设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 692|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2015-11-30 11:11
  • 签到天数: 2 天

    [LV.1]炼气

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 3 h4 L( Y' c  d8 i  `  _4 u
    1 q9 d% N( `" I# R
    解释的不错3 U) H# X+ q$ Z) ?4 H7 H8 t
    : g8 Z. @, a8 f* s
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。2 d. N2 K/ F) q$ i: L& f; T3 Q
    * Z0 ^% {- |) e( C5 E
    关键要素
    ' h, v7 q+ T% j1. **基线条件(Base Case)**, @9 d; c) g1 i0 B# A
       - 递归终止的条件,防止无限循环
    : O) s. x/ |8 B7 S. d   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 11 B2 \# l* \1 R" l/ s; J% T7 j: Z
    ) y' S, @* N% H& u) A
    2. **递归条件(Recursive Case)**
    ' U3 C0 W+ e* A  n5 [8 @   - 将原问题分解为更小的子问题2 C# l/ h- H. Y. H7 s6 i" k
       - 例如:n! = n × (n-1)!
    # F0 @1 y$ O9 q. X- n: R
    ; @" S# m$ K" X5 q( M$ n" R 经典示例:计算阶乘4 z4 o3 Y  f: G1 {, y% q
    python  {1 N- O! I: Q  n* e
    def factorial(n):
    7 z- d$ A0 P8 X- [% U: M3 {, a    if n == 0:        # 基线条件
    4 n  o3 q5 N. ?/ `        return 16 Q; ]2 B8 O; v
        else:             # 递归条件
    7 J3 L3 o# o8 h/ n2 }3 B6 A        return n * factorial(n-1)5 X) }  F/ y* D& F
    执行过程(以计算 3! 为例):
    ! a* _) [* @3 m/ Hfactorial(3)
    0 I- a" x# @- \3 * factorial(2)% O$ ^2 }# M# ?' U2 z
    3 * (2 * factorial(1))) {0 S( o+ f" C9 ^
    3 * (2 * (1 * factorial(0)))9 @7 ?: |. Z/ p) i/ A7 J# F6 a
    3 * (2 * (1 * 1)) = 6
    0 g: A1 v9 r. Z8 u5 H
    ! P4 j! N, G& q 递归思维要点9 E* `  h* ~5 [3 S2 `
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑% a/ d3 s; V3 `+ I, h) ?4 E
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)5 {) Z& [; K! x* [3 f% ^7 Z3 t
    3. **递推过程**:不断向下分解问题(递)
      a6 }5 c4 D, O& c; s4. **回溯过程**:组合子问题结果返回(归)
    % D$ R( q7 b; i4 `' m9 ~) M1 _: _- t, U
    注意事项0 Y! Q* c! u  f# E
    必须要有终止条件
    - }# U, E6 m# _4 j; g7 B递归深度过大可能导致栈溢出(Python默认递归深度约1000层)$ S6 d6 Z6 x8 x- A$ y
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    8 f! A7 u0 Y# z# r, r尾递归优化可以提升效率(但Python不支持)" V  h8 T% f1 R, F/ r0 S9 `. b
    5 s6 B  ~, ?3 ?9 I
    递归 vs 迭代
    9 p) e: ~: d- u4 t|          | 递归                          | 迭代               |, A! m. r; [5 H
    |----------|-----------------------------|------------------|
    6 R$ a$ b! G: P6 F( ~| 实现方式    | 函数自调用                        | 循环结构            |
    * ?3 E+ b$ b3 L* ~| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |# j% I+ T4 n0 m$ f5 ?, H
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |. o8 b3 U# g. B8 m( U
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    ) q& d: f% E, k- R/ f/ S
    5 Q8 {% P& w4 O. M  O( T 经典递归应用场景/ F5 U9 O0 D7 O6 t
    1. 文件系统遍历(目录树结构)* k  w* c9 s4 B8 F& A4 l  l6 X
    2. 快速排序/归并排序算法
    ' A/ P, E8 Y( A3 ]2 S; c3. 汉诺塔问题' M# A6 ]4 t  Z$ D7 o* O3 {( T8 Y' i
    4. 二叉树遍历(前序/中序/后序)
    , \' r5 Q" ?0 W2 b$ _# Y5. 生成所有可能的组合(回溯算法)
    ( M* ?- ], {2 I% |! L
      H: q4 u, M5 S# g0 V$ p+ f试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    25 分钟前
  • 签到天数: 2953 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    . k# C; v, r, ?2 t. M$ {我推理机的核心算法应该是二叉树遍历的变种。, |$ r" W, [/ e6 Y2 Q2 W( _
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    % k+ T4 k! K0 R) e/ {: h+ d* O" [Key Idea of Recursion
    9 P5 A' b8 g$ |( h: P+ E) M$ y
    / c; Y$ w. K- }" E0 hA recursive function solves a problem by:
    ' T# `5 f2 O9 j. }* K0 i
    " b" H2 L' K3 v8 V: K+ S  N    Breaking the problem into smaller instances of the same problem.
    4 t, n& g6 q: H7 c$ K
    ( n) h) T/ X( V; m+ K) ~    Solving the smallest instance directly (base case).1 N1 J2 y+ x6 P3 h1 I3 ?- Y: h. I

