设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1620|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    % t! }  X% e1 |  x) R8 c
    : D3 p& y/ t  s0 n解释的不错3 h0 p3 [* o* ]7 r
    / o4 \) z+ `! Z& Y+ b1 n
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。5 k# A% X, w+ [: m* P% j5 T
    ; C' |3 [! v8 R# h) F0 ?  e
    关键要素
    * u" j9 _0 g1 d1. **基线条件(Base Case)**3 ?, m: b: T/ a! c. I
       - 递归终止的条件,防止无限循环0 H* N! }8 R1 i
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1  o9 i- j, k3 N

      J: _3 y6 D! x- X" H5 R2. **递归条件(Recursive Case)**+ b* G$ `0 U! p3 u. C
       - 将原问题分解为更小的子问题
    9 |0 r0 W* D3 c8 n# @; k1 J   - 例如:n! = n × (n-1)!9 W3 q( L2 e$ A

    7 G4 V( v# N- g# H3 n3 `% }3 E 经典示例:计算阶乘7 c9 t1 \5 R" |
    python! f5 Z: F* D$ O, t4 @
    def factorial(n):; c  I: u$ s: C$ B  ^
        if n == 0:        # 基线条件
    - H( R7 \) a6 F4 \  v        return 1
    7 t5 o/ m# U# H    else:             # 递归条件& X1 e& ~/ l0 o9 o
            return n * factorial(n-1)
    ! {) U  l" p, L+ `# s4 k/ U执行过程(以计算 3! 为例):
    4 _  {% \" V" Jfactorial(3)1 A. c0 D/ ~7 Y+ X; Y+ W
    3 * factorial(2)
    7 L7 S, l$ S$ y; _9 `4 m3 * (2 * factorial(1))
    - `- w5 R3 h% b, s4 H: r4 J3 * (2 * (1 * factorial(0)))* l6 i. X, x! Z. G
    3 * (2 * (1 * 1)) = 6
    ; O& k0 p/ @& _  Z( D% F$ l/ E0 u# G& y  ~# a# X
    递归思维要点
    1 D+ Y2 `! `" k) w( p1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    + W0 r0 n4 }0 q: N9 Z' h- a0 s/ w0 M2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    # ], \* `1 w, `: S/ M: G! U3. **递推过程**:不断向下分解问题(递)
    ! D. v  R- t" z$ {8 w+ P# K; a5 C! O4. **回溯过程**:组合子问题结果返回(归)1 f$ d0 l" Z8 u$ P
    . ?% J, ?) {2 J
    注意事项
    * @# b; @& c7 g: m必须要有终止条件
    1 w$ Y- _' o9 s# B/ [, Q( B! q递归深度过大可能导致栈溢出(Python默认递归深度约1000层)' e7 U: W5 L( y) d& [5 L8 ~
    某些问题用递归更直观(如树遍历),但效率可能不如迭代5 c7 N+ L( J( e* Q0 H# |! L* c/ B
    尾递归优化可以提升效率(但Python不支持)( P6 `3 v( [$ R( L

    0 G, W2 L/ }4 H" d# {$ G 递归 vs 迭代1 h1 N- ]& x7 p  e4 N5 O: w+ h
    |          | 递归                          | 迭代               |
    " A" u% @+ q( v/ ||----------|-----------------------------|------------------|6 Y- n4 w( v# D3 T
    | 实现方式    | 函数自调用                        | 循环结构            |
    . z; F  K' q% }' [3 b1 f6 G| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    , Y* d2 s$ p. S; v: \4 h! j, j| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    ; ^4 m+ [7 t0 T& v& Q5 L. p6 R5 S  }+ X% \| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    7 K' a! L3 U+ r3 S" Z! v/ d
    " E% h5 k7 s! ]+ W  L% c 经典递归应用场景
    ( K! z# D1 F) t0 Z1. 文件系统遍历(目录树结构)
    ! \6 O! f# l/ H8 R+ f! ^2. 快速排序/归并排序算法. C+ c5 }9 M% I* v5 J8 j8 ^( z
    3. 汉诺塔问题
    & Q" W7 G% ]8 |2 T% d6 r8 w% ^4. 二叉树遍历(前序/中序/后序)
    7 x! |5 T9 W% t; g5. 生成所有可能的组合(回溯算法)* ~6 W( t/ f. x) J

