设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1761|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    ) Z& \( b4 l3 G! U1 g3 i( P3 V% W* u
    解释的不错
    * D7 {& S4 X9 y& w+ Z3 F; [( l
    ) J$ S3 q( X6 y递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。& e7 ^$ w. ]7 ]/ B

    : o9 C  V% A2 ? 关键要素1 Y* K. x7 B9 q6 L+ l
    1. **基线条件(Base Case)**
    + I" M, t8 K; K   - 递归终止的条件,防止无限循环
    2 ]! H5 B* G" J+ c5 s7 d3 z+ d   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    , n6 Q8 d8 K! y5 W' Q; V' l5 U  m- b4 Y* j0 H) |  z3 a
    2. **递归条件(Recursive Case)**2 Z% x" d9 u/ K$ B) `  m% o
       - 将原问题分解为更小的子问题" c9 O. K6 p" x. c' ]1 F
       - 例如:n! = n × (n-1)!% ~6 v# d9 i! U* y- v

    ; p4 |* y. g' i" O 经典示例:计算阶乘4 u8 ?8 n; Y1 {9 i- q
    python1 ~$ M7 A$ s5 A4 P# p
    def factorial(n):: D+ B  a% C. ?# ~" h* N* x
        if n == 0:        # 基线条件
    ! Y, f7 f' j3 b5 G1 k  @        return 1( Q8 u( ]' }4 h: S2 h" ^
        else:             # 递归条件
    / ], H1 h$ q' t, t/ v        return n * factorial(n-1)" W( X, x0 y' x: D1 A1 D/ x, a0 Q3 H- m+ S
    执行过程(以计算 3! 为例):, S% |3 Z+ N3 s- [
    factorial(3); B" }) s" r, t' z4 m0 ^$ m
    3 * factorial(2)
    , k7 i+ g9 A+ L  Y: F& a4 e3 * (2 * factorial(1))
    # ^3 ~) [/ z! D* ~3 * (2 * (1 * factorial(0)))
    $ O8 j2 @2 l, d; O& ?3 * (2 * (1 * 1)) = 6
    7 T: G1 c1 z) `  I7 I( P) A2 U
    6 A5 @1 E7 N6 m) _9 w. } 递归思维要点
    ) c0 v" N' W7 c3 O6 C0 p1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    , q# V: E( B- h2. **栈结构**:每次调用都会创建新的栈帧(内存空间)4 I8 \* M$ }5 K( P
    3. **递推过程**:不断向下分解问题(递)" W3 ~- i+ y; }- P1 K
    4. **回溯过程**:组合子问题结果返回(归)
    3 ?: V0 V' |6 j3 g
    * T3 m5 J' e9 }! S9 }8 Y' ` 注意事项
    1 x* ^2 h, b$ v. [必须要有终止条件
    3 Y' u9 u2 A" d9 @7 D4 o, {递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    . ]* H8 P" P% q* N+ E0 W4 i某些问题用递归更直观(如树遍历),但效率可能不如迭代0 Q5 I: m3 _( N  b2 m0 Z9 V: v
    尾递归优化可以提升效率(但Python不支持)
    ( c6 w9 w0 l+ Z( Q$ e
    0 ?; }  l. F' K- G( O 递归 vs 迭代
    ! w; K' |& l5 T4 r+ Y8 {|          | 递归                          | 迭代               |
    6 R/ A( T. B2 {( v; [  j! Y|----------|-----------------------------|------------------|
    ; M2 p& F6 e/ ]( n% @& t| 实现方式    | 函数自调用                        | 循环结构            |
    % b) W! ]8 A3 m( s" g. M| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    6 l6 Y& k8 u8 g% w| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    * N" g* B7 N/ Z" f" ]0 T# Z& t1 u| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
      Y- M2 j( Z3 G: Z4 P! }8 n" {" V6 D% I4 C6 y
    经典递归应用场景) a7 e# N* t; W7 p  Q: Y
    1. 文件系统遍历(目录树结构)% Y' |0 x# Z5 F% J' T
    2. 快速排序/归并排序算法( ~, M% R* X. A6 A
    3. 汉诺塔问题* b! c) _3 g5 z: ~, ^) M  M2 w- c( N
    4. 二叉树遍历(前序/中序/后序)
    . Z# |5 |9 k' b5. 生成所有可能的组合(回溯算法)
    ; ^) E  c+ c  Y: E) Q* l! C3 b8 N$ s4 i% W) Z; i- k# @  b
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    昨天 06:20
  • 签到天数: 3139 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    2 O+ g2 U7 Y5 T我推理机的核心算法应该是二叉树遍历的变种。$ `+ z' u( Q) e9 }# [  B
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    / L$ A7 a: ]6 A0 lKey Idea of Recursion
    2 n0 l& _) H4 v) B2 ?2 x( X& _: _, R. o/ o9 g1 u: H3 A
    A recursive function solves a problem by:
    ! U) S" ~* E6 t+ q. U
    - i8 y1 p: C; a: F  H    Breaking the problem into smaller instances of the same problem.+ K8 `! _: B( B2 ~1 y$ M

