设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1029|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 ' l8 M& L1 j) l+ ]

    : J2 m& p3 g* ?! J1 `4 d" S解释的不错, I/ X! ?/ V3 b
      G/ L7 @0 O+ k6 V8 ?% o" r2 K
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    8 M# z2 I! s2 [7 {, _. j% `, k/ r+ X: F% X! L: \5 G( r- X" h" b
    关键要素- B- v0 L9 J$ \
    1. **基线条件(Base Case)**
    8 |$ p: M2 I$ W   - 递归终止的条件,防止无限循环
    ' ]. m4 K, i% m9 T   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
      b5 ?! {) X- ]# ~. k
    & Y" i3 F- W9 O2. **递归条件(Recursive Case)**
    & C$ n: v: ?# \! E  G% O# C+ G   - 将原问题分解为更小的子问题& Q. q- t) L$ p2 g) A. v  h
       - 例如:n! = n × (n-1)!
    , p8 e. j+ S. n& s2 |" Z/ q
    5 f/ M* u/ a/ \% X5 U 经典示例:计算阶乘
    + E" J4 Y% @+ g2 d6 N  M, hpython$ O! e* V" H4 l+ [
    def factorial(n):4 Y! f/ C8 g# \- t/ u5 a
        if n == 0:        # 基线条件7 L; I7 s; Z& {3 d4 c+ ]3 l
            return 1
    ) _' O, [1 z2 ^9 M+ U  e: @: n    else:             # 递归条件
    : R3 `' z' Y) o; X0 \0 l3 u1 p        return n * factorial(n-1)
    & H3 d; R9 w/ P9 p8 V- A/ v. A执行过程(以计算 3! 为例):
    . H  }3 t# ^7 tfactorial(3)
    ! h$ t( O' m, q' N7 l! ~7 y3 * factorial(2)
    6 S7 Z; `' L6 B3 * (2 * factorial(1))
    0 L0 g1 K3 X' X: t3 * (2 * (1 * factorial(0)))+ f! Y+ Y5 o1 C' p) I3 A
    3 * (2 * (1 * 1)) = 6
    2 F1 Q! O- D: \! ]5 y; y; q/ M
    * X1 n+ ]  \, `' {) S: x 递归思维要点
    ' G+ D9 f5 \8 K9 Y1. **信任递归**:假设子问题已经解决,专注当前层逻辑, ]$ ]) @3 @9 C+ `
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    # E/ l1 Y) g1 \; X$ ?3. **递推过程**:不断向下分解问题(递); T1 o0 V# Z0 G1 O( [3 S
    4. **回溯过程**:组合子问题结果返回(归)& \: q+ i( s' @6 W' a$ E4 C

    8 r& G" ^' ?. B/ t  X& ] 注意事项" E3 M3 I. F2 [+ ?! g7 n
    必须要有终止条件% `) h* S$ H0 S3 W; u4 H! d
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    : X2 F5 d, q0 H  }" P某些问题用递归更直观(如树遍历),但效率可能不如迭代+ E" p( |7 k0 Z/ M; L# w; w- {5 M/ C
    尾递归优化可以提升效率(但Python不支持)
    , J$ ~" i) }- ?: a1 D: h
    , x4 }9 `4 ?* J+ r7 L  m% t. ?8 J 递归 vs 迭代
      I2 O+ M- F7 V6 k8 y5 d|          | 递归                          | 迭代               |
    $ h7 p2 F! @$ e5 i  k2 l|----------|-----------------------------|------------------|) E1 H4 D7 g7 E
    | 实现方式    | 函数自调用                        | 循环结构            |
    " T! b3 I1 _" {# z2 t7 N| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    , \. U4 ~* ]& k' K  R) X; c+ T| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |" D8 {- |- ]# O: a/ b$ a
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    ! H* c' y! C, f/ i# `# \! R! W$ r' ^! ^/ Q6 r# _
    经典递归应用场景- E+ p0 r! h/ K# D7 O8 M; w
    1. 文件系统遍历(目录树结构)
    6 d* v' e6 f* ~/ I! W/ h2. 快速排序/归并排序算法3 `. n3 @% M. ?+ f: q$ W9 h' ^
    3. 汉诺塔问题( w. R* t3 R. Y! ?
    4. 二叉树遍历(前序/中序/后序)0 _" b/ a, t: N: B( `, ^& G; x
    5. 生成所有可能的组合(回溯算法)
    " U8 U6 y" A* J) u+ E. M4 ~. B: w+ C# ]3 P
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    8 小时前
  • 签到天数: 3076 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,0 r* t6 l9 q7 i9 G1 ]6 f6 `/ d1 B
    我推理机的核心算法应该是二叉树遍历的变种。
    5 q& V/ M/ r6 H另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:) b8 `2 n: E& N$ J
    Key Idea of Recursion8 I8 H5 k4 z+ [( }- f