    ' f: q1 y* Q: [4 B( ]    Combining the results of smaller instances to solve the larger problem.
    " {* t# v, |% `) _! f' B5 e9 w9 b2 F( S
    Components of a Recursive Function
    5 B; w# c1 W5 n: R" W& P+ k# ]' j6 E6 s9 M: f4 `  e' G% p; U9 G- f
        Base Case:
    " ?  x. ?: }, |' ~/ Q
    1 V# b0 B( y4 }  e% k5 I2 @$ S        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    - A4 w' t3 N3 y) h6 I& v% p& ^7 A& f; K# _
            It acts as the stopping condition to prevent infinite recursion.
    " G! s. p: ^% g/ D4 }, i& a
    4 s; x  _; }+ h9 @, y2 Y: C        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    * |% F* L/ S$ ?1 Y9 E( h$ C9 b+ [, D$ r. o" {4 W+ x' n% P
        Recursive Case:
    9 Y1 ^; G4 F$ b, J7 @  X0 a! Q) M$ w' S+ O: r+ U& A
            This is where the function calls itself with a smaller or simpler version of the problem.
    , I, U8 z- W2 h' P9 F
    - K$ P0 T- V# M# M        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).( w) w  y& D' N0 H
    ' R7 U5 [$ }0 ]6 x+ |: _
    Example: Factorial Calculation& k: |/ ^# w7 y) @+ R4 |5 S

    0 g2 h4 h9 U$ j  O9 Z: {- T5 EThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    . T2 W* x6 R- H) T6 S8 i8 t2 t5 P5 T$ f
        Base case: 0! = 1* n, q. ]0 @' y0 ~
    ! r0 Q5 E: ]* ]9 _3 N
        Recursive case: n! = n * (n-1)!! ?8 m; F/ Z+ K1 m  I

    0 M9 R; h; e0 uHere’s how it looks in code (Python):: S! f3 n4 j# c3 O' o) b0 s
    python
    4 d: I0 D$ `% _5 C% w
    7 D& s8 y* }* v( S' V1 J$ m
    / j$ n) l  p- Ydef factorial(n):
    * _' J0 K, C& A8 S- q- V* u9 U3 _    # Base case! F/ X; o, {4 D- K
        if n == 0:
    4 ]7 }- I* D" s' L7 e4 Z        return 1$ m* q6 @. h* @# F% d3 {
        # Recursive case3 g; S7 y, D  y! S! ~2 W  H
        else:) b# b! z  e" G* X! W, D$ k
            return n * factorial(n - 1)
    $ L6 @  m  X! k8 J+ Z5 W* D& Z  |, ?" A  l1 X
    # Example usage
    + i0 w9 \. V# ?2 H1 }7 tprint(factorial(5))  # Output: 120
    8 x$ p7 d: s! y% ~9 H* @2 G) O1 {; K+ c7 W1 ~; t( D; }. e1 ^) o
    How Recursion Works. }& x1 U' s( x
    / e$ m( D* z  G- t
        The function keeps calling itself with smaller inputs until it reaches the base case.
    # d/ d- d3 Z1 \
    ) C% A2 v, u5 r; J- O. S$ P7 \8 M! g7 h    Once the base case is reached, the function starts returning values back up the call stack.
    ' H& f( Q! `0 I# b" I. P) I0 _! ^! L( A! p. i
        These returned values are combined to produce the final result.0 W# i5 T9 G( A! i/ d$ l, F

