设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1494|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    ' W( v7 [. c' z+ i6 d1 P  w5 `/ G5 `5 M8 t
    解释的不错
    7 }+ X0 _) u; p: h' u: x) Z
    ' r: x5 @+ V- Y7 l/ A递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。" D/ r! z8 L, P
    8 t/ P# d1 g9 F, J( Y( y2 }
    关键要素
    1 n: }9 u4 q; G2 g7 p1. **基线条件(Base Case)**
    ' j3 h) q% K4 S3 v3 Q   - 递归终止的条件,防止无限循环5 B# m8 u: |) d9 u% D$ a
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    7 l. a& V. {3 V3 H* k" i- `' D9 I
    2. **递归条件(Recursive Case)**
    $ ~. i2 _8 g; L* F/ u   - 将原问题分解为更小的子问题% z( `% z. R4 J' @
       - 例如:n! = n × (n-1)!
    ( Z3 F6 w, h; i( Q# @; W2 l/ }' E1 `- c3 A8 h: ?  i5 y
    经典示例:计算阶乘
    1 ]9 j! o4 H( I1 I2 |# U  e- j9 _python3 i( q4 W& Q& ?
    def factorial(n):
    ! [4 o$ z* i' E9 b& b8 Z, w# v6 r    if n == 0:        # 基线条件
    / @6 r0 V  r2 w! ^        return 1
    3 B4 _6 F2 c% W6 W$ H, D: j, G9 v    else:             # 递归条件
    . D, i1 G. M1 r5 J+ a        return n * factorial(n-1); r; X+ ]6 L# ~$ g7 V
    执行过程(以计算 3! 为例):: m; `: K2 ?) b9 a2 v
    factorial(3)# {/ I9 b+ k6 l' _" Z3 P
    3 * factorial(2)+ @3 X+ v8 k8 `6 n. N) N3 m' n$ {, g
    3 * (2 * factorial(1))1 A  U5 x8 L- e5 g. y
    3 * (2 * (1 * factorial(0)))
    : Y4 M3 l# `. E* [0 x2 H  V3 * (2 * (1 * 1)) = 6
    0 }* g' u6 y; G1 \4 \; X" }. s  H9 L
    递归思维要点
    & r: k1 u( c% x3 f1. **信任递归**:假设子问题已经解决,专注当前层逻辑1 a0 R: q0 E; r8 |$ ^9 N+ O
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)( u; g( ^" M: J1 y; t" J
    3. **递推过程**:不断向下分解问题(递)( P! [" M- g* m9 B
    4. **回溯过程**:组合子问题结果返回(归)
    7 E) V/ j# [" D! {' U
    & b' u! N  Z: |! U5 H; Y3 p& I' Z 注意事项  n: z7 s6 @$ _$ m, N- a: e  X
    必须要有终止条件1 Y# q) F) e, c
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    4 T- J) K0 J5 n5 p# D2 l" n1 V2 L某些问题用递归更直观(如树遍历),但效率可能不如迭代. a: [0 m) @/ L+ l3 }' Y
    尾递归优化可以提升效率(但Python不支持)2 N* L" O3 Z+ ?6 P+ H
    ' x6 A: d( J. t# e% r' _6 h
    递归 vs 迭代; x6 K5 l5 Q/ u" v& x
    |          | 递归                          | 迭代               |
    2 G" L* I7 r- Q+ f|----------|-----------------------------|------------------|) b" d- [* l  T9 C
    | 实现方式    | 函数自调用                        | 循环结构            |
    8 t+ Y- y( t0 u| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    * {! o+ }) t: c8 O; ~) w1 h| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    . B" W5 b7 r3 y( y- @+ G| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    : Z0 A! m( _* u& J  R% h4 y5 X/ |& F% G2 H& ~1 Y% j$ h
    经典递归应用场景  ^4 _7 V$ Q. O. w
    1. 文件系统遍历(目录树结构)% h( W' _( c* _8 P( k3 r$ h
    2. 快速排序/归并排序算法
    % t5 O! b& `" W4 p. v& C/ h% j3. 汉诺塔问题! A/ l' ^% Y1 t
    4. 二叉树遍历(前序/中序/后序)  L2 A8 e8 s0 P5 J! a
    5. 生成所有可能的组合(回溯算法)
    % z; B( F9 f% k+ ^
    9 u1 m- e4 _5 p8 o# P3 c- A试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    开心
    前天 01:20
  • 签到天数: 3115 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    0 l" \9 {; i1 F( A' l- B我推理机的核心算法应该是二叉树遍历的变种。
    ! I. T7 x8 J+ s) I$ Q另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    $ B2 ?8 Y; o, b0 [! R  B3 kKey Idea of Recursion2 I, q* D: E2 V' `) h4 N7 ^
    8 Z- X) ~5 I( _3 i; E
    A recursive function solves a problem by:# s/ y" F( j5 N) h- ^. f0 l
    2 h! i; K" _  `3 d+ k$ i
        Breaking the problem into smaller instances of the same problem.
      F- }8 n* w2 c6 s5 J/ `: j3 {- p* f- ^" H
        Solving the smallest instance directly (base case).3 }' k0 M/ F. z+ U) i
    6 _9 K& y$ d0 e! }( l+ L% Z- t3 y. V
        Combining the results of smaller instances to solve the larger problem.
    * c* X+ w+ x/ u$ c% D+ q
    0 ?( `% E6 \6 P2 U; D, e) S4 ]Components of a Recursive Function7 Q% Z+ z; p. m1 \" T- p