    6 L  y; D/ D1 ^, K9 [A recursive function solves a problem by:
    # w; N# h/ t4 F# G& z- P; @( ]( U9 G" u
        Breaking the problem into smaller instances of the same problem.1 [, Q& O* O6 v) ~
    % W& B4 Q- W. n. K- Q
        Solving the smallest instance directly (base case).
    5 x9 j" x. x7 K$ x: {, B$ }+ f
    ; |0 v* t6 D+ {5 |7 [& l    Combining the results of smaller instances to solve the larger problem.
    % [! R8 K6 r2 [, e6 Y! ^* F: |, ]  \' ?2 x
    Components of a Recursive Function
    ' [- |- B, g$ g( I0 I9 L8 M+ R/ }# n! {
        Base Case:
    ; I$ r2 O: i: p/ m  ~7 X" a( }2 [9 h. |6 X; `1 Q- T& W  u
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.( e$ X, j6 t. Y' T* U

    ' ?) b" c/ K- p* n/ Y        It acts as the stopping condition to prevent infinite recursion.0 k6 ~0 O' ?3 t: K; u# _
    : Q( f% ]  z" ]. H, W7 ^
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    6 a$ J7 Z& Z: f' }8 S2 A: i
    0 W# j( @) h' S  P1 x& F    Recursive Case:
    3 P9 S' S" z$ M: @/ ?- C4 ~
    0 e7 c  ?% a, Y' _! Z, s        This is where the function calls itself with a smaller or simpler version of the problem.
    ' R2 O  E( C+ p4 m) J. s
    . G* S5 L" H" b. a3 m        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1)." `( T" \3 a$ E8 w8 O5 X, H
    . ?' y9 \% T4 P, |* z1 ]
    Example: Factorial Calculation- n# C) e, e, S6 a- Z

    * m" U* e; E$ yThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:2 O+ y4 r$ L1 R- Q; Y. H
    2 }" A- a# o  J
        Base case: 0! = 11 T5 x$ V5 q1 i2 m4 a( q
    ! m3 z! G4 J+ g1 a; o
        Recursive case: n! = n * (n-1)!7 L! S+ n+ w: e, B! l" b3 q

    7 Y: Z; T" x4 yHere’s how it looks in code (Python):
    * n! i' r. G! t1 b. F0 K/ ipython
    , ]9 E& P, k. d2 F) q0 n& W
    ( Z: n2 B* l, ?4 s' a% k1 l! v( x# U" F- e* L
    def factorial(n):
    & e1 P- C4 U% G    # Base case$ r/ J) Q" D* \& d5 D4 Y0 X
        if n == 0:' K0 \! q) x5 ?" x
            return 19 Y) Z) d; c9 Y
        # Recursive case1 u. f% [5 t/ j1 p1 W0 L
        else:
    9 n1 v2 e  N+ L6 u' |: s1 K% r* ?0 a        return n * factorial(n - 1)
    $ i3 I) x2 r' N) c- s8 J; c( F) ]& z: }3 B
    # Example usage9 J0 Y- W( \% j2 `0 d# ]" V! n3 J
    print(factorial(5))  # Output: 120
    6 C; L0 ?- y5 h3 T3 W/ A$ z
    6 a0 C" O% c; O4 N5 k7 Y9 [7 WHow Recursion Works
    + p" Z6 U# f6 i+ h4 I2 ~9 }9 h, j% ^/ L/ z
        The function keeps calling itself with smaller inputs until it reaches the base case.
    + `6 g2 b# c0 Z; m0 u3 }# Y$ Y
    & r3 E0 K/ z1 }* G/ E3 R    Once the base case is reached, the function starts returning values back up the call stack.0 t- |- o' W; o; |! H