    ; N& \& |) d6 j1 V  T, p/ DFor factorial(5):5 N2 B( I9 r( C' [4 h  Y

    5 M. c. _. U3 B$ C* _( r' l- w; Q& P! ]6 l
    factorial(5) = 5 * factorial(4)
    8 _" N% x( F. i0 g  v: Mfactorial(4) = 4 * factorial(3)
    - K! j6 J0 {1 ], ufactorial(3) = 3 * factorial(2)1 K: |  J1 }7 y7 [) T
    factorial(2) = 2 * factorial(1)
    - P# ]( {8 o+ P" \5 U; ^9 m- wfactorial(1) = 1 * factorial(0)/ h, K% y9 ~/ K& q" d# W$ I0 v
    factorial(0) = 1  # Base case: `: P# G8 f# b! t" j7 I( u

    ! M7 C7 C' e' j8 MThen, the results are combined:" k- M' H6 B: X" [5 f

    7 Z3 ^2 N5 `0 i) I' E" d% ~0 E7 I9 [. l1 Y
    factorial(1) = 1 * 1 = 1# q. s7 ]* _- k% V
    factorial(2) = 2 * 1 = 2
    - P, ^* E) g- yfactorial(3) = 3 * 2 = 6( ~% ^+ a" E9 {
    factorial(4) = 4 * 6 = 24
    & D' m/ N+ \! L) E  z$ z4 G1 _9 G8 yfactorial(5) = 5 * 24 = 120" i: B: b' O7 D( p& W
    2 X; l4 M1 b) t+ w
    Advantages of Recursion
    8 |* A) x. n; M+ u
    ) g8 g0 c, b$ A1 ~; O$ W    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).6 I) U4 Z. }# E) B; R$ b# F
    . N1 Y4 r% d2 ~! c
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    $ [1 \8 U2 Q- n+ c' k# H; @6 l0 A# N* K# O. f1 v+ X( e9 _
    Disadvantages of Recursion, s8 p! Y5 I4 N( J# A  A

    / s5 {% p0 H) R* o3 a( Q5 A    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.4 z/ |+ a# W" T) r' |$ E1 O
    6 w* m0 ~4 f* m1 @+ ^7 S
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    / _5 A8 b; l/ _3 C9 ?* @: k% a$ [* V/ V& A6 w
    When to Use Recursion
    $ Z( W  Z6 T/ ?) p  U& T, a4 d5 x1 q$ u5 w$ m# M! e1 E' s
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    $ R! v" C( P& q
    5 e1 X2 V7 e8 y    Problems with a clear base case and recursive case.  W2 i( {" ~# M; }% ]

    % o7 t% [8 A4 h( k3 k* W2 {Example: Fibonacci Sequence
    - Q, e4 c* W4 E2 ^7 w  F6 t, O  v/ c, r7 G9 s2 e3 R
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:+ n* i7 d* ?- [4 v1 ^
    5 ^5 h( j/ q4 l1 |; v& N5 w6 ?$ P
        Base case: fib(0) = 0, fib(1) = 1
    2 N1 w0 r/ G- S( [
    # J9 x" c  U3 h  e4 Z    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    3 O5 J. s! n# U1 g0 D  t$ i5 F) z7 E9 u# t* }6 O
    python
    ( a! F0 S! _& w# X7 c  m; O% Q5 S% X" K' v6 p7 f
    # X' F( _' m- Y* {) P, O
    def fibonacci(n):% B3 ]4 l0 }0 h" E
        # Base cases
    : r" i1 Q$ P# x: u7 e' F$ y% U1 G5 P# V    if n == 0:
    6 D/ l5 m% p6 J5 f1 i5 ^7 C+ Q3 f% z        return 0
    / a9 p- J5 s( t    elif n == 1:
    : f& q' @. D6 w) Z& d7 m! |8 l        return 1$ M+ w# `5 J7 E  ?* [
        # Recursive case
    ! `5 l+ o7 z' V& M    else:
    ) k0 A+ f! @! E! ~8 I        return fibonacci(n - 1) + fibonacci(n - 2)% n; K0 X8 a+ t
    & K: d0 V' X; z8 P* v
    # Example usage% k6 N  k  K$ M4 f! ]8 R0 m
    print(fibonacci(6))  # Output: 8) S) O' D  _2 j7 h
    7 X' P1 W* R/ b! }8 b2 |
    Tail Recursion
    , s4 M/ |  r4 a
    3 V% \6 u+ c! m( Y3 KTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    4 k1 K. d7 T  K) e8 z: e' k- X7 H! N& @" }& U+ N6 L1 w3 h
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-6-17 07:11 , Processed in 0.037644 second(s), 21 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表