设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1134|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 ; g& F6 w$ m3 b

    - w" a1 W" l; S1 f/ M8 q& T解释的不错
    ' U4 L+ n$ c! |0 h: p0 `0 R# E: n
    - a% C" x. C# X- S% n, c) O# w递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    - c6 D! t2 L1 t& i- x( [) i6 {+ d9 |$ F4 t* I: {# ^
    关键要素4 I1 |  ~7 r5 z6 M
    1. **基线条件(Base Case)**" r3 Z/ G6 c7 f, l
       - 递归终止的条件,防止无限循环5 g/ G, N/ z, F3 [
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1+ U& z% R, E) ^. I3 t" Q: `, E

    , ^* |- X/ r1 S  x) @2 |: Q2. **递归条件(Recursive Case)**
    & k  y+ a) l' ~" c   - 将原问题分解为更小的子问题
    / y2 |( V+ }, A, v   - 例如:n! = n × (n-1)!
    9 r: z% G/ l  \3 V3 s. J( A4 k
    ! c% Q! y+ c& i; m8 G 经典示例:计算阶乘2 Q- a) G) o, O3 {
    python3 r7 z, W- l6 y
    def factorial(n):# ]6 U2 S0 A1 D" m. t" e- j; p
        if n == 0:        # 基线条件* W7 T7 p4 U3 K
            return 1$ I$ Y9 f' f6 k  o7 u" \- \
        else:             # 递归条件
    ' V& N' G; b8 y: K$ I        return n * factorial(n-1)5 e6 N+ Z' E; M& @% Q
    执行过程(以计算 3! 为例):
    ' {# U6 T% K! B! xfactorial(3)7 O9 g! O3 r4 `, k! T
    3 * factorial(2)
    3 N, J& @' W7 K# S( R; V; `+ U3 * (2 * factorial(1))+ J4 Q3 [% O7 g  }
    3 * (2 * (1 * factorial(0))); T) q/ y, S! x' \6 \0 D! i% D/ M
    3 * (2 * (1 * 1)) = 68 U2 u+ k4 y5 O) ?& s
    ' }- |2 c6 `( I( g
    递归思维要点5 v, G( v/ c" g. P) ?
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    6 I) U- r& y4 M$ ~3 j% G6 z, _2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    % n( u. Q* G% P3. **递推过程**:不断向下分解问题(递)8 s3 Y% e! Z" G$ v3 k
    4. **回溯过程**:组合子问题结果返回(归)4 J9 H% k0 R; R* H/ [
    ' u- c% X7 M8 t4 @1 }& C6 x& t5 |5 T
    注意事项
    2 f$ O6 a  l# k, H. N" _2 x2 z必须要有终止条件
    : r0 ?3 v) G! c递归深度过大可能导致栈溢出(Python默认递归深度约1000层). }8 N" ?5 f% E% r
    某些问题用递归更直观(如树遍历),但效率可能不如迭代/ m  f% D3 {+ p5 P
    尾递归优化可以提升效率(但Python不支持)
    ! z" ~3 u+ r9 V5 N4 T5 o
    0 O; _$ q& l6 Y; u/ K. w 递归 vs 迭代' P+ C6 H+ k) v
    |          | 递归                          | 迭代               |8 \+ {& Y8 @, ^8 I  I, w7 G
    |----------|-----------------------------|------------------|+ v8 u3 P9 O; H% `: @
    | 实现方式    | 函数自调用                        | 循环结构            |
    + C% L/ C  Q0 v' F& \| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    1 {+ F: H7 m* I& I8 k| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |# Z5 z" h! M* V% a. ~& t5 y6 j! f6 l% P
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |% ^) i6 c# |  l4 z

    & i3 n- p0 _( E 经典递归应用场景7 M+ F( j' m1 i9 }5 C
    1. 文件系统遍历(目录树结构)8 z3 o6 ?0 U, X, B; w7 p) B
    2. 快速排序/归并排序算法! |4 S; U) Q) ?0 s: `# Q. P
    3. 汉诺塔问题
    8 N& i9 m2 f1 H5 G3 e4. 二叉树遍历(前序/中序/后序)9 Z; L& L/ o: o: t! P0 B
    5. 生成所有可能的组合(回溯算法)- A* x) p* ?4 p7 [

