设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1472|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 & g; p- o9 e" B" R( T

    & {8 m) [' b) z# m1 `3 f解释的不错6 s& N+ J0 u4 Y# Y0 d

    $ p8 t$ O  J# R4 Z1 h% C递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。, g2 h3 M+ M; w, G/ |7 s

    , \% ?- G- X8 E  T 关键要素7 L0 [: Q7 }; W. \* a4 _
    1. **基线条件(Base Case)**
    3 j6 x* |; N' |4 I   - 递归终止的条件,防止无限循环
      Z6 a* b  Q1 J3 [  ]; b/ a   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    $ e, M" Q9 K# H! s$ C: r! v- |) Q7 y, }, }$ D
    2. **递归条件(Recursive Case)**5 O5 `& b1 _; H, D1 I; A
       - 将原问题分解为更小的子问题
    , }1 M) U! E' i% d0 ?: l6 I# u/ r7 v   - 例如:n! = n × (n-1)!  \6 ^+ M1 I9 P! l
    7 k9 `5 ~5 h- ]0 H( ?+ J. _1 q
    经典示例:计算阶乘7 g3 Y3 I& J. p9 T. j" d
    python& f2 \# U4 }% k, Q! r+ f: K
    def factorial(n):/ _* _5 t2 v' d6 ]
        if n == 0:        # 基线条件
    2 q$ e; a" ]9 \+ Y, U        return 1) G0 p& e! a+ v6 a+ u
        else:             # 递归条件
    / ^5 Y( g4 i' k$ ?, B        return n * factorial(n-1). Z8 K! f! X) Z- K) H
    执行过程(以计算 3! 为例):9 g0 W6 y- Q* Z$ M
    factorial(3)
    , q! v- {4 t; A3 * factorial(2)0 Q! L9 }' a+ n! A0 {+ l' I
    3 * (2 * factorial(1))) K7 {6 e* W0 Q/ M" r: }  P( B2 s
    3 * (2 * (1 * factorial(0)))
    : R. a3 h+ R- y" p# d5 w3 * (2 * (1 * 1)) = 6
    1 K$ z' a" h; j& s! E. a; \( f. S* b: O  c2 a0 J
    递归思维要点
    # A% }/ |  j. Q$ U1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    1 X3 p1 D* m, Z# w: ^! N! I2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    ; s* X2 z( T$ Q3. **递推过程**:不断向下分解问题(递)
    ; i4 u) T/ I' b# U3 F$ v4. **回溯过程**:组合子问题结果返回(归)2 a& K  B8 ^* R
    ' C4 o3 B* {# M1 X4 `* K5 i
    注意事项& X4 S  Y0 s6 M- \
    必须要有终止条件% `1 E$ H* q- T: }& ?% z
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    - C/ G: X; K* P) @5 U* |* t某些问题用递归更直观(如树遍历),但效率可能不如迭代/ q* T5 T" h, ]) p' \
    尾递归优化可以提升效率(但Python不支持)  T' }4 F- h) G9 v: x& ^
    & R1 q$ w: y7 q+ J+ e( g
    递归 vs 迭代
    ' j  U2 Q, ?. x4 M0 W|          | 递归                          | 迭代               |, a7 Y0 r  d4 O( s+ A. O$ q3 r
    |----------|-----------------------------|------------------|2 E: D* u, T- d* Q8 F! J6 C
    | 实现方式    | 函数自调用                        | 循环结构            |
    . v. j4 g! z5 [, U5 N| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    " d5 L, A) j4 f( [6 k| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    + @: c& \' g; R| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    9 _3 r( \* |8 R5 L9 m9 u& ^# q
    " [6 x9 ~8 ?5 e5 u' R/ q; g 经典递归应用场景
    ; s7 r, }7 ?# a+ H1 z' ]1. 文件系统遍历(目录树结构)( S4 l5 M( g* J4 v  W
    2. 快速排序/归并排序算法
    & M( Q( l& E/ Z% s! L2 P  M# N3. 汉诺塔问题' G* `, O, ?6 ~3 L, ~
    4. 二叉树遍历(前序/中序/后序), c5 G' f4 M( L9 l, y
    5. 生成所有可能的组合(回溯算法). ?; L) f; f. _
    ) q' q' }4 t" k9 g% Z3 D
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    开心
    22 小时前
  • 签到天数: 3115 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    # p& i7 V/ H, ?$ D- M3 _3 [我推理机的核心算法应该是二叉树遍历的变种。
    4 K  _8 q  V$ S另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:- r# L% E! g1 q! W
    Key Idea of Recursion
    6 C2 ]/ y9 }* o$ c3 C0 B/ H4 G4 Y' B8 _* M5 A
    A recursive function solves a problem by:
    % t8 z* D7 F7 g( z9 n+ L
    9 h8 ]) H) _) o" B; a6 r    Breaking the problem into smaller instances of the same problem.; Z- w4 i/ T5 y, D" i- K
    5 l. P+ v* h6 R
        Solving the smallest instance directly (base case).& U2 ?$ U. V2 _9 d9 @, P