    / n' s& I, O$ g    Base Case:
      u! q3 x+ J4 ^5 B6 X
    ( d  \9 Y. V9 f6 q% @        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    1 H% A( U2 f9 i' j  z
    & H- F- l- |$ {' w0 b        It acts as the stopping condition to prevent infinite recursion.
    & Z- o8 C! [. N5 i) ~8 p; _; T9 T4 j: ~6 Q' f' ?. r; r+ Y
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    % g# ?: }: V4 H" A7 _! B
    ' I9 f  f( n! ^3 Z9 K% G9 A    Recursive Case:  N9 j* u7 O. Z: F3 }* }$ g5 X
    + s; z8 [2 a: P) f/ X8 k2 s
            This is where the function calls itself with a smaller or simpler version of the problem.: Q, b3 \. M% E- s. l/ r8 x0 F
    # C# N- f( m. t$ ~* c3 k: s" t
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    ! l' Y. \  ^3 Z* x, [+ `* A
    # G  B3 s; y# n7 @" OExample: Factorial Calculation
    # M4 ]" ?. u5 L$ [7 K7 X$ V
      m0 ^% p1 W4 vThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:3 n8 Y" N7 t0 @# J* u" K6 @* p

      ?* v7 p  K  k    Base case: 0! = 1
    ' _; M0 K) n- B! T' D' q. ~' ]/ Q9 x' I. ^" R% s. ]8 o
        Recursive case: n! = n * (n-1)!
    ; S1 ^# @( u" s4 Q9 I$ Z6 L$ {- g- h6 _. P) S7 Z) Z7 x+ `$ S
    Here’s how it looks in code (Python):
    # R+ @3 j; `# {! [& ?2 W/ @& Hpython
    8 {7 D* Z, v* E6 v" J6 |' K, K4 X( y! g+ m& }) T
    4 Z, d/ B) Z% Q8 ?1 f; q
    def factorial(n):' A" t4 v4 \% I8 W$ c' \: O
        # Base case
    / Q$ D0 F8 m6 Y- q/ J0 \0 F- G) G: R    if n == 0:6 ~$ E. M& q4 }  ^. a
            return 1
    2 q; I% `& w; J) s# [) Y. r    # Recursive case9 s! w  d& L% H& T3 \! o' P
        else:6 ~9 \' v! Z4 {+ q1 r- ^  [
            return n * factorial(n - 1)) g. x& t  W$ R6 m$ O1 t

    # a8 G5 H3 M5 v1 s" C% G# S# Example usage) m& O+ h" L$ W+ [
    print(factorial(5))  # Output: 120
    ' a7 e2 j$ y% L( ^3 }/ W
    ! E1 R0 K$ t4 R# h" g* A) BHow Recursion Works
      ]' {, P+ x' _7 y
    8 ~3 L" f9 S  n" t  k# F5 ~    The function keeps calling itself with smaller inputs until it reaches the base case.
    5 k1 R8 m8 Q. n% `+ q  `1 W4 D$ J8 Y: r1 U. T- U" z5 ?
        Once the base case is reached, the function starts returning values back up the call stack.& s+ `& F3 g7 j# H2 R, R4 q& r

