设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1200|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    1 C6 p5 c! y; ~9 g  Y8 n1 i% ]- K! ~) f' u
    解释的不错/ E+ `1 j( b* E2 L  Q3 x' m
    / j: r" C- A0 ~+ {) q$ g
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    $ E5 a; }0 G2 _7 E/ f1 M2 `% R/ ?& {" e
    关键要素
    ( b) ~# j2 B! P; N# L" C2 u: ?1. **基线条件(Base Case)**
    9 Q# K: C( B& J0 r5 t. l1 l6 K9 Y   - 递归终止的条件,防止无限循环
    ! f: p& s4 i; h8 n   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 19 ]3 h( t8 e" i2 N0 n9 [( M
    6 X& h4 V* {) }& A/ J
    2. **递归条件(Recursive Case)**  @; q6 E/ Q& V3 K& ^+ `
       - 将原问题分解为更小的子问题
    2 Z/ w' t& _0 t6 c  [   - 例如:n! = n × (n-1)!' V* M6 [" [; G
    3 n- |2 Q, B3 W1 }1 n
    经典示例:计算阶乘3 g& e* L. K) M3 k7 }
    python
    ( h8 R1 t/ y5 {' B. D& }def factorial(n):+ s6 [% L! g8 L- s
        if n == 0:        # 基线条件: L8 l, K  i: b1 j5 O
            return 1
    2 z1 }7 W1 y0 L  D+ L, a3 w, ^    else:             # 递归条件
    , E+ A8 E8 K9 x. F' _. l1 |% i$ F        return n * factorial(n-1)% i7 c0 c2 ~7 u$ C& k2 H, I
    执行过程(以计算 3! 为例):- ]) T2 s7 a2 t2 D
    factorial(3)9 S, |4 K) c% C! Q8 i
    3 * factorial(2)  L$ S0 v, |& R: {
    3 * (2 * factorial(1))& D5 g, C0 H$ J1 B' {+ a9 k
    3 * (2 * (1 * factorial(0)))
    1 Q# G+ ]* p8 y( Z& H3 * (2 * (1 * 1)) = 6
    / o% G* @# X; b' r& e( F3 \3 \" g+ X3 X" [. @8 L1 E
    递归思维要点
    - x. R* m2 F: d$ t7 h1 w1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    3 Y3 i" O* L$ K2. **栈结构**:每次调用都会创建新的栈帧(内存空间); Z) Z; G' ]. _, I
    3. **递推过程**:不断向下分解问题(递)
    ; c' ~: W% [! k) i# ~( ^4. **回溯过程**:组合子问题结果返回(归); `4 Z' s5 P2 B/ C/ m: F! P

    ( z. O* w4 w  h: m. B 注意事项" l, z: m, x0 s5 w7 h
    必须要有终止条件6 J3 y5 ]9 p  ^
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    9 V. {$ l+ a/ k8 S; m某些问题用递归更直观(如树遍历),但效率可能不如迭代
    : W9 c) y7 K5 |  D尾递归优化可以提升效率(但Python不支持)
    2 ?5 ^, P% m6 Y! C0 g
    . `" l" s( K* [" L 递归 vs 迭代
    : o( y9 s+ m% j+ R" R' ]|          | 递归                          | 迭代               |
    8 Y6 z7 T: g* h1 ?# s% x, f|----------|-----------------------------|------------------|
      _2 j1 F5 H$ a. y, `( _| 实现方式    | 函数自调用                        | 循环结构            |
    9 Y# _* D. I/ P2 A1 b| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    8 U: B, B7 D4 e* @" n| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |% L0 o/ i9 {' B( P" O
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |9 ?$ i; ^6 v  w6 K! j; Q& p
    , u7 u% e* x! \' E; x- O/ ]
    经典递归应用场景
    " E3 @. G. [( J/ l  O) |' d& T1. 文件系统遍历(目录树结构)
    6 z1 J+ J9 L) F" ^' W& {# J2. 快速排序/归并排序算法* n% h+ A' Q. O! I, y
    3. 汉诺塔问题
    % w* c8 U; c- v1 u0 j8 e+ K4. 二叉树遍历(前序/中序/后序)
      [* q( e# D# k3 k. ]2 D' E+ ~; h5. 生成所有可能的组合(回溯算法)' ~  M" j$ \; |$ L( T7 h& @4 I+ d