    9 m% c( E" S' C# D- V5 ^    Combining the results of smaller instances to solve the larger problem.
    5 o" Y) D9 Z6 {  O! y$ g
    % C8 q7 w) E0 t& ^5 |+ PComponents of a Recursive Function
    7 D9 \) K6 _0 q, U# V- X& T" F) Y9 `! e; |7 A7 U* h. T! m/ w. F
        Base Case:
    7 w5 G( X$ c6 f
    ) X  z0 n7 f% ]7 Q2 k        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    ; Q+ h8 X; n: v9 j( m# I. }  a& f# E8 N$ U7 l$ n# D: Z
            It acts as the stopping condition to prevent infinite recursion.) n$ k& S; M2 r: G& M

    : C% [, }$ v, j; g5 _        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    ' x6 w0 C+ U- B9 Z2 Y( R% c# r, J5 |9 q
        Recursive Case:
    3 Q6 b- T9 T* x+ _! h& p. ?6 k+ ^* w; O9 U) Z5 O; O( [
            This is where the function calls itself with a smaller or simpler version of the problem.6 T' U& u; l% a% L( u0 ^$ j$ }
    / J9 M$ \8 L# Y/ x
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).1 ^/ v( X: o7 u8 v" V' T( W, h- x
    8 M' J/ E* H9 N
    Example: Factorial Calculation1 e. Z" H: E7 B0 z1 m5 N4 e
    7 E- ]4 m) w( Q% v8 G+ D
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:: _! S$ }, h3 h0 E" Y" h6 ]

    / o8 B+ i' z$ t- @$ k1 }    Base case: 0! = 1
    # b2 V( w, B* Y' K
      g: z2 e: z2 z% Q9 \" ?1 x' q    Recursive case: n! = n * (n-1)!
    1 Q: g1 s- z; w, P1 J) d2 q
    3 n- H2 X$ ?6 f$ D, o; `8 ~Here’s how it looks in code (Python):
    ) W7 ]5 H9 C8 P& l/ R) H  B, B& D4 mpython
    ; J) |) w  |' a0 D  E; p+ v
    + o  D2 ~  d! y
    + A" D6 B- d2 z1 |def factorial(n):) a$ d3 |2 ~7 Y- [/ @  g
        # Base case  X8 S/ V# h3 _- G6 U. p+ H
        if n == 0:# ?9 r) i( d: }6 E% G2 \( s/ a
            return 1. ]4 n! h1 x% p, k: X7 e
        # Recursive case
    - F7 J, L+ Y0 x6 d    else:
    0 w& D3 z- A9 Y3 \  r        return n * factorial(n - 1)$ h1 f! V/ O: y- T; j! ~- M

    ( I) o* A+ m4 d- w) a: h# Example usage# o) ^9 |* J# x( i. h  H* u
    print(factorial(5))  # Output: 120
    * R/ _% h3 k( A5 g' m: f
    : ~* A2 K; J+ J6 U0 K% Y2 pHow Recursion Works
    ( x* f. e$ x7 n  ~8 o3 w0 w) t  y$ N" H( ~% U
        The function keeps calling itself with smaller inputs until it reaches the base case.* L7 C0 X$ u' X0 A, v* r" H. {

    ' t+ P: \6 m! Q# n! l) \& \    Once the base case is reached, the function starts returning values back up the call stack.+ \0 a8 R; n8 ?( S) z7 S
    * M0 ~3 `" d& \; x, t; y; W
        These returned values are combined to produce the final result.
    " D! |! T4 Z7 f; `& Z8 c& t- s% Z8 U7 K& _
    For factorial(5):
    . F) l( \" H4 p0 [/ d5 z3 B& k9 q! B6 I. H  J+ s5 H