      Q" f7 T8 e( E# i- f9 P    Solving the smallest instance directly (base case).
    ) R. W9 H" r2 V: d* r8 V  }% B& N7 p
        Combining the results of smaller instances to solve the larger problem.) I! V6 [2 [! \
    ( l5 A$ b! w6 G
    Components of a Recursive Function8 E# D6 b5 x7 w/ L
    9 E1 O. [5 d8 E
        Base Case:4 {. c: N' @* u; u
    # F( l/ e5 n1 t+ k* v
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.6 M# G0 S4 z% G, |& @8 p, Y( q! _3 R
    ; w) ]6 g- f) e; M- R
            It acts as the stopping condition to prevent infinite recursion.
    + K1 x  A0 C. Q3 H' G
    $ S: p$ T  |7 y2 p) n1 n3 E  g        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    . B5 Y" M8 S. O4 f& f' w3 u, D
    . o) [4 z6 m  [- C. Q- T! A! V& e    Recursive Case:. V: |/ w8 i/ j5 q# H' P. {- c. m
    8 A# I$ T$ q' j1 d
            This is where the function calls itself with a smaller or simpler version of the problem.( |- @" Q7 u5 t8 m  x1 U
    9 \3 x2 R: f  L5 l/ N
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    , s, u9 H4 J/ Y9 q, ^) B; G( q7 ^+ }
    - Z# A" ?* Y, mExample: Factorial Calculation
    + K3 v6 u8 J. I1 ]. `% A" c
    , `5 l$ v$ S/ k# x* R4 b* jThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:' r( i; @( e1 i6 ]
    - v; F2 f: A4 M, _  {. L/ H+ J
        Base case: 0! = 12 ^8 W4 t8 b! q9 C

    2 v# [! d+ T1 l  h# E5 t* r    Recursive case: n! = n * (n-1)!
    4 C5 q0 Y3 E' ^; }( I1 v1 _/ m8 ^
    " a+ W! l9 @# Y5 {& v' I1 O3 EHere’s how it looks in code (Python):
    4 {0 |3 Q8 h5 U/ b7 q6 {3 m/ Xpython8 @7 q$ O4 k6 k' m; Z

    ) B: m. t. d7 I( W* c  Q
    ' K/ h4 e3 k0 K& d' i& ~1 ]+ Cdef factorial(n):
    : Q" p4 f& [8 p1 U    # Base case
    3 c% P; f+ A' |' H0 P) b    if n == 0:( \. t* r3 W3 c8 Y9 S
            return 1
    0 N0 L! V5 K4 f4 c1 o    # Recursive case; ]) ?  X6 A- ^5 \1 D- D
        else:
    2 G% g! F7 c$ u. b        return n * factorial(n - 1)
    7 r6 t, `3 f2 T6 E( T$ i- k+ p. ?5 h- X* a! Y
    # Example usage1 I" \  A* m5 ^$ H' R8 Y3 K& `
    print(factorial(5))  # Output: 120" @& e  s/ O. v* J4 M% b0 O7 m

