设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1347|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 & w- R7 k# }$ O  x* @; T) R3 W

    - @! E3 e7 x! f9 y8 W解释的不错3 h1 k- r. ~. |2 b& n$ u, |1 h

    ; a1 `+ v9 G  Q) W递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    ) I' [% f5 H" N1 s  a6 m) ^3 }- X' ?
    关键要素
    6 ]1 G' E( I3 _- I( M0 w0 f1. **基线条件(Base Case)**
    4 T# D5 Z8 L0 E: _. \   - 递归终止的条件,防止无限循环
    4 O7 D& c/ N/ K1 ^  N   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    2 V: `/ o8 @" U5 d
    / _$ ]) f3 }; O2. **递归条件(Recursive Case)**$ ?0 {& k0 O( z4 ?) Q. }6 D
       - 将原问题分解为更小的子问题
    , x7 M3 [8 I/ Y6 T! l& r1 l$ B* y   - 例如:n! = n × (n-1)!% o! V( `. s  b& o' V9 k4 G
    3 j- J+ }* m$ h* V$ j0 K5 o+ B$ m
    经典示例:计算阶乘
    ; Y6 I1 d. m6 J+ A1 qpython5 i3 p. M0 p* I) V$ I6 j
    def factorial(n):
    4 d' ^* S: X4 t2 f) f+ ]    if n == 0:        # 基线条件
    & ~% _1 M# z. Y/ n9 w# }        return 1' X# g( Z+ l/ z. [
        else:             # 递归条件
    " b5 r4 i: u# ]: [3 H7 M        return n * factorial(n-1)9 q# Y+ j4 U4 {( N7 _% b5 t) R; i
    执行过程(以计算 3! 为例):
    4 ~7 s$ |+ O2 |# G! gfactorial(3)
    + N. D9 Y+ A8 p( {4 r* z3 * factorial(2)$ q. N: c2 R) Y
    3 * (2 * factorial(1))
    " }1 h3 M+ r$ {& o' F6 _  ^  R3 * (2 * (1 * factorial(0)))
    ) G" Q% m  T- B# d& ?! w) o3 g6 S, a3 * (2 * (1 * 1)) = 6
      N5 T. J' a% f& P/ e' K- I
    1 B% G# v9 `! m# _* L' C 递归思维要点
    : _" n8 `1 H% j* o9 m1. **信任递归**:假设子问题已经解决,专注当前层逻辑' ~0 b2 f) y5 p, Z9 I. D
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    7 {+ ~. N. c0 K2 U- r3. **递推过程**:不断向下分解问题(递)
    * @# V0 `# B) @: X4 s; ~0 P* S" O4. **回溯过程**:组合子问题结果返回(归)
    3 l4 r8 \0 \4 H, e' v
    ; H* a2 }3 x! W2 T1 { 注意事项$ Z4 C' S# {) [( v! H3 u
    必须要有终止条件
    5 g3 p+ T4 Q7 L0 G递归深度过大可能导致栈溢出(Python默认递归深度约1000层)0 q8 a8 }& I9 v' Y( }, y
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    0 L) n9 i) s7 [$ H( Y3 c7 C! N尾递归优化可以提升效率(但Python不支持)
    ) r& F0 b8 e' b9 ]) |1 U! o6 _  F
    . Q& {0 \, s2 r3 q6 _4 V* C& E 递归 vs 迭代
    ) A( a4 T# a- u1 o6 @" ^2 r5 H|          | 递归                          | 迭代               |
    . {9 w- Q$ J" L9 p" x|----------|-----------------------------|------------------|
    & q' F- p, h0 j8 ?; {| 实现方式    | 函数自调用                        | 循环结构            |
    1 t( Z& Y9 A% {: B| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    8 |0 ~: N1 H' O| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |  P) d1 e) T3 k
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    8 ]# g: F1 @" y+ [' ^7 ]& ]6 W, |& B# F. j
    经典递归应用场景
    2 x! @2 k1 z" {1 v1. 文件系统遍历(目录树结构)
    1 Z; c  [6 ^0 G; Z% q! L% E2. 快速排序/归并排序算法
    ' g, b" o, U! z: O: j& l% v3. 汉诺塔问题
    2 U  r8 e; T2 ^% |  l& D4. 二叉树遍历(前序/中序/后序)3 o" I5 D$ \; _. U
    5. 生成所有可能的组合(回溯算法)* m( k& f& _' a1 k( [, Q
    # ]) |+ S9 x2 }% n0 N
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    6 小时前
  • 签到天数: 3109 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    1 v8 q0 v, m) N* }我推理机的核心算法应该是二叉树遍历的变种。0 S4 a, A0 h9 Z/ m
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    # ^2 L# k1 _! N, H2 |Key Idea of Recursion& |) T- k0 `+ d; H7 Y; w
    % B4 w* }: Z. |( H% y$ w2 V, a
    A recursive function solves a problem by:
    4 Q( g6 h8 I2 e9 H) Y. U/ F# ?& G. ^7 y
        Breaking the problem into smaller instances of the same problem.
    5 P$ Y' Q1 W4 [4 c! t4 W0 Q$ ^6 P. k3 [- a
        Solving the smallest instance directly (base case).
    , A2 k- T5 i2 j  P8 D, h: \. x; |9 _2 `: Z
        Combining the results of smaller instances to solve the larger problem.4 _% i3 N9 a: I- @$ I

