H- P# Example usage/ b& Q4 S2 l5 k! p* H) _7 X
    print(factorial(5))  # Output: 120
    6 n: i. y9 Z( g! k1 y: K2 @  Q6 s
    ; u" j& C/ l- a/ N- j% }# @* sHow Recursion Works
    ( P( T, ^. y; q5 ^- _% c- X
    + Y/ Z( r, t) D    The function keeps calling itself with smaller inputs until it reaches the base case.% z8 C' ]8 V$ n: v' y% `7 Q8 B4 D

    1 g: }8 a& W( f! B5 M+ V    Once the base case is reached, the function starts returning values back up the call stack.
    0 A5 B( a# s& r% ^
    2 \8 w% N' p7 {1 ]3 t  ^    These returned values are combined to produce the final result.' S- N4 `7 A( B2 L; G' k# x. m

    5 S; ^. ^; y2 a! m) ?For factorial(5):2 d0 t; T# j5 S1 W; [$ L/ r

    # W) a8 |! i% u0 I- c( l
    & k! i- j# S7 r9 X  Yfactorial(5) = 5 * factorial(4)6 p0 \9 v; p  F* L/ e
    factorial(4) = 4 * factorial(3)6 N; W, D; ]7 N* _( f
    factorial(3) = 3 * factorial(2)
    0 P' {: h/ c, L/ k# H5 j  nfactorial(2) = 2 * factorial(1)& @3 ~. o0 x: i
    factorial(1) = 1 * factorial(0)
    3 `- R: T7 Y! V9 S$ ?* R: n& b' hfactorial(0) = 1  # Base case
    ) a6 K% x9 Z# c8 b8 \
    : k) i4 @9 q! L6 n5 o7 H$ @Then, the results are combined:
    ' `1 A! c$ g( U- C+ i! x$ `5 j1 s; Z; S( |3 O6 [8 W- a6 H* |' u) M2 Y
      X, {! C+ n" O0 C; m- N' b2 L) q1 W
    factorial(1) = 1 * 1 = 1
    & _$ E1 q& }1 U1 M" M1 Z7 {$ bfactorial(2) = 2 * 1 = 2
    $ _( t  H. b# `( I" d' Dfactorial(3) = 3 * 2 = 6
    7 m8 n. ?! A, efactorial(4) = 4 * 6 = 249 N9 y0 R) X: ^7 U
    factorial(5) = 5 * 24 = 120
    2 ]* T# m4 a/ n  ~+ ^
    * j7 ?. f* Q0 h) ~2 g8 `# E9 ~) LAdvantages of Recursion4 x$ U# d% a$ n* m

    & m5 S' I8 K  Z! n    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).. n1 }3 `1 f# G. [$ K! j
    ; m" C$ D5 C8 D9 j
        Readability: Recursive code can be more readable and concise compared to iterative solutions.: a( w: A0 \, \5 u1 k9 {, _

    2 _* w( o/ |2 bDisadvantages of Recursion
    1 u6 b: z3 p6 S( `% Y) z, @' d+ T4 o9 G
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion./ x# K: V! T' I: c, [. p

    . ?' F4 z8 k" e4 c9 N% d    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    * l4 y" C7 v' Q' I9 r
    0 i' Y8 X4 i8 h7 h2 eWhen to Use Recursion
    5 I3 B3 D- Y2 L  u" ?
    % q: c2 c/ v7 A1 C    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).# {5 u2 C# R+ g0 y

    . {" A2 t$ p- t" z: s    Problems with a clear base case and recursive case.) I; m+ h$ Z3 ]- v# J
    ) B" U: t- k% b2 a' r
    Example: Fibonacci Sequence0 q5 C1 r$ ^& B% f! ^
    0 Q1 l' _( e8 M, z
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:5 O( ^/ Q/ K0 M! [# f
    . W7 D6 O6 n4 C
        Base case: fib(0) = 0, fib(1) = 1
    + s! `! r( ]& D5 C* I+ f
    ; T2 m- W& M9 b( S. g- g9 c    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    4 J/ I, h* m/ z. G& t6 D5 t5 I, _
    python
    . L. v( ^: W, t- k  c/ t8 r7 `; F! g" G$ ~
    5 M0 c( K/ t+ I# y1 P( p* |
    def fibonacci(n):
    0 V% d5 `  Z# E5 H* x) V    # Base cases# C+ j3 Y. W' K' g8 \) Y3 F; R
        if n == 0:8 D, m  T3 B: ?; f9 }  E, t1 E
            return 09 m+ u6 }- Z9 v+ a
        elif n == 1:5 j5 e- F6 K0 c- @. {6 _. ]
            return 1! }$ @, ~, M" {- R
        # Recursive case
    " c- C) a4 M" [/ i1 h& B    else:9 |" C/ ~' G) L" s5 `3 _
            return fibonacci(n - 1) + fibonacci(n - 2): B. J5 A  Z& n: d' p+ P1 o8 c+ W+ K
    ) P  `0 \7 A& ]0 {
    # Example usage
    , T: }8 C- [% o" E/ d* Nprint(fibonacci(6))  # Output: 8
    / q( H% a/ \% Z% q9 a! I, u: \- ]  [0 e9 M  z  D. ?
    Tail Recursion
    ' D  t, ~  @0 I! m
    & I, E3 K  Y7 a/ E; Q3 {, G/ G5 \Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    : _2 `" P6 e5 X; A  `
    6 A# S( }9 A: Y. d, J: v6 D! iIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-14 14:32 , Processed in 0.035598 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表