    ) V0 B% {7 _6 u  f9 m6 t试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    郁闷
    16 小时前
  • 签到天数: 3100 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,1 v2 e& T* U6 X( g" X6 R3 L+ O7 L
    我推理机的核心算法应该是二叉树遍历的变种。
    , ?0 K) m7 {4 C+ ^* G. t2 V另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:9 g) R$ F( R8 `
    Key Idea of Recursion
    8 G# x3 y+ j/ h5 b, H. H$ Y
    * q# q, s" O! E) kA recursive function solves a problem by:3 w) f$ x  w' S, h
    + E8 g; A8 P; P. H# P! t4 ~
        Breaking the problem into smaller instances of the same problem." ^7 J1 S/ ?) \. \. }) b7 ^

    / D, D" Z( ^- o& m5 \/ P" e( {    Solving the smallest instance directly (base case).
    ; E  i2 z$ C1 L9 E6 n  h8 j" y- g( q- l% e+ R$ A
        Combining the results of smaller instances to solve the larger problem.
    3 c3 m4 S6 r, j2 g5 @0 e% q7 `5 J' \+ k- g
    Components of a Recursive Function
    1 e% W2 E( P) H1 `8 E
      U. B/ ^. A7 f' G  @: M& q& z    Base Case:/ u, T' C1 E+ s

    2 H/ X6 o2 {4 W- C3 O; u        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    9 B2 ?* Q+ H0 M- P' h2 }/ M5 _) a. J' I/ _: p$ s  n
            It acts as the stopping condition to prevent infinite recursion.
    + l! ^: ^" W: q* A
    : I0 Y; Y/ g: n        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.7 k6 u% a; ~* S/ e- ^

    7 E* j# c" S8 s  u: d    Recursive Case:
    1 B# x# l4 Z7 U, \. V8 w# ^% h# p5 p& V8 K* L" C7 V" j
            This is where the function calls itself with a smaller or simpler version of the problem.
    & `- ~7 d! P9 w" W+ a
    5 K( L4 `* s2 C" h        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    9 V: r# D9 M2 Y4 ~& z( B$ O; h5 S  |. S. c; H
    Example: Factorial Calculation
    9 S! x* H0 m# u9 c( @
    ! t/ p! X( \( ], K' H, tThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    ; ]$ Q( @8 I; E9 ]6 u
    . m7 k/ r  L# X) M    Base case: 0! = 17 c$ o2 {, a! F
    7 C9 y- [% T! H# Q( L/ g
        Recursive case: n! = n * (n-1)!& a' r0 v8 }/ `. v

    8 M' C# D. x8 Q$ c' O# A8 XHere’s how it looks in code (Python):
    : e; D0 o. a6 g; ?python
    6 E" i: w/ D" f" t6 \+ u/ @# C" r+ L- h

    - a6 r3 Q1 o3 z5 ~9 ~; k) S# mdef factorial(n):; T4 u2 g% L6 b! |  o) c! r
        # Base case
    . a* Z: o4 o# y' {9 S    if n == 0:
    2 Y' v0 s5 p" V7 ^        return 1
    8 |- x; S+ ^, `& {* T' y    # Recursive case
    7 ?) p; u) t, N& _- G8 ?    else:
      Z5 D& j+ E6 R. a& A; R        return n * factorial(n - 1)
    4 s  t1 j9 {+ \4 [: l5 {( P- X+ \) @# ?" v5 ~# m+ v4 b. e& `
    # Example usage
    4 J+ Z! d4 F" o& b; ]+ I: qprint(factorial(5))  # Output: 120
    8 u  k# k4 F3 a3 c
    & g- |( B8 E9 W, c3 H# _0 MHow Recursion Works
    # J4 ^2 g4 W" y. z2 a0 o) `1 Q' P! X( ~0 `2 @$ P3 ]
        The function keeps calling itself with smaller inputs until it reaches the base case.1 o6 A* Q( [3 [1 r. u8 M( m
    $ h2 P2 ~. E+ v. M% k
        Once the base case is reached, the function starts returning values back up the call stack.) w% n4 w3 {2 E( n  x

    % F) D, M' _7 C, y; d    These returned values are combined to produce the final result.
    % K+ M* k& t. S' ]: i
    # G8 J+ @* s0 r2 ~For factorial(5):- U" W% M! Y9 S' ~; D5 L" n+ t

