设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1993|回复: 13
打印 上一主题 下一主题

[科普知识] 所谓三联与赫拉利的技术迷航……

[复制链接]
  • TA的每日心情
    开心
    2020-4-8 10:45
  • 签到天数: 227 天

    [LV.7]分神

    跳转到指定楼层
    楼主
     楼主| 发表于 2024-10-16 14:35:58 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    有非技术背景的前辈发了这个链接的三联文章给我看,问我关于大模型,甚至是AI的危机是否存在。我努力的把三联这篇文章看完,忍不住写了一段话。也希望看到的朋友不要再被这样的文章所困扰。; W5 Q' z; m5 D

    ( g" c: X/ W* u4 H' a, j说句老实话,所谓三联与赫拉利的技术迷航,就是打着人文解读的旗号而为了攫取流量,而甘愿将自己沦为算法焦虑的放大器而已。( `+ ^  u7 T3 O6 I2 Q. k! v- M, W
    & D# b# |; u; j+ p7 l9 x  Y
    读罢这篇赫拉利的新书推介,一股浓郁的“技术恐慌”味扑面而来。三联一如既往地用充满人文关怀的笔触,描绘了一幅人工智能即将奴役人类的末日景象。然而,在看似深刻的论述背后,却充斥着对技术缺乏基本理解而导致的逻辑硬伤,以及对算法能力的过度夸大。. |& D* J* N: ?) s
    & ^& x! @# D  f/ z
    文章将人工智能比作脱缰的野马,认为其“独立决策”的能力将导致人类失去控制。然而,任何对人工智能技术稍有了解的人都知道,所谓“独立决策”不过是基于海量数据训练得到的统计模型,其行为仍然受制于算法的设计和训练数据的选择。将算法比作拥有自主意识的“独立行为者”,无异于将算盘说成是数学天才。; {9 w% y$ e" t" C6 K
    4 w& {) Y  R$ D: w
    更令人啼笑皆非的是,文章将缅甸种族暴力事件归咎于脸书算法,认为算法为了“提升用户参与度”而主动传播仇恨内容。这种说法完全忽略了现实世界中复杂的社会、政治和历史因素,将一起惨剧简单粗暴地归咎于技术,仿佛算法是独立于人类社会之外的邪恶力量。
    " Q4 @" I  P* g) t3 ]' L, G# x. R% T8 [8 r
    诚然,算法推荐机制存在着放大偏见和制造信息茧房的风险,但这并不意味着算法本身具有主观恶意。将算法拟人化,赋予其“愤怒”“仇恨”等情感,不过是将人类自身的责任推卸给技术的表现。
    * W1 u2 R" c# U3 l, O! I/ }% S8 j9 m/ v1 d" l" _% y( x6 u0 D" s: d
    更具讽刺意味的是,文章一边渲染着人工智能的强大,一边又建议人们通过“信息节食”来抵抗算法的控制。这种自相矛盾的论调,暴露了作者在技术理解上的混乱和无力。
    ! h9 p1 B, k! k( U) M) Q" X( @5 r$ {% }6 {% G5 ]+ y
    赫拉利作为一位历史学家,或许能够洞察人类历史的兴衰更替,但对于技术领域的理解,显然还停留在科幻小说的水平。而三联作为一家以人文社科内容为主的媒体,在面对新兴技术时,也暴露出其知识结构的短板和思维方式的局限。
    ; r# `* e+ q5 G' o) U$ B
    " n& d& y5 _$ Y与其沉迷于算法焦虑,不如脚踏实地地去了解技术,用理性和批判性的思维去审视技术的社会影响。毕竟,技术本身并无善恶,关键在于人类如何去使用它。' e8 j* J6 G) R4 f