    ) z6 q, h) G' T3 f( x$ U; ]# w试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    昨天 06:41
  • 签到天数: 3102 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    / l4 g( E* D$ v$ ]8 R& Q0 E我推理机的核心算法应该是二叉树遍历的变种。& k2 v/ |, W  J$ Z0 D4 f' b
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    * o; R' v8 I; s) o0 _: v# o$ ?Key Idea of Recursion
    , _: N6 i8 X/ r# K; O% \. J" \  ^3 P# @/ V0 x" o; H
    A recursive function solves a problem by:
    9 J1 s. L; u% G3 ~; r6 K9 V8 {
    ( W" C: b: w: o' R+ n' W" p6 }    Breaking the problem into smaller instances of the same problem.; W* i0 B6 S2 s  Q
    # h" v7 j/ w" P% V5 Y" z/ g, y
        Solving the smallest instance directly (base case).
    & z: t- N8 {% X4 g  G% j# R' q. j7 `9 y3 g/ D
        Combining the results of smaller instances to solve the larger problem.
    6 R! A/ J3 `; ^' {* d# B% B9 y
    3 o0 J, q0 P4 f1 D! M8 ~' q# {Components of a Recursive Function
      _& ]; R3 l( ]  v& \1 [
    + r' Y- K% x9 t* Q2 V    Base Case:* w% Z; g- T8 _, J8 U

    4 j/ {# _7 j( @0 i: a        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.2 I, u; h5 _( n7 C
    5 t/ S' C5 O& U
            It acts as the stopping condition to prevent infinite recursion.
    ' C7 h2 v/ Y! F3 T% p  {' J8 u- N" G& R! {  h8 J2 a. b+ U
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.* [% ^, P- v: K' }  O4 B' |
    % j4 r5 w1 l- q. j! d& v- ]2 T
        Recursive Case:
    : `# w4 _4 f- E- Z8 }: E$ ^9 C2 o+ R6 z) q3 X# x% p0 e1 H
            This is where the function calls itself with a smaller or simpler version of the problem.$ D+ M/ l' J0 L7 z) U# ~

    " p9 l4 Z. |$ h6 ]6 \: ]9 p$ z0 n        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1)./ U  {2 M* ^7 i/ ?
    ; P: n$ C8 C3 u8 `  m
    Example: Factorial Calculation
    9 z  |2 s0 c* C# k9 N
    / o. Y+ i4 [7 w$ i6 SThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:$ K9 R8 K0 \5 l& Z( R# R% X/ b
    1 R0 t/ `, ^, [, Y( E: B
        Base case: 0! = 1  L. U4 A* [2 t/ \8 v! G3 P1 p5 X

    ; F; @( A3 b  w# q    Recursive case: n! = n * (n-1)!! M' a  \0 P8 h8 z; t( W6 S

    $ j7 [/ G% B' M  VHere’s how it looks in code (Python):' v, S) J& U, x0 q
    python4 I% N' w# r, ~' o  r7 v
    5 Q6 ~8 e1 u% ~7 V* q& ]7 x# `8 U
    , B  m  V; C9 P, \! H! G# ^' J
    def factorial(n):
    ! j4 r5 Y) @  X9 \; J0 N$ `    # Base case* Z+ }8 G2 ]0 X
        if n == 0:% o* h: a- i: n
            return 1: B! L7 b7 y9 t; ~
        # Recursive case
    + _7 L  Q; c$ a' i7 @    else:% a& Y& O0 ]% S7 R" o7 y
            return n * factorial(n - 1)$ t+ l5 h9 P: d

    6 M! q. y, S6 I: B8 z# Example usage
    & C& q) y0 i8 R7 {print(factorial(5))  # Output: 120$ L! D  e) ^/ W. F; H

    # z, ]' n) L% \' j" S0 b% O2 {4 ^/ JHow Recursion Works
    9 B6 I& d' f7 d' t* e/ w, n' c) k9 C) A- j
        The function keeps calling itself with smaller inputs until it reaches the base case.# `4 A4 b! {. _9 p+ G
    ! y; y! k: ], V0 R9 H
        Once the base case is reached, the function starts returning values back up the call stack.
    - g+ P/ L& y0 u( E# |$ ^: k9 {. o; B: K
        These returned values are combined to produce the final result.' z( P+ i1 y6 `" ^! G, o
    , g6 r) o4 ~% U( \" \1 l) e5 H
    For factorial(5):) ]% y* _0 t+ ]+ [9 |8 @& s