    7 r1 g/ G) O1 J+ O' v$ x! }% ]    These returned values are combined to produce the final result.5 Q5 Z6 x0 X6 [4 A; q
    6 `# v* F$ c/ e% P; G
    For factorial(5):
    2 K# B8 E! F) |, N# A. W) E8 L* J6 B+ ]& R) f: \6 |, S
    $ M) m7 V- s) a  d$ \8 I1 }
    factorial(5) = 5 * factorial(4)- c6 R1 k9 P: I1 ]; W, i" H
    factorial(4) = 4 * factorial(3)
    ! ]% _+ c; B+ O: i& T; t* y( n! Sfactorial(3) = 3 * factorial(2): t$ o3 q: W( ^( F+ g
    factorial(2) = 2 * factorial(1)
    7 f- ?& P  l9 {- T) E' ~- a. qfactorial(1) = 1 * factorial(0)
    $ h" h( N" R8 p9 m$ r7 lfactorial(0) = 1  # Base case: p& \. h4 C- x9 t' e) x2 Y/ l

    + _. [/ w0 ?. e# c" VThen, the results are combined:& M2 e3 ^; S5 }4 R

    1 v# ^: ^4 w0 x, K, H" B. a$ ?# O( I# I6 m
    factorial(1) = 1 * 1 = 1
    . R2 I, r) n* S  J8 r/ a' Afactorial(2) = 2 * 1 = 2
    - A& F) S1 P! p7 H. _2 J6 q8 ]0 `( ]factorial(3) = 3 * 2 = 6
    2 s) _* S, k7 a. \' {factorial(4) = 4 * 6 = 24
    1 ^$ Q9 x. J# y* f  }/ nfactorial(5) = 5 * 24 = 120
    $ n9 x$ D, v# W) p$ K
    6 }% q( ^7 L2 n! k! IAdvantages of Recursion! H, u5 }, I& a" N& d

    . h0 w: Z0 v8 l8 L! o0 r4 c: C6 R    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).) j8 Q- T& N+ A* ^& z& R

      a9 r+ I, b6 P' U    Readability: Recursive code can be more readable and concise compared to iterative solutions., O7 V- w2 d* ^
    3 }5 U, w- S2 p+ p
    Disadvantages of Recursion
    ! V; z" i+ ]$ m( J) P6 k1 ?* i$ I" d' D/ s
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    , `* f9 w: @' R& q- Y
    6 }9 T2 I; u7 T4 R: w! E/ N    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    5 V5 U3 K& f" e, ^7 }
    & b  @1 A7 S' qWhen to Use Recursion
    $ T5 H1 O! w! _$ s
    + U; A  R" d0 l# N) h& J& ^    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    5 i% q+ }  P- x6 l( t% Y# z# [* ]6 f
        Problems with a clear base case and recursive case.: i% ~7 o* Z# S" u' A8 Z0 h

    0 p+ s1 F" Y4 w5 F& T1 ]3 l" gExample: Fibonacci Sequence1 h. P) J. x6 L% c

    : Q7 L. f; q* c  y8 |5 I& IThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:( C" I- ]# s/ r. u2 }0 C

    3 m0 b* |4 {# M7 E9 h; ^' A    Base case: fib(0) = 0, fib(1) = 1
    ( @' g+ W6 l, j7 n$ r) m/ J# F8 h. t. }0 X: `
        Recursive case: fib(n) = fib(n-1) + fib(n-2)& `/ B1 L* w3 Y4 ]+ F% X$ A- e9 y6 X

    + p% h( J) _; J! W! ~. l& gpython
    ; [  c: U5 E* q4 Y: W& v5 {! a7 t4 g" g  {" P- f" m
    " U8 v9 I- o/ f% z  J$ q8 G
    def fibonacci(n):
    . l$ }! Q3 c# q/ C/ `: ^; g5 j    # Base cases2 g3 ~$ j2 y, T. e5 K, S
        if n == 0:9 {: l4 z! g. g7 P9 n/ x- e7 O. q
            return 0
    . ]4 B- z% ~1 J9 o/ m+ D    elif n == 1:! P# v* v% L1 ?1 p
            return 1
    + f3 B& Y$ I& z# x. J# S    # Recursive case
    " i3 H) M  ^' s" w: X  j    else:/ j  Y- u. Z& Z, ]# C6 c+ Y7 A  E
            return fibonacci(n - 1) + fibonacci(n - 2)
    0 K/ o6 H  C5 C# Q5 X
    + a$ k7 ?' s$ {) J" X* P6 G# Example usage4 O! J4 B3 {4 Q/ F) o2 H/ `
    print(fibonacci(6))  # Output: 8! ^* O; R9 o6 y( q7 I
    % z$ @) g( t9 [9 C* y/ B
    Tail Recursion7 e9 Y5 \3 Z( f# U% @, J8 T/ J) [4 l
    * f# C2 x2 x- y; H. A/ e" o  ]& [
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).: z, j+ l3 h: P7 R& z

    6 c+ E1 C& b3 b+ k$ _In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-13 10:18 , Processed in 0.030618 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表