|
|
这个问题说来话长。我的观点:AI加强了自控的重要性,而不是降低。自控是AI的手脚,AI是自控的大脑。手脚灵便可靠,大脑才能发挥作用。
( g2 ], m) z. B' x; s) }5 ~+ R4 g. j/ B
用AI直接控制,在理论上可以,在实际上做不到。首先违反KISS原则,其次在可预见的将来AI解决不了行为“不可预测、难以理解、无法信任”的问题。8 X7 N6 Z1 {: E$ O0 ?3 s/ S0 N
$ u6 \- g2 R: i/ v
AlphaGo下出的一些棋路至今人们无法理解。这样的AI用于指挥决策是有很大顾虑的。
1 j. s. s: e9 O
& o# d- _+ A3 d+ x就最简单的神经元网络(NN)建模而言,由于模型行为太不可预测,人们曾经用“有界NN”规定一条走廊,不得越界。这在本质上把NN从非结构化变为结构化,退化为形式更加复杂的一般回归模型了。但不加约束,在数据点之间可能乱跑,我就碰到过这样的事。所有模型都需要在数据点之间内插和两端之外外推,这样的乱跑是不可接受的。# C4 x6 c3 y% {; m
6 Y# `% z. B) {6 _现在Chat GPT在很多时候很靠谱,但也有不少时间不靠谱。最大的问题是不知道什么时候靠谱,什么时候就不靠谱了。我们在测试的时候,有参考答案,可以判别。用这作为决策工具,你敢信吗?% |# T" y% T8 T/ Q- G0 F% w) Q' C
$ o0 q/ {: W L( V' t: y1 d
相比之下,自控基本上还是依靠确定性模型和工具,行为可预测、可靠,在很多时候(不是所有时候)可以从数学上证明收敛,其余的也已经有大量实践证明足够的收敛性。
% a/ ?3 T, v# {3 j( P- U6 Q, |4 G* S9 q, N
即使从系统架构上来说,AI对自控也相当于串级系统,AI是上位,自控是下位。两者是互相补充的关系,不是互相替代的关系。6 T8 H5 Y; G; D B! x. m
- \" z$ J a" Y3 @6 v# F$ m6 o
我写了一本《实用过程控制》,机械工业出版社计划年底前出版,里面有一章专门谈这个问题。到时候欢迎点评。 |
|