设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1681|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    8 y4 N: m: L. F& z, e, m9 U* @
    0 H, z  c) w8 V9 P' a9 O" h解释的不错+ Y- w5 m0 z/ P5 N

    9 `2 F, t* N6 e% Z7 L) }: N9 v递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    & H5 C/ {9 O. G) X
    + K$ Y' {6 c; H  q/ A) l) @$ @ 关键要素
    / o+ y6 m9 L8 r8 _) L9 v1. **基线条件(Base Case)**; v* S- n' W( `; ]9 f
       - 递归终止的条件,防止无限循环0 h- N9 R" W& i% f# g
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    ) _3 B0 I0 Q4 _% U% M6 R
    % V* m  i2 |2 O, D/ W2. **递归条件(Recursive Case)**! Y' L# q* T( s" \6 n  G- W
       - 将原问题分解为更小的子问题' ^' S$ y  F$ `9 ?) s) j0 B: N
       - 例如:n! = n × (n-1)!" N& Z0 s5 V2 |3 N# {0 J

      @" b6 a$ E8 H" D3 C' Q. C 经典示例:计算阶乘
    5 Z7 _8 j+ ?) ^% v4 X" {' Spython; l& J. d, ]0 V5 ]
    def factorial(n):
      F: J3 _% l% w4 Y  r0 {    if n == 0:        # 基线条件
    2 g- e4 J) E6 [9 k3 J        return 1
    * O+ A- n% }$ p: ~( L    else:             # 递归条件4 J0 y8 I9 H# U$ r7 r* w# c
            return n * factorial(n-1)% I, T) r: n9 Y2 `
    执行过程(以计算 3! 为例):. o5 @! @% N) k1 X
    factorial(3)  a& Y# x; C6 \. z) U7 P
    3 * factorial(2)
    ! H8 w! N5 J" E+ W6 [& c3 * (2 * factorial(1))
    ! i& j3 @/ u3 J0 T3 * (2 * (1 * factorial(0)))
    " k7 \( q3 u3 f3 * (2 * (1 * 1)) = 6' o* G) @& U; P" C* c
    : b& a* u& |% A# `( ^
    递归思维要点
    8 d- W1 P5 Q) a/ S# M1. **信任递归**:假设子问题已经解决,专注当前层逻辑
      h) x/ Y) f( P" A9 R2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    & V# E1 e9 n$ y  U5 k7 k3 G& C# H3. **递推过程**:不断向下分解问题(递)
    * v/ S8 O- e8 e+ P% z4. **回溯过程**:组合子问题结果返回(归)
    ( ^( d: M/ _" ]# ^, ]
    5 J/ ^) M) {* X 注意事项) A8 J  W: j4 U7 N0 N& Z0 E
    必须要有终止条件
    # P- Q9 O" @$ X; A1 {$ k2 `递归深度过大可能导致栈溢出(Python默认递归深度约1000层)2 j) G% o: w2 T  H
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    4 |* E/ S% ^; }' `" k( `尾递归优化可以提升效率(但Python不支持)
    1 L9 B3 z$ t- S% k4 t3 e2 O9 b9 H% K" H( q% u# G
    递归 vs 迭代
    - A& a, T- |! f2 F|          | 递归                          | 迭代               |" ], C4 W% ~0 @" U( n; k
    |----------|-----------------------------|------------------|9 i9 D* t  W  M: G. V0 K* h- N
    | 实现方式    | 函数自调用                        | 循环结构            |
    ) q9 s# Q4 B+ h8 i' I8 w| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |( |9 e6 E9 ~% R& Z! c
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |: }- E1 p' G7 _% k
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |  {( @! Y( E  j) t. _. I# t