    ; H2 p6 Y" n/ U. S7 k/ q    These returned values are combined to produce the final result.
    ( b2 j- r1 t% U- f: k) i6 p
    , v* f6 N& T; KFor factorial(5):4 E; E8 z8 E5 Y5 p
    4 R3 t2 b7 @# M3 C" ^+ x1 v- o
    . S6 k2 e, u$ |  R
    factorial(5) = 5 * factorial(4)
    ! V* C9 h/ `8 X& J" lfactorial(4) = 4 * factorial(3)1 R( ~. U8 q0 G5 k& f
    factorial(3) = 3 * factorial(2)7 m0 B; R+ N7 i2 h
    factorial(2) = 2 * factorial(1), q* p+ d2 H- B& F# }
    factorial(1) = 1 * factorial(0)% o5 ~; I! F$ P
    factorial(0) = 1  # Base case4 B% _- ^$ o& K
    8 v! b8 F* f7 h+ @2 E
    Then, the results are combined:, H. {+ _; @% b) f/ h5 G

    - A( T2 u( r/ C
    : G! ]* t4 z- i8 u9 Y! ?" C& yfactorial(1) = 1 * 1 = 15 X+ t* S7 V" R
    factorial(2) = 2 * 1 = 2
    $ l% W2 M* i8 K  _" x! tfactorial(3) = 3 * 2 = 6
    1 K! F6 W; L3 @4 D8 I$ tfactorial(4) = 4 * 6 = 246 `% k  _) u! `- ]# I! w1 P, i
    factorial(5) = 5 * 24 = 120
    . _6 {2 Z) K. x2 h: N
    9 q! Q7 [8 H( T$ ~/ fAdvantages of Recursion1 D  l. j+ ]  }) }: {

    % o  I: O$ Q, g. H, \' K8 c% i    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    ( e, C* q4 o& z9 X' N3 a" _2 h( h: A+ P
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    5 @& V7 Y" S, F/ I. O$ t/ @/ A9 [" m# {6 ^) N" ?
    Disadvantages of Recursion0 T, Y$ b+ m) C9 y3 D
    ) w4 [+ v& G, c3 o& c
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    $ k6 d6 \/ O9 J3 F& {  _4 O9 g3 c5 h4 a
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).% n& K5 A& M4 l4 d" |( H8 p
    / z0 w5 t  v% L' E/ D( B
    When to Use Recursion8 J$ \# {# x$ Q( v% @$ D! }
    : T: q9 j+ E3 u( {6 X, t* @. n: Z
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).% Q4 d6 v2 j$ P% l7 R

    " o. _6 a* A2 P) S% F5 y    Problems with a clear base case and recursive case.: K+ Q2 n1 s: S3 ?& b' K
    : ^  @# Q/ g  n9 O, E4 H8 A
    Example: Fibonacci Sequence
    9 W* S, q$ N; r, h1 D! Q/ E
    1 |! I" t3 `) M. ?The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:. X- F& a2 U0 q% V4 y
    6 ^2 D' f  [' J7 J! Z/ L, Y
        Base case: fib(0) = 0, fib(1) = 1
    0 y: K) y) ?* i' G) j0 [
    5 J9 f& t0 _- g5 T, V    Recursive case: fib(n) = fib(n-1) + fib(n-2)* a2 T+ \' c5 }( A3 z
    " ]% F' u/ d  R# v7 N
    python
    : N+ w" H0 b: r- s* h! y( r5 `! J

    9 @7 s& w0 V% D$ Y/ N% Ddef fibonacci(n):" I# f6 v: _- n' a+ p4 e8 a
        # Base cases3 {3 Y* I  V: |0 s
        if n == 0:
    ! U. ?% L; M7 P& B* a        return 0
    % `( g3 n" a, A6 r5 a4 I+ }0 Q    elif n == 1:
    2 n. z  D0 R4 {, L0 ]. V        return 1& s7 o* \( B# ~8 z  r* ]6 Z8 L+ G7 ?, d
        # Recursive case
    8 a  G: T# Q0 B3 n. q    else:
    ! N! W# y: Z5 r7 K3 J! B        return fibonacci(n - 1) + fibonacci(n - 2)
    $ V- P2 Q1 X. x- @
    0 @3 X2 e$ n0 j7 B1 R1 Q/ }4 J# Example usage/ @# [  S. k/ U0 b3 G, q
    print(fibonacci(6))  # Output: 82 G" k$ l# V, X3 I: i% L
    $ h9 ~7 I8 ?( J0 }' {
    Tail Recursion3 e4 l! O7 v% S- l0 a  I" W( V

    , v# ]1 J" s2 q2 c, m' Q2 r5 ZTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).- P1 Y8 S9 Y! p* ~" h" x4 Q
    $ G& W6 u* d4 c/ E7 s$ Z( J/ G
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-10-26 16:28 , Processed in 0.031282 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表