    8 c& h' M% C+ U+ T# B9 O3 G3 N* f: }8 A- p0 [- k, ^2 R0 ?' Y
    factorial(5) = 5 * factorial(4)! v& d9 ^; q! `2 E1 \" ~& U
    factorial(4) = 4 * factorial(3)' e( |: ?; L% ?0 O( T# F
    factorial(3) = 3 * factorial(2)( `: A4 i4 _4 T1 q/ r0 Q8 y; U5 g, @
    factorial(2) = 2 * factorial(1)
    ' \4 j* r+ k, ^2 U" k  Ofactorial(1) = 1 * factorial(0)
    # c* D8 V6 F1 T" ]9 S* E" p9 H$ S3 ]factorial(0) = 1  # Base case) `) j- C) @. \5 l. T1 W5 U* @' y
    7 s) d! m( }. ]% Z
    Then, the results are combined:4 c. M: d/ K5 m

    ) J, n: a( I3 c- v/ C) B0 i3 N& v5 N+ G2 e: v2 W% t
    factorial(1) = 1 * 1 = 1
    / R$ q2 m! g  w# Bfactorial(2) = 2 * 1 = 2! ]. e# a' v+ {% B
    factorial(3) = 3 * 2 = 6
      F4 H7 P! H8 V4 V- Ufactorial(4) = 4 * 6 = 24' @0 |* e, `+ t- W* A7 }9 C
    factorial(5) = 5 * 24 = 120
    1 g# {1 U5 Y8 Q1 b2 B
    / y) n+ \% U  b# g2 X3 RAdvantages of Recursion: p6 P, u# X0 B) w

    ) @9 w9 R$ _2 n0 K! j' H    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).  W* P) Q1 A, n( o3 t8 h# S; d" p
    " _2 p5 |. b  a
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    0 U% i( m6 [1 R+ \, V0 i6 n  l
    - g9 Q, R& p. b9 i! D/ Y3 wDisadvantages of Recursion8 D6 t0 ?' H2 X. f1 z
    " `5 Y2 k$ Z% P6 ~
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.% j1 Z5 r7 T" P% z( }! N+ s% R
    , Z! w* ~# N+ H
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    $ r$ i0 u+ o1 E8 t' Q* j' r' |$ K% }% \' q# t
    When to Use Recursion
    1 |4 f; x4 y9 X0 h% t5 n) Q9 x9 P3 C
    ; p4 W, ~2 \: l& ]- [' S1 c    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).( q$ j6 s/ h" e# t# U

    ! a5 w* C# P, D& j    Problems with a clear base case and recursive case.+ r, @* f. u7 [1 L- V* r& R
      I+ @; A1 `" V* }2 d; j
    Example: Fibonacci Sequence8 Q6 F  n, C0 h
    2 w% x2 j5 H4 \' }
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:* N4 H% g8 M( u5 _* T7 I, O
    $ \1 M+ `+ T9 U! A/ E- X
        Base case: fib(0) = 0, fib(1) = 1
    5 }$ a2 L2 C7 _! w( k
    ' `5 ^' P5 k$ x4 h) Z; M/ ~  S5 N    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    / F8 d/ F' T$ n- E# Y: R
    # \: p2 ]4 p7 a# p+ [1 j% mpython- y( e( q( M2 c  i

    7 q9 y! w& z' r4 n1 q/ P/ j- l7 u+ i  s5 n
    def fibonacci(n):1 T7 i" C" f8 n9 T9 V/ E
        # Base cases( M" M' F; ?  A
        if n == 0:
    ! m8 C. f0 o3 T        return 0
    5 g8 N# X$ t6 {+ b( D    elif n == 1:( y/ k9 ~1 L7 G  [
            return 1+ O; _$ i! g5 ~  b) q, o6 _
        # Recursive case* P0 s7 i3 H4 }. F8 m) n4 C
        else:
    " z) L5 {0 g; t$ p' M/ A. U        return fibonacci(n - 1) + fibonacci(n - 2)( J; ?: I9 y& L! l
    8 u% Q* i$ p% @7 H! Y4 D. |6 ^
    # Example usage$ J  F1 G7 `0 W" y& k1 z
    print(fibonacci(6))  # Output: 80 q, R, r; V- F' M) e
    8 A7 u# a: {) P0 b7 R
    Tail Recursion
    , N$ A; f8 ?! ]3 U
      b4 t; Y6 p% D* v- I8 qTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion)., Y! A  N* H! }# u6 r! N7 a; w0 m

    0 a; I2 h7 w6 a3 j* gIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-27 15:30 , Processed in 0.032130 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表