    % C: y0 T3 H. c7 m/ @; pComponents of a Recursive Function0 t, ~7 r$ B- ^$ T; O

    " [% f( C' T6 S1 ~0 C* }# e3 x) r    Base Case:" R& N/ D, F+ I' n/ b. L/ D

    % t* Q+ _% b" x' [) d        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    1 u# ]- J  O' `% t  g
    * q2 r5 W. w/ M6 W* T# W- b, b' z        It acts as the stopping condition to prevent infinite recursion.
    % Z. v( I3 k- P' d( X
    0 m; }* B6 F- v/ g, y) _        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    $ k! @: \& H& v, q4 p! _: k! @+ P. B$ e, N8 }8 }4 x7 o
        Recursive Case:
    - V9 l6 c; l+ V# j- V% e$ T. k" n; p. h( X" z% X4 F2 `
            This is where the function calls itself with a smaller or simpler version of the problem.: K' l$ n  w3 O; z% d
    ( u$ ?* p% P% R* q
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).6 z) B- [& W* S4 n* S

    & f7 ^9 U3 U# O8 S8 EExample: Factorial Calculation: n0 l! y) F7 M2 H' Z* @

    ( n5 F; \4 ?+ Q5 ?: [7 xThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:. X) @7 F9 R2 N

    / i$ E% W* J/ X  ^    Base case: 0! = 1" F. }: D2 c' l7 M
    2 u: q& ^* e3 Y2 E1 W$ @
        Recursive case: n! = n * (n-1)!
    2 ~7 x  {! o4 k  v) J
    2 `& r3 L! p4 K9 vHere’s how it looks in code (Python):
    ) K: r5 L' ~( t/ N$ ~9 ~python4 _) L9 E2 q7 T0 h4 [

    , V- M, r" I! C! \4 U& e( Z
    ' n" ^8 l  s% z3 `def factorial(n):, m6 _. @! c7 z: v9 J& u7 ?4 t
        # Base case
    ; k. X& k* g$ q  i* g5 s    if n == 0:
    8 N( d# f% V* b        return 1+ c: T) S5 t" C
        # Recursive case
    " m4 C$ ^4 Z) g    else:+ b: l8 S1 e4 C1 a* S- g
            return n * factorial(n - 1)
    1 \( Z; ]3 K1 N  _# m8 Z" t, G5 g
    ) E& M2 [3 H* H2 j" p1 c( ]7 ^# Example usage
    - @& A) f1 G/ E6 C* y0 Yprint(factorial(5))  # Output: 120
    2 z& {& D, \' ]0 W9 g1 ]. m
    ; b& l. p3 j4 X& r. RHow Recursion Works# U' {3 ]. O$ U; S4 j- P
    8 L' u' `  |( q: j
        The function keeps calling itself with smaller inputs until it reaches the base case.
    ' \; M7 }! v' v! a* J+ d
    : ]  q; K* ^# K  A# ?5 R' @    Once the base case is reached, the function starts returning values back up the call stack.
    # U# N( J6 z- P7 ^
    3 f% b" q( G: H% p6 x+ y( [: _    These returned values are combined to produce the final result.
    % F6 U( s) }2 m! }+ U( T: ?" i$ n* _
    For factorial(5):& o. \2 k5 F0 I! ?