    4 G" M- M; u  ~/ `* W 经典递归应用场景
    # [" s# x& Y5 i5 x7 M2 i+ o8 z1. 文件系统遍历(目录树结构)3 z0 @% {. T4 f. J8 c# y, P, i! ^
    2. 快速排序/归并排序算法
      n% d5 \1 e8 z9 \/ K/ c3. 汉诺塔问题
    ( k# i* T. F. _) x& W, x2 N. W4. 二叉树遍历(前序/中序/后序)3 ~: F" ?( F4 T/ N3 J4 ?
    5. 生成所有可能的组合(回溯算法)# V; q0 `" [2 E! R' v
    6 b5 ~+ i) ~; j. J9 R4 s1 B. B
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    11 小时前
  • 签到天数: 3131 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    6 c# H0 N3 q( k# {) m8 o+ v我推理机的核心算法应该是二叉树遍历的变种。$ {& s( v2 }7 a! _$ U
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:& E- ^: S' d- `  j
    Key Idea of Recursion
    ( H% q5 s6 b  y$ B. Z* M: S" w% Q. W
    A recursive function solves a problem by:
    + F- E. s6 g* E2 |$ ^$ p; u3 x6 v" P3 U6 I1 R# J% f9 ]
        Breaking the problem into smaller instances of the same problem.
    " ?4 a* y8 k6 Q+ _, ]! F; R
    " H$ c. C( F/ v    Solving the smallest instance directly (base case).
      W# t4 S( d7 x8 }1 f0 J$ ]$ }3 w
        Combining the results of smaller instances to solve the larger problem.9 m# U2 u/ l3 N' s# t4 B

    0 i+ V7 B% G  _Components of a Recursive Function
    ) r% p" Y2 m# E1 h3 O% c: J) ~6 [( f) ~8 w# Y
        Base Case:
    : R0 b; q' L$ m. U+ J; n; e7 O+ L. D, z
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.) D! w2 H+ }. @3 n' |  n1 {

    ( V1 @6 A0 f. F9 ?3 X  i        It acts as the stopping condition to prevent infinite recursion.$ U$ P) W& A5 m! z; ?% _& J7 d
    6 _5 V& g  a6 K# q! f) P
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    2 c. b% u# y& y
    . p+ v0 J: H! O' X& n( Z; ?* e5 F! K. J    Recursive Case:
    + S1 g# F6 b' B8 ~# e* A4 |4 u5 n" a1 b; I
            This is where the function calls itself with a smaller or simpler version of the problem.3 p3 p6 v; j3 G+ {; I" [# T4 \' H

    4 N: A) G3 O! N; c& ^) p        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1)., B/ V* Q. ~. V

    * L( P2 T( Q/ P. q8 y6 c! M" [: TExample: Factorial Calculation/ Z7 I' A; x* ~0 r0 E  O* V$ c8 D. `4 |
    8 a" h+ w" n7 o* |+ {: q. J
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    4 v) I$ ?: I: M3 R, t" v
    1 P& R+ i" h1 B" n3 s* F2 a    Base case: 0! = 12 Z& T! L5 ]; T/ X5 G' m
    " s* V( o/ o- H2 |* w
        Recursive case: n! = n * (n-1)!5 a1 D6 u1 S( W3 }' o
    : Y" n0 K3 q% F1 y: z
    Here’s how it looks in code (Python):7 F0 e1 T' z: l3 Z$ [+ B# Y0 [
    python
    ! I2 i1 G  B4 ^( {) }
    . x4 o- g3 n+ d; R
    6 v3 `. i- b% _1 s9 [% ?7 Ydef factorial(n):/ w# t" Q" a" K, s
        # Base case, L- ~1 e) R+ F6 M" O
        if n == 0:
    : T6 ^. n  q+ Z' `( P        return 1
    1 e- Q' K+ J& ^) p& H    # Recursive case
    ' H: z" }5 E/ t# a# j    else:
    ( B: F3 L- Q/ I" }# p        return n * factorial(n - 1)
    6 ?/ l/ o3 c0 M1 ~9 `( L9 d
    6 g/ f( \) P+ J) L7 U$ l& f# Example usage
    6 e- A, O9 X9 C9 m  ~/ _print(factorial(5))  # Output: 120
    * G; q- d  R% ?4 |( @( U6 s9 C+ V/ ^  A2 \) a* t+ W9 c
    How Recursion Works7 }& m) M* M3 x7 |" F2 b4 Q
      |! d5 i1 \) z9 }
        The function keeps calling itself with smaller inputs until it reaches the base case.
    # f6 q3 z% Z- Z* B! e' E$ }, j  ~/ ]* n( E( J
        Once the base case is reached, the function starts returning values back up the call stack.! Y; W# C9 e$ R8 ]
    4 m' Q4 |( A' @$ j. x! X
        These returned values are combined to produce the final result.; s* Y* j( }3 V* [
    8 f; `. I7 J: F- U8 |
    For factorial(5):0 \; z( q$ A& a5 m! V' p1 Y
    - d. m$ x( U7 V0 J' J  b; G
    0 p3 P( S4 d9 D( V1 n& C% t: `/ e& k
    factorial(5) = 5 * factorial(4)
    ! o* ^, ]+ v1 R7 o+ c4 gfactorial(4) = 4 * factorial(3)
    * b% L$ s; |7 r$ J7 afactorial(3) = 3 * factorial(2)# b  U$ j6 G, f. x  \9 s
    factorial(2) = 2 * factorial(1)
    1 ^9 h& G! H, d( kfactorial(1) = 1 * factorial(0)
    0 k: d9 F" }  p9 J+ Jfactorial(0) = 1  # Base case
    1 @$ ^- m& q# ?" y7 M7 C2 X4 N
    ! s* q/ b3 u3 i4 o. b+ mThen, the results are combined:
    0 r+ a5 q3 M# o  y9 F; h9 i/ v/ ^' {' X
    . M8 ~  d: e( N# q: Y
    factorial(1) = 1 * 1 = 1
      L) r! k6 O* ?1 L3 }factorial(2) = 2 * 1 = 2; @1 Z5 y% Q7 r, f  q
    factorial(3) = 3 * 2 = 6  o* E/ f$ V6 k. P' T7 {# s" k
    factorial(4) = 4 * 6 = 24
    8 Q! e$ A1 C* Y2 z+ w$ rfactorial(5) = 5 * 24 = 120
      B2 b: Q8 P7 o; a$ D& j6 j% C$ Y: b
    Advantages of Recursion
    2 w5 e* g  n' I7 ^
    8 E( w6 u9 A% D( Z1 S& `8 C! E5 r    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    7 m! ]" z5 @6 r- E% v5 F3 _' M/ k8 w1 j+ f! z
        Readability: Recursive code can be more readable and concise compared to iterative solutions.7 C1 S% V3 k! G* K: N) x. Y