    6 L+ V8 n/ y5 r( [- _( Q试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    3 小时前
  • 签到天数: 3126 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    3 Q7 m! P) f7 t9 l7 q* w我推理机的核心算法应该是二叉树遍历的变种。
    ) k; G, s0 ~! ]4 m另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:6 M+ l* n" \3 }
    Key Idea of Recursion+ n' a: y( P# D
    ( u- j+ I$ g; E& n
    A recursive function solves a problem by:
    # w8 M" a0 ]0 J( O5 c) y8 {7 C7 Z. h- [' }9 u8 s( I
        Breaking the problem into smaller instances of the same problem.
    8 n1 _* }4 O' x% |9 \- Q* [% X. T, h- Z$ n, n
        Solving the smallest instance directly (base case).: Z. f. z  {7 f5 }; v% o; M

      _4 x( i; d$ O, e9 A; Y6 @    Combining the results of smaller instances to solve the larger problem.
    & t$ P7 F, O1 g! D. J0 _0 y# U5 w! q! i# p4 b
    Components of a Recursive Function
    3 \' D: D' F& X! h( E6 _1 c' s+ n1 P7 J5 |/ x
        Base Case:2 I" }# \8 T, I

    1 m9 U1 X( q( P; }) m        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.% p4 {& |% Q% m7 T$ i, i8 P# _
    / @9 _% q' ?* h: q- L/ v. F
            It acts as the stopping condition to prevent infinite recursion.2 r+ g" U+ H( V# V( N! Y

    ( _$ e& e8 x* ?/ t. v1 u: a2 f        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    5 [( ~1 |. j5 q2 {9 x# ?7 Q2 T" A3 @5 C
        Recursive Case:$ D+ N9 `( y4 @
    * _, I8 a. a  e; [* u8 {
            This is where the function calls itself with a smaller or simpler version of the problem.% v/ h: z" x2 Y9 C
    $ _+ p4 C& E6 {: |
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).5 i. M. ]. \+ r* l) R4 K
    . [$ ?4 ?* y" H0 \; Q6 W
    Example: Factorial Calculation) d7 T: }( k8 c% b! N6 g8 n2 T

    ; d9 `# v3 _, n+ |7 D6 `0 S2 {The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    # K) Y8 v; m- O: [+ r7 ^# I4 j% [; E) {
        Base case: 0! = 1/ n+ [( I1 z, t. B2 N) ^
    # {4 B7 u7 X  i% q( @+ p
        Recursive case: n! = n * (n-1)!3 a. C% ?5 d. ^
    1 }; h6 L- ]: ~  K6 U1 A& j' f
    Here’s how it looks in code (Python):
    4 l7 r0 n$ `% j: l: z$ x$ Z: s5 [  \python4 f3 K0 `4 R- |; R8 _8 h4 U

    3 k4 u' j9 Q7 H2 ~( W4 D
    " T( p9 f4 B* Rdef factorial(n):
    4 }4 N7 A% {- K2 S! y0 _7 y4 z    # Base case
    . a; g! @3 s; _0 s* F/ `    if n == 0:& I9 I& l. L* \- @& C
            return 1
    9 c# z+ g7 R% _# ^/ S7 h+ R- G    # Recursive case8 _% V7 N1 s6 e* q
        else:
    2 A2 ?$ ]& f* V& m2 R        return n * factorial(n - 1)1 u) T. v9 T; \- T1 Y% H& @8 @

    % ?3 A, p0 H% Y) |0 w% ^2 ~9 R3 V8 O# Example usage
    ! K  k! a% W% u6 A! t  ?print(factorial(5))  # Output: 120
    1 k* n; o. D5 S9 `+ x' u* g
    3 _( g' i" s& C4 {( W, mHow Recursion Works! Z0 b( u; X# J, R+ @

    2 W* A  X9 U! W: i    The function keeps calling itself with smaller inputs until it reaches the base case.6 K6 e' ]- [  Y7 R6 V% q3 C

    7 \8 i+ \9 d  h; R    Once the base case is reached, the function starts returning values back up the call stack.$ {2 |9 R# [9 X, m% E; g
    , I! m! }# E6 x. v) }. ], u3 A
        These returned values are combined to produce the final result.
    ! G: D" W: J9 T% ?  s4 C, `3 H
      ^! Z. Z7 x" h- e. y  {! H7 mFor factorial(5):! [4 s- Z) i1 V- K
    ) d) [: `: @3 I( N. s
    ; f' x5 E% N* k, U- j6 s1 J
    factorial(5) = 5 * factorial(4)9 U) V/ x4 H( p$ T5 A5 P: \
    factorial(4) = 4 * factorial(3)
    6 ~; z* x; h! _& M/ ?, h9 Kfactorial(3) = 3 * factorial(2)( O+ \6 E. Y0 U6 s
    factorial(2) = 2 * factorial(1)7 Z( ~! U" m$ F3 ~2 G0 @" j- }  d
    factorial(1) = 1 * factorial(0)( i4 J9 q* u& N" \4 Q; ?- k+ y
    factorial(0) = 1  # Base case* N/ i6 p/ g9 J& s0 _