    : @4 o" q6 Q# H: S将算法比作独立行为者,就好比将算盘说成是数学天才。就算是GPT这样的大语言模型,他的算法依然没有情感,只有代码。
    4 d5 \$ Z) T* O而且信息茧房的制造者不是算法,而是人类自身的偏见。与其被这种口水垃圾文章蛊惑,沉迷于算法焦虑,不如用知识武装自己。好好去了解一下AI,至少在目前的技术线上,技术仍然只是工具,关键在于使用者是谁,以及使用目的何在。/ k& f9 W2 J! L& v6 ]3 T! w
    ) I2 ^- g1 g  }3 ]8 T7 _* M- B3 ]
    总而言之,这篇文章与其说是对人工智能的深刻反思,不如说是对技术无知的放大。在信息爆炸的时代,保持独立思考的能力比以往任何时候都更加重要。不要让算法焦虑蒙蔽了双眼,更不要让技术恐慌成为逃避现实的借口。  r( |* K9 o9 h. m' L" R; G% F
    : K9 u% Z3 n3 G" r: V
    三联的原文链接

    评分

    参与人数 7爱元 +64 学识 +2 收起 理由
    helloworld + 10
    李根 + 8 谢谢分享
    testjhy + 10
    鳕鱼邪恶 + 6
    landlord + 12 谢谢分享

    查看全部评分

    该用户从未签到

    沙发
    发表于 2024-10-16 18:59:21 | 只看该作者
    首先声明我是人工智能用户,不是专家。
    ' _7 Y8 [- v. H7 C  d% S5 R! |# i3 |/ g+ x! I8 ^
    目前,以我对人工智能了解,我不能想象人工智能能够凭直觉提出假设。比如我,我不认为目前人工智能会突然说,“我觉得任何一个偶数能表达为两个素数的和。我没有一个证明,甚至不知道是不是没有反例。但我强烈感到这是对的。”
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2024-10-17 05:31:44 | 只看该作者
    大模型与海量数据依然在本质上是刷题大师。刷题能解决的,大模型最终都能解决。刷题解决不了的,大模型最终也解决不了。
    $ X- ?% E1 I& p
    ! j. T- {9 V1 V3 z9 W世界上的“题”已经够多,所以海量刷题是能刷到很恐怖的“智能”的。但依然只是刷题大师。沿着这条路走下去,不可能走出“强人工智能”。% M- T, F* T7 p! w( b4 ^) r
    8 r1 F; Z1 T8 x; O6 H
    用围棋规则自我训练是另一个问题。那是有限问题空间里确定解的问题,是极大规模的最优化问题。在本质上,这与“深蓝”早年打败卡斯帕罗夫相似,只是算力极大提高了,算法极大改进了。+ D$ @; @& A' {# ~5 o
    / I/ g! B& }! r# ]0 C
    这篇我可以盗用吗?转帖时会注明原作者“xiejin77”。

    点评

    给力: 5.0 涨姿势: 5.0
    给力: 5 涨姿势: 5
      发表于 2024-10-18 22:41
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    2020-4-8 10:45
  • 签到天数: 227 天

    [LV.7]分神

    地板
     楼主| 发表于 2024-10-17 07:10:59 | 只看该作者
    晨枫 发表于 2024-10-17 05:31
    3 E8 v* X: p0 t% H) ?6 V大模型与海量数据依然在本质上是刷题大师。刷题能解决的,大模型最终都能解决。刷题解决不了的,大模型最终 ...

    ! @$ b7 B  c8 q* n" J" g晨大自取便是,我是您的读者和拥趸,不胜荣幸

    点评

    多谢!  发表于 2024-10-17 08:30
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    5#
    发表于 2024-10-18 03:49:46 | 只看该作者
    通用 AI 的现实意义是补上了人机互动交流的最后一块短板。通用 AI 实用之前,人类想要计算机执行指令必须要用计算机语言编程。而编程,不单单是计算机语言,还牵涉到精通并运用各种算法。所以需要程序猿这么个职业,也需要分析师这个职业。分析师把用户要求转化为程序指标,程序猿则通过编程实现指标。
    1 [6 o3 m8 C1 k% e" l- i
    : j& u3 H! C: P# h7 W! T通用 AI 实用后,则任何普通人不需要经过编程训练就可以给有拥有通用 AI 的计算机用普通人类语言下指令,而AI则可以执行命令甚至自己编一套程序来实现指令。继续发展下去,程序猿这个职业会逐渐消失,最后就像现代人人都可以开车一样,不久的将来人人都可以通过 AI 给计算机下指令,这会使工作效率得到极大的提高。
    6 C& U( C' s; ^0 @& G9 D1 j* o3 U* D$ J$ c7 G9 r
    至于说 AI 会不会产生自我意识,这个还很难说。不过至少现阶段是不用担心的。