    " f) K: f( Z5 S( ~- N, C# UDisadvantages of Recursion1 y! k* q9 f: T

    " _2 @3 L5 @, o+ M  T/ K  {    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.* X% }/ L9 ?4 t3 Z, k: d

    + }( }% \% {; j, q$ S3 x8 y) k( h/ O    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).. ~8 Q8 L  q2 y1 f6 q9 A7 @- y
    # ~) O8 F" d1 ~3 g6 O- R* k
    When to Use Recursion# s' Q. I! l0 V( Y

    ) Y) D7 i  C8 D* i    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    & d* X3 {. p  l  V" v
    ! D+ ]% v1 Q! I0 n7 g    Problems with a clear base case and recursive case.6 ]) ~3 g0 f; M3 G, q0 U, C
    4 Z3 M- @' ]+ f) Y
    Example: Fibonacci Sequence: K+ e# }/ X! a9 i, x$ V

    ; M7 R  L$ Y& t  w$ PThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:3 Y" @8 y% E! m# M

    , R) U" [: o/ q1 S4 c+ @    Base case: fib(0) = 0, fib(1) = 1
    , ]' J4 |0 S. F9 g* R
    / y" _2 \3 k4 d    Recursive case: fib(n) = fib(n-1) + fib(n-2)9 L( h% ]4 M: |  Z9 o: ~
    ' N1 ]. y, y! |9 l
    python+ M! |, e9 L: E# B7 k
    / y# @* W; P+ n) F7 I5 Q" [. k2 L
    + |) H! j" S( K2 S5 k6 ]" @! g2 c
    def fibonacci(n):
    3 a( f/ ]6 r0 k: F: ?    # Base cases
    # H- @8 G# @2 d    if n == 0:
    5 H$ M/ i" R5 A2 _2 W4 @        return 0
    ( @, |' G9 I* u  y( r/ `9 k  @    elif n == 1:
    ' z5 v  i( X1 H' g9 H( y0 }        return 17 R& w$ g! i$ \7 {
        # Recursive case$ `5 j$ E5 j! o
        else:5 J8 E* Q7 N0 a1 K% o! G
            return fibonacci(n - 1) + fibonacci(n - 2)+ W; L1 f$ h' q7 G

    . y! `8 c/ }: y4 b# Example usage
    & \' J9 l% y3 W! m' nprint(fibonacci(6))  # Output: 8
    ; @( x& S, `( }& I# A& d- Z! p( P3 E7 O. d0 {
    Tail Recursion! c7 f- b; {  m! i: M- u* N  A  i

    9 i0 d" G9 o; i0 LTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    # G3 F% m* J8 N# o. J; U
    7 Q+ p; e5 X3 fIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-30 18:42 , Processed in 0.031474 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表