    . [' X! c* T- n' b$ AThen, the results are combined:
    ' y$ _: U9 p& L( l3 l2 P& M0 Y5 U% M( U$ t8 \  a) M4 V
    4 N+ P1 D: ]5 ?( [# R
    factorial(1) = 1 * 1 = 1( i1 q+ H5 X, F& i
    factorial(2) = 2 * 1 = 2
    0 G/ U! A& x; |8 a" g* B; Lfactorial(3) = 3 * 2 = 6
    9 ]" n/ @7 D; A; z% @3 L9 Zfactorial(4) = 4 * 6 = 24# y5 c5 f. T+ G) J# R% L  x
    factorial(5) = 5 * 24 = 120
    / L( h1 ^% O: ?4 e9 q% v, \8 @1 w8 R+ \7 h! E
    Advantages of Recursion: C( c$ |  S' M( U3 Z6 Q
    / l2 [- ~  p3 z8 A* b- Z
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).2 ]* V8 T6 G* J; z# z1 S

    0 |/ \+ B+ D) G    Readability: Recursive code can be more readable and concise compared to iterative solutions.5 d: X$ @6 I9 L7 m" w& i

    3 J. m" V4 y! ~/ y' Q) G- }Disadvantages of Recursion9 c) J, ?& Y4 d) T, R
    : x: ]' l; r7 R0 U3 G& f5 q9 J" ^
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    ; E5 ^9 N: M! E: L0 Q6 @
    , y4 ]& O- b2 Y$ q  a  D0 P    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).* }* p% ]. I8 x) k; W- c0 B/ I

    . {/ c- I. P/ h+ w  R7 W7 mWhen to Use Recursion
    1 T& S: c0 D4 R' W* p8 P
    " j9 b1 v+ E6 j2 a9 A5 B# v    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ' R9 P* g, e8 H8 O# b5 H
    . O9 K$ \1 z/ t7 A) g) F, v3 _$ H. y    Problems with a clear base case and recursive case.
    " d1 L. S6 Y+ t
    3 I: H; Q, s7 k; x4 q' g, FExample: Fibonacci Sequence
    7 `7 I9 B6 [2 y3 \( D4 P, J& S
    6 l0 q: K! s# X, o# E2 y9 ?The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    4 `" w- v# q$ `5 o
    " \: O2 f/ W" ^  `    Base case: fib(0) = 0, fib(1) = 1
    % }7 t) b! @# k. M; z
    7 P: f; n* C, F" b( u% e    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    0 t$ J9 B: W5 L. a/ w! M# b$ J
    9 _, T; l) _" R2 J/ z1 xpython
    / i, S8 }2 X4 g# [+ P* Y- y5 a7 W7 y/ R+ A3 h3 z* ?

    : f( n' w2 I2 P) ldef fibonacci(n):5 @3 G! \) l/ f. P$ h0 |4 c" m+ X# Y
        # Base cases
    4 e3 w7 ]- f1 G+ `6 |9 G+ U    if n == 0:
    6 f7 X0 @8 k0 J; X0 b        return 0* O6 [& |: f* |0 H
        elif n == 1:. c; d( f: u/ l# U
            return 1
      i9 I* B, v/ j' Z  i    # Recursive case2 z: k' m  k' o9 r. T" G
        else:3 a: K$ ^1 W: t, u+ q) C' V5 a
            return fibonacci(n - 1) + fibonacci(n - 2)
    : D, e& l  w- J+ k" j* b  c' x& P$ X9 b$ R7 e1 _' i! j3 f& W! J: q
    # Example usage( F- d" J# w% R) Z  d
    print(fibonacci(6))  # Output: 8! I9 x) [' T( T; ~/ L) ?
    ' [) l9 F0 E2 N; d) P8 ~
    Tail Recursion
    , o6 i4 g9 W' W' ?/ d6 v2 J9 c+ @' Q( W0 I0 P: f$ ~: t
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).9 `. r# |; u& r0 p! V

    : H3 v  k9 \: |9 g3 JIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-24 11:19 , Processed in 0.032125 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表