      t2 B2 z4 C- m% v
    : p2 M4 \7 u4 L5 f3 gfactorial(5) = 5 * factorial(4)5 s1 l$ q+ }8 F0 x% Q, F
    factorial(4) = 4 * factorial(3)$ r. c/ N+ K0 U
    factorial(3) = 3 * factorial(2)9 B6 H: K! t' @$ r2 s9 S: |
    factorial(2) = 2 * factorial(1)6 R. x, Q; `, S3 t! v9 ^
    factorial(1) = 1 * factorial(0)
    . X. u9 ?  A% mfactorial(0) = 1  # Base case
    4 E: R" @" j( n* E( q; m) z  T# V5 \# b( m
    Then, the results are combined:# c# V7 D( `6 V6 A2 v  \# e

    . \9 r$ v3 X: i+ p' P0 I4 N* m  ~3 Q" {" H6 F' ?- `/ X
    factorial(1) = 1 * 1 = 1& w9 b+ M9 N4 m5 L
    factorial(2) = 2 * 1 = 2" m  x" A. X  N* f! W6 k% ~
    factorial(3) = 3 * 2 = 6
    - M4 m. ~% a0 V3 W& Y8 |factorial(4) = 4 * 6 = 24
    ' @, \  l* P4 x* D# `$ J/ y% ufactorial(5) = 5 * 24 = 120
    ( ?6 l( s- s9 n: Z! ]6 ?- r5 E# }$ m" z' w1 G7 [+ y$ E* z8 b1 h
    Advantages of Recursion
      n% i% b4 b0 X, K* @% u. x- C4 Z/ x) X3 \- @
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms)./ u) O2 `+ H9 R* x* `1 u' q  V1 S

    ; _) u* g4 f+ s    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    1 N6 e1 R/ p8 }( A- l
    - u  ~' h4 }$ x. IDisadvantages of Recursion
    - w3 J  d) r- C+ b, i3 R- g( m3 B4 l2 n
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.& j0 k1 b+ Q, X" n& J9 P9 H) v; E
    : M1 g9 z7 Z& i4 W, P) I9 @
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    * V( Y: m( s7 ?* A& C/ ~; s, F' K9 }: L2 D; D" N* J6 P
    When to Use Recursion
    ; K8 @: ]* m) z: K7 _. s1 X  e$ J6 [8 J* d, ]
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).- }' P) a2 m# f1 W% C7 J
    9 y3 X+ Z! q; L8 ?& t; I4 b
        Problems with a clear base case and recursive case.7 S  I+ S- Q3 K2 d  s" @2 H7 C

    + a) ?) y$ o+ R) l1 X# qExample: Fibonacci Sequence6 l$ E" O: @7 S& r$ q5 x

    ! [, B; x- h7 l1 y1 kThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    ) o6 J/ d- Y  T+ d
    4 L5 g8 C  `) f. ]; C3 h    Base case: fib(0) = 0, fib(1) = 1) B$ X& l* v; i9 E2 C1 V6 T
    . M. Q- f; J/ f* V* u. B
        Recursive case: fib(n) = fib(n-1) + fib(n-2)/ N, R5 P  \$ }7 Z" L
    : X  l9 h( c5 M" Y
    python, K: b) a( F+ b

      L3 O  z* @1 L4 G+ w+ Q, o! v% i& ~6 B. V) V% a: |4 \
    def fibonacci(n):
    2 b! m0 |' T/ {9 v    # Base cases7 P0 i7 w  p  E; s
        if n == 0:- G: g- x2 t) q
            return 03 C( J+ K4 D2 w+ _2 j4 j% d7 V1 ]
        elif n == 1:. ?0 ]4 {( ~/ D$ y. w4 b, z$ Z
            return 1
    " y& r; y# v4 x1 K4 B/ n    # Recursive case
    / [7 L# K# }2 @5 w! v$ p" y  {    else:
    2 y, w1 @! e7 }, m9 t        return fibonacci(n - 1) + fibonacci(n - 2)* q) L  g( J9 L# y( N4 A
    7 N: l+ l) P0 G! Z8 X7 J
    # Example usage: t) k9 |# p  O/ n: ]3 X, e. q0 E
    print(fibonacci(6))  # Output: 88 }  Q0 D' r* y1 j3 m% e
    4 E' J  O- ]1 Q6 m, O8 x' Z! }
    Tail Recursion( q2 d2 v7 b" h+ t; b5 K) H2 g
    . q* a9 i0 O4 d2 b  l
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    % `) t# L- Q, |. g, g7 t' O' X8 h6 ~! ?# K+ G
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-5 15:24 , Processed in 0.031701 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表