    , Y0 ?' E0 {/ {: D& X; }8 G+ Kfactorial(5) = 5 * factorial(4)8 a  L% i8 f8 p$ ~# \* f' e" v
    factorial(4) = 4 * factorial(3)
    ; }- r% T& W8 k# y/ Y1 T) d6 d# |factorial(3) = 3 * factorial(2)) H: R# _* E$ f9 z
    factorial(2) = 2 * factorial(1)
    1 w! x" j, s8 h0 ufactorial(1) = 1 * factorial(0)
    8 x% z3 d0 k6 l. u. tfactorial(0) = 1  # Base case! M, A; q9 G- ~% {3 \0 @, q6 u. A

    ) c& Q; S) {# }3 v" KThen, the results are combined:
    8 J- ?8 ~* I% h! \7 F2 b# g6 h8 O( V* x* x. w

    ) P; F/ N7 L( s6 [1 L. ffactorial(1) = 1 * 1 = 1
    8 E# C+ c$ X5 ~; \7 S+ c% w8 Y; Afactorial(2) = 2 * 1 = 2
    7 d3 g, Q& h# Ofactorial(3) = 3 * 2 = 6
    1 b$ ~# f0 L) d3 g1 ]factorial(4) = 4 * 6 = 24' v6 o% N3 [/ j% P; a6 }" I
    factorial(5) = 5 * 24 = 120
    5 v, G- u% m% Z
    # g: m1 |# D" I1 \. i  Q2 JAdvantages of Recursion5 w) h) Y" V0 }5 ]: I% ~
    . w% H6 u! K5 W- r  h
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    - ^  A/ v( h6 U% c( N
    % [  [0 c. [! \    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    4 x) W- ?) T0 z
    - K/ p) ~# \1 F) ^9 ?6 X7 U% tDisadvantages of Recursion- [& T) B! k1 K5 R
    . e# P/ Q' N) A, \
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    $ P4 U1 D* X6 }, J
    . F# o0 z2 `* \    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
      \) T- ]3 g% Q6 j% A% k5 [
    2 _! g) u: m  zWhen to Use Recursion
    ; u, V$ s6 u$ Y1 ^8 Z6 r) l4 m6 I6 f2 t) P2 T3 j
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    8 n$ y0 M8 e0 W7 [# z, V3 M9 q% _* n9 ~) {* E1 B3 b
        Problems with a clear base case and recursive case.
    7 @4 B% z2 T7 V* H6 N0 v& L! z* I. w9 d  B5 |. R: l
    Example: Fibonacci Sequence
    9 |' D, E: z" K( @- I+ J3 c8 Y
    8 j9 G; ~. {4 ]* P# x% y  EThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    6 G" R# ?" t" e6 V  p+ ]0 g# |0 Y) O/ k4 O3 A
        Base case: fib(0) = 0, fib(1) = 1
    1 u$ H8 A7 S" c9 V! ?# w) x) H/ D9 C3 ]* m
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    ! g0 P2 W+ Y, D; q' G
    0 Z, _4 A; A5 q1 ipython& k$ w. J8 X; \" P

    " X+ {2 q+ I, U  k+ _0 _
    - s  h$ b* q  E' V' u. c. o5 hdef fibonacci(n):
    0 R3 `- d  T& g% A9 ^* _4 D    # Base cases$ _* I+ Q2 {! d/ w
        if n == 0:3 w; W' o# V0 _! j: T% \) v
            return 0% E6 [& q6 m  S, x6 N2 S, [
        elif n == 1:; F1 l" ~, S3 m) }( M5 q
            return 1
      g+ u: l% ~; ]1 b- _    # Recursive case% }: K$ z" F+ z; T% y
        else:. o/ ^- Y# {' T8 t3 e; H* o0 b
            return fibonacci(n - 1) + fibonacci(n - 2)
    + `  l9 N' C: D- I! O$ w3 ^2 ?5 `9 P$ X" O  ~4 K6 `
    # Example usage5 N% C, p2 {/ r- \+ S
    print(fibonacci(6))  # Output: 8( Z3 g6 {! _  I- a

    : S) q  ]+ m, pTail Recursion
    0 t& D5 O: D* x' Q, D& d* s$ ?* j
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    * P5 ]' y: L, R) t, H6 O5 L2 s/ F4 a4 ?; p
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-11 23:45 , Processed in 0.030608 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表