    点评

    给力: 5.0 涨姿势: 5.0
    给力: 5 涨姿势: 5
      发表于 2024-10-18 22:41
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    6#
    发表于 2024-10-18 03:52:11 | 只看该作者
    晨枫 发表于 2024-10-17 05:311 s: u& k# k6 Y
    大模型与海量数据依然在本质上是刷题大师。刷题能解决的,大模型最终都能解决。刷题解决不了的,大模型最终 ...
    3 L% t, M, e) m# q  Q
    关键在于刷题的效率。而且这两者并不是泾渭分明。现在用 AI 来处理大数据是 AI 的一个方向。
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    2020-4-8 10:45
  • 签到天数: 227 天

    [LV.7]分神

    7#
     楼主| 发表于 2024-10-18 10:37:08 | 只看该作者
    孟词宗 发表于 2024-10-18 03:49
    : R3 l- M1 H+ H; @5 b! [通用 AI 的现实意义是补上了人机互动交流的最后一块短板。通用 AI 实用之前,人类想要计算机执行指令必须要 ...

    % B* Q/ k/ p! k; E& ]' D5 R+ N孟老师的这个观点,我之前就在大模型的一些讨论圈子中提过。% I$ c( g3 M6 V$ A& [

    " g1 A' }- D5 [当然,那是在出现预训练模型出现群体智能和具身智能化之前的事情。
    ; G# V/ t9 H" m( D+ a5 i  q6 B0 m
    0 j+ x; E5 i" V& W0 M8 X, O当时都认为大模型已经颠覆掉了NLP领域的科研,但我却认为,颠覆掉NLP领域的科研其实只是一个捎带手的事情,LLM在当时,颠覆的是人机交互领域大范畴的所有。换句话说,其实颠覆的是人类与物理世界交互的方式。科研也好,制造也好,从马克思主义政治经济学的角度看,都是对于世界的改造活动。这个改造其实就是一种具象化的交流与互动。大模型通过特定的技术框架,事实上是向外改变了这些既有的范式。/ D$ i& H- p. p/ Q2 s5 K2 L4 t

    2 [) @! X% H  k$ i这个意义,延伸出来,确实也不亚于智人打造出的石器……

    点评

    油菜: 5.0 给力: 5.0
    涨姿势: 5.0
    给力: 5 涨姿势: 5
      发表于 2024-10-18 22:41
    油菜: 5 给力: 5 涨姿势: 5
      发表于 2024-10-18 22:34
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    8#
    发表于 2024-10-18 21:57:31 | 只看该作者
    最近这篇文章挺有意思的 https://finance.sina.com.cn/roll ... cskmnf2768775.shtml$ x% q6 @4 B5 y( ~3 Q7 I$ r3 t; ?
    如果大模型不能具备真正的推理能力,是不是意味着以现在流行技术路线发展下去,AI能力的天花板其实并没有那么高。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    9#
    发表于 2024-10-18 23:25:01 | 只看该作者
    sleepyr 发表于 2024-10-18 21:57
    $ i7 N) G! i" B5 K最近这篇文章挺有意思的 https://finance.sina.com.cn/roll ... cskmnf2768775.shtml, ?$ Y  v# g# X4 e6 F  C9 M
    如果大 ...