      {1 O& n- W" M. {7 |
    - p! a2 ?& Q9 k* C& ufactorial(5) = 5 * factorial(4)
    / G5 n* i+ c1 n: Zfactorial(4) = 4 * factorial(3)
    ; o! ^! A6 ?5 A' K" Yfactorial(3) = 3 * factorial(2)
      f8 t! @: `+ l" n- S! T( tfactorial(2) = 2 * factorial(1)
    1 w5 E; X# k+ @& q: F: p- j- rfactorial(1) = 1 * factorial(0)
    # G% P' P) @* y. kfactorial(0) = 1  # Base case
    3 W; q% s" P3 ~, u% O" D! \, R
    Then, the results are combined:
    3 }* B$ X: X6 c: ^* E: x5 K) j7 s8 u* d

    5 a4 ]: X* K9 k( ^2 afactorial(1) = 1 * 1 = 1
    ; g1 C. g( V: wfactorial(2) = 2 * 1 = 2' x6 ~; Z! _& ?- c) L5 d# j) G
    factorial(3) = 3 * 2 = 6
    7 m9 ~( Y- H: p  K) Yfactorial(4) = 4 * 6 = 24
    ' w: W$ t4 s: e8 r& S9 cfactorial(5) = 5 * 24 = 120% P6 T1 G- K; [) Z
    8 s% S4 s: i  V! B, P- W& u
    Advantages of Recursion! i% v# ]2 }+ i; H
    . O' Y' D* R5 u/ |
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms)." [' `2 _- J0 i8 P  G

    + P3 D. y$ }! f/ o" P* T6 n/ Z/ a- M    Readability: Recursive code can be more readable and concise compared to iterative solutions.6 L$ w* @2 q% y1 h: g3 V6 U- l6 a5 W' b
    . S* F+ f3 X, J3 c
    Disadvantages of Recursion' |$ b  e$ U8 D2 D

    . n+ r% R, x8 m5 Y    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.) D% h- \5 b5 C, a! {+ Z& T

    ; t; y. A8 I' g    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    4 _9 D, \2 e7 ]0 K, k% r
    " v" k' }$ T' ]0 l$ ?When to Use Recursion
    3 w  w! w+ g# H* k* ]" e* L$ n" @( Z# \
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    % ?) a# m( h7 f2 y$ z  f! y, c* p. }% u& _
        Problems with a clear base case and recursive case.
    % m6 ?% |4 E& w) R# {' V) |+ s
    1 `: u! x: x$ n" d8 |5 oExample: Fibonacci Sequence9 u, G# l$ I) `. Z
    ) Y& E: f' g. E2 P0 I
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:/ m6 V# t' O  _7 C  n9 L6 L; y2 \
    : i  S: J$ Y- s8 W" W" d: z, B
        Base case: fib(0) = 0, fib(1) = 1" i5 o4 g% H6 e+ `* T

    & F8 s/ I1 |" p. D# y    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    ; {' C+ u9 b; P3 x6 U% @( F8 ?* S4 K, x+ K3 t& c! R+ r- d4 X
    python
    1 x; S: ~. J7 U, e& d# J
    ( H' E5 X! r: B: A  M3 @3 O: R$ X9 `3 Q( m9 g
    def fibonacci(n):6 R2 ~" {' l) Y, D( a2 e
        # Base cases
    / {5 H' ~: E; A9 T1 G! d' Y    if n == 0:+ G" S/ B# R2 H
            return 0
    1 {: l% W. e9 [  N7 N    elif n == 1:0 M# ]( j& p4 U2 x. r2 c" Q
            return 1
    ; L  ^+ g5 M# y% n8 r: f    # Recursive case" y+ z7 C7 q$ b/ q
        else:
    " G! w. Q  T6 b( \' I7 f- j+ y+ ~/ ]        return fibonacci(n - 1) + fibonacci(n - 2)$ s# @) X3 h+ N4 t
    % {1 Z5 e! P+ b# F$ s' W2 p
    # Example usage* ]) {7 N! l3 d( z) l$ q7 \- C
    print(fibonacci(6))  # Output: 84 M% q6 D( `* H5 P  k6 w
    " h$ l" S" n/ K3 H
    Tail Recursion
    9 O: c0 a+ }4 [0 b- I0 }- u$ a1 J2 S2 O
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    3 h3 Z& ]( d: z* z, N, x0 a! t' }, f% h
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-23 16:13 , Processed in 0.041009 second(s), 25 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表