    / l- J! p* i& A  n- UHow Recursion Works3 _/ Z7 N3 L/ G1 y. d" c+ Z
    . q3 L, F7 a5 g' e' ~! o4 d6 K
        The function keeps calling itself with smaller inputs until it reaches the base case.
    $ k$ p) w: ^- F. I' r4 X% }$ y7 G2 a0 `. _! K, H5 w5 V
        Once the base case is reached, the function starts returning values back up the call stack.
    7 ]1 P" S- Y+ f( t* [5 }
    . R, l0 e" r0 k! [, q    These returned values are combined to produce the final result.
    : P# g; S9 c9 \) A0 L3 ]5 l1 D& a* J8 h- D0 R* J0 O
    For factorial(5):6 A. p# @+ M- n1 I5 V# O
    7 e9 c8 Q' X) E
    ( _, G; j& m& S+ I. }% b( j) v
    factorial(5) = 5 * factorial(4); ^8 _' t. Y9 G+ C7 m% P1 l4 o
    factorial(4) = 4 * factorial(3); l2 t- j* {! I7 p- J2 @
    factorial(3) = 3 * factorial(2)
    ) N# m& }% V1 g7 }# J2 ifactorial(2) = 2 * factorial(1)
    % @% L" N' F9 p/ h$ O; `" K- Yfactorial(1) = 1 * factorial(0)" q4 M6 }8 X' v( ^; h2 l
    factorial(0) = 1  # Base case
    2 y" |& d/ ~% p
    " Y. g" E/ F0 B# q0 ?Then, the results are combined:
    3 X/ `, ^9 D( }$ v5 O9 T1 k9 R. B5 _8 _
    ; v* W, b. I+ H5 V, s' W# ^
    factorial(1) = 1 * 1 = 1! ?3 b# S* t$ J: J8 X4 c% A# v
    factorial(2) = 2 * 1 = 29 H, r2 m$ Y& X7 t) P: b
    factorial(3) = 3 * 2 = 65 f& g, u3 x& O* O7 `, C/ K
    factorial(4) = 4 * 6 = 24% l2 v% a: w3 l
    factorial(5) = 5 * 24 = 1205 M1 Q# o4 i8 x- }( c' Q

    6 L0 k$ v$ J" a# TAdvantages of Recursion$ o0 c3 L: M' u, b. x: I! g
    5 ~3 u. T# F  G2 c
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    " L  E5 |) U! M& @  `3 {7 |5 _$ v8 W% F6 ?5 ^, c3 v
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    + X& A+ s+ G/ Y6 p) W) E
    ) U- z9 O4 ?' c: M4 }5 [Disadvantages of Recursion% T2 B- r0 |  q+ P5 i

    : r: U% f4 @5 k    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion." W/ O1 M3 [# f& N2 g' z6 h

    ' q3 w. r8 U# m  r4 T8 {    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    ! m+ P4 I, L1 u- c
    $ F0 f/ V7 i* f4 e+ y& Z6 G6 ?When to Use Recursion
    8 J+ V8 M: s+ C3 G, b4 i* y5 s' v# w1 m3 o4 w. r: i
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).2 V9 E  \3 i( e9 \1 s& E

    6 L( J/ m; f6 H0 B    Problems with a clear base case and recursive case.
    3 C; t' T7 D/ Q$ V6 k5 @( n4 @: M+ y/ D# g( F
    Example: Fibonacci Sequence
    5 v' y. o$ ?" t4 A) M0 _* M. _8 Q" g0 H1 e% C
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    * f2 X' @3 P. Y+ m1 l
    ; x" u7 o1 i1 r4 f! \5 F9 Y    Base case: fib(0) = 0, fib(1) = 1  S" w8 I- F: b/ B) l" U

    1 z: b% z) c3 p+ t    Recursive case: fib(n) = fib(n-1) + fib(n-2)6 t# `( @6 d! f8 S# A3 c& H! ]2 P
    7 \9 s" ]; @) d# U* X2 e. }
    python
    6 a0 W- E4 T. A
    / V; A6 l2 y# r  n6 ~7 T' Z, O/ T0 Z: p
    def fibonacci(n):  a# i( W4 S0 k% Y: S% c
        # Base cases
    8 `2 C7 F5 z2 i$ x- p' t. F    if n == 0:
    ; ?( `) [  w# ?  B9 X! J, M        return 0+ ~$ C8 e9 ~/ {+ ^4 p! R
        elif n == 1:2 u1 F, R3 O% A* }2 t: H. {
            return 1
    0 e1 b; z) E- b6 k# r    # Recursive case
    ' u/ ~8 y$ G" M1 U: X' I, y1 T    else:
    7 L5 P3 E8 v9 g8 K        return fibonacci(n - 1) + fibonacci(n - 2)* M* R) Y) U) k  G
      g" s1 c0 ~* t! h4 L: o
    # Example usage
    " G# A% }" p3 A+ \$ }print(fibonacci(6))  # Output: 8
    3 V5 @9 l8 g4 G1 V0 n8 O3 h  Z
    ' c* U( ]% S& TTail Recursion& E9 N6 O0 s/ s, m- i$ Z

    ! i: u0 h  U* K" a5 c) N: cTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).. @3 @; \# _, v8 O+ i

    # S7 Q0 G( g% [2 j7 Y# XIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-8 01:56 , Processed in 0.032150 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表