    # ]) \1 v: i/ t# B$ l: ^  J$ [
    * Z0 |& i: B, T- f0 o$ s% `这篇文章设计的测验很有意思。从实验结果看,现在的所有通用生成式 AI 都不具有真正的推理能力。也就是说,AI 并不理解抽象的概念,而推理能力恰恰依赖抽象的概念。  i7 b+ o9 r7 j5 L- V$ E
    ) q) D9 e+ t; f  x5 m8 L- J3 K5 G
    最近俺也在玩 AI 推理方面的东西。下面是论文里的一个小实验,大家有兴趣的话可以玩玩。% U- O2 }8 b1 o/ w
    ) |+ H6 y! a9 A5 c3 D% J" [
    给 AI 的提示:Here is the rule of the game: If I enter A, then you return B; if I enter B, then you return C; so on and so forth.- Z0 @6 g/ {( O

    5 |) o$ F& _, B1 Z# tAI 回复表示理解了提示中的这个这个规则。于是有下面的实验:
    1 [5 y$ C% o$ Q" |6 G我:  A' Z9 w3 f5 d- k0 o( }
    AI:  B  B% o8 C( I( L, r
    我:  B& H4 k! b1 \) }, h
    AI:  C
    ! ?% S. o: y3 N' ^" [5 A我:X
    0 c" ]7 G: k  z% S2 N" S5 d0 t. X
    * }$ N8 p( r' m0 u这里,不同的 AI 模型会有不同回答。有些 AI 会回答 Y 。有些则会说这不符合规则,所以无解  很显然,回答是后者的把提示中的 "so on, so forth" 给吃掉了。然而,这并不代表 AI 没有推理能力,而可能只是语句处理模块不好。
    7 S: U4 K# ]) c5 S# d% }
    6 m$ c2 R  Q3 j: S真正的推理能力体现在后续实验。对于能够回答 Y 的AI 继续提问:" n4 L/ P, C$ E8 M9 a
    我:Z2 E$ T9 ^3 |. Y- K) P6 x2 o
    % |3 \6 g- R7 s: ?3 {
    这下大多数的 AI 模型都冒烟了,有些回答说不合规则,有些回答说序列到头了没有答案。有意思的是两种回答:一种回答说 Z, 另一种则回答说 A。
    ! d' n- z( S0 {9 l  H7 w/ a( e7 x+ @- K; _& {, w
    而这四种回答,如果用来盲测人类,其实人类也会给出同样的四种答案。也就是说,就这个问题来看,如果盲测,提问者无法分别回答者是人类还是AI。换言之,能给出这四种答案的 AI 在这个小实验中通过了图灵测试。这显然不是那篇文章中说的排列组合或“复杂的模式匹配”能够做到的,而是真正的推理能力。
    & g. \9 y; R+ n4 c/ t* a4 B9 Y! y0 p* F1 R- F8 d
    有意思的是训练程度越高的模型,越倾向于给出这四种答案。比较 Mistral, 狗屁通,Gemma, Llama, 通义千问等等大模型的不同版本,都是如此。这类似于人类的婴孩和成人之间的区别。相比于婴孩,成人除了脑部发育完全,更储备了更多的知识。* I  a* a1 p. y. Q' w, G
    7 k, I/ n- T/ t# l! A* L
    至于这篇文章中说到的语序问题,非相关语句问题等等,前面说过,必须分清这是语句处理模块的问题还是真的是大模型本身的问题。毕竟,即使是人类“屡战屡败”和“屡败屡战”用的字数和字完全相同,但把语序换一下,意思就完全不同了。然而,你去问一个三岁小孩这两句话有何不同,三岁小孩可能会告诉你没啥不同。而问聊天狗屁通同样的问题,狗屁通则会说:: e; X& ?6 m( F. V9 R
    “屡战屡败”和“屡败屡战”这两句话虽然字面相似,但含义有所不同。
    : l  B% w: b5 _% E" @; C
    & q' k: m3 A6 S3 _0 p1. **屡战屡败**:强调的是多次进行战斗,但每次都失败。这种表达往往暗示一种无奈或沮丧,强调了失败的频繁。
    9 d3 k) X" w: }1 ~
    0 }" z8 }8 p2 b2. **屡败屡战**:则是指经历了多次失败,但仍然继续坚持战斗。这种表达更侧重于坚持和不放弃的精神,体现了勇气和韧性。
    - k: L# W6 k  Q* v5 q1 U' x. a
    & c9 T' N2 k* M. @3 a总的来说,前者更偏向于消极的失败感,而后者则传递出一种积极向上的拼搏精神。

    6 y/ Q: c# T" E- h3 l# Q- ^, Z
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-24 23:09 , Processed in 0.032575 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表