设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1219|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 ( q8 P4 I0 Z; c1 x& @% w7 h1 U" I/ `

    - U% Y4 g+ A: z$ V' Y  V) W解释的不错/ L' R' R4 G+ Q- L7 @

    & C5 G$ v1 o6 {% i+ E+ u. d递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    2 {3 b8 X  [$ v$ E2 @  Y' S: [& h& E; c8 S' {# s" z
    关键要素
    4 b/ e/ K& U9 N1. **基线条件(Base Case)**. J) n) D: I9 k8 t6 X
       - 递归终止的条件,防止无限循环
    $ K. d4 w& X" l' j; J" f   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    ' s( P4 c+ C7 n3 N# b
    + I" l. H' o% y: c' C0 s2. **递归条件(Recursive Case)**( c1 I1 a. U5 Q8 b( c; K
       - 将原问题分解为更小的子问题
    + f3 w/ |2 N% M/ p' ?   - 例如:n! = n × (n-1)!; }! I+ O! w+ E7 r  l! H7 f9 |. U

    # t- L) v+ g/ {/ _) t! ^0 l 经典示例:计算阶乘1 D# Q; G, G0 ^1 n% n
    python
    ; p  n$ Z* u' f  _4 ]def factorial(n):
    ; u; E' @7 x4 g! y4 Y1 M; \+ P    if n == 0:        # 基线条件
    ) z& r+ x! _$ V+ L8 T: l        return 14 c: O. L+ @7 r
        else:             # 递归条件
    - H5 ?! Y/ W4 O4 F% q3 q( z) r        return n * factorial(n-1)
    & n0 O; I/ G0 J0 C) e. J执行过程(以计算 3! 为例):" Y# c) R' {0 B: c6 m( i! u
    factorial(3)
    ( z$ G2 |/ z  \3 \* C$ o3 * factorial(2)
    1 f6 A6 ~8 j/ ?+ y9 u3 * (2 * factorial(1))' ~# Z0 v9 Z% \0 V
    3 * (2 * (1 * factorial(0)))% Z- P+ U/ d/ ~& M! ^: q* o
    3 * (2 * (1 * 1)) = 6
    ) C2 J* T! ^& }: N8 g4 N0 _: ]9 G* Z# X- i- u0 J( {2 s
    递归思维要点, g# O, u: }) f) Y' _( A# v( G2 p. q
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    / l( Q+ [% T; m; B7 d! a2. **栈结构**:每次调用都会创建新的栈帧(内存空间)4 ^, I, N" Z! U9 ~& y" j' F/ {: }
    3. **递推过程**:不断向下分解问题(递)
    + R& V, f5 C& F" g4. **回溯过程**:组合子问题结果返回(归)
    * K. U) K4 ]2 H" a) c% {+ N; x8 `; t9 V  c3 H1 A9 V
    注意事项
      K1 a$ k! I. G! u' Z' q必须要有终止条件2 y4 \* H1 {; ?" v0 b! F
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)6 p. W# X- }0 o- y. @
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    ) _3 I- N* Z" S1 l) \尾递归优化可以提升效率(但Python不支持)" |/ a; K: i# }& g/ h3 x+ n! X# L. x
    / i$ ~% o- f& g6 n) e( n- R- U
    递归 vs 迭代: n4 |' ~  R3 G1 v" p! N, v
    |          | 递归                          | 迭代               |
    2 L/ R# s, H; ^3 ]6 h) R! Q|----------|-----------------------------|------------------|
    " a- i: P$ @$ s6 m| 实现方式    | 函数自调用                        | 循环结构            |% P( B/ _) e2 z3 x* w
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |3 ~5 [6 a& k9 M
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    & ?# j" q' t3 K( K1 w| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |. Z- v# \: a( a

    ! C9 N) |7 c7 R 经典递归应用场景# R/ A! `9 O. l
    1. 文件系统遍历(目录树结构)
    6 c3 T+ ?6 M# {) i% \2. 快速排序/归并排序算法
    7 |  w# f) W, c! E" K3. 汉诺塔问题9 ?) ^7 u" W) H% R0 Q8 E  b" N
    4. 二叉树遍历(前序/中序/后序); {7 o- Z: y8 {6 _! `0 v4 ~
    5. 生成所有可能的组合(回溯算法)
    7 I! A  D7 r" J7 W
    1 n  Q% M, e& a2 b0 Y试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    慵懒
    11 小时前
  • 签到天数: 3103 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒," w0 w4 S% M7 H! T  k0 F, K
    我推理机的核心算法应该是二叉树遍历的变种。
    + ~. d, r1 g7 n& S( l3 n另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    3 b( t' N( e$ [Key Idea of Recursion
    2 g- }9 j) q% _. V3 T8 r! I- V, @/ k$ E/ n9 Z% B
    A recursive function solves a problem by:# t& F1 k4 v% c: X7 F2 L' b

    & C6 s% i( c4 g1 H) V+ o    Breaking the problem into smaller instances of the same problem.1 S) }7 r$ x' ?8 G& f  \  M5 ^2 w& N) G
    3 s: H* w  h+ k' M( t3 C
        Solving the smallest instance directly (base case).
    2 f6 _$ M& ~9 @1 x9 G/ X) G- z& {! `  U) C4 ]  |
        Combining the results of smaller instances to solve the larger problem.8 B; [* N. o/ @( T) ]- a( o

    2 w: {. c/ ?: C3 rComponents of a Recursive Function
    ) w2 b: w5 L" J; _/ h; O/ J
    # ~- t9 l3 n/ [' r' f# q0 a    Base Case:
      L3 J( D5 @4 N% w' B! p( t  D9 d7 h5 u- W- a- }+ g7 u. g8 q8 ]
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    , F- H, k- h# N4 J! p0 l1 k
    & l* G% h" I* E% v6 N" c        It acts as the stopping condition to prevent infinite recursion.
    7 j% W9 l0 g- O& N2 W/ x/ m
    9 w  a! u) C9 R# [1 u/ H        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    : z* [5 D- g9 {- v; A: W- D) s  |  X3 f
        Recursive Case:
    5 z- ^  j/ a. z) t' {: X7 f. n8 G% J& H  p
            This is where the function calls itself with a smaller or simpler version of the problem.
    - O) @6 y+ K) T" R0 W! D, `8 G0 G4 r/ c& Y& u
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1)." U* Q2 F! p! A5 W

    ; k  |$ w  W9 c; hExample: Factorial Calculation
    + T, K. G$ D' Y; B9 R1 v6 Z# a5 R1 V9 v6 a
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:+ `; @4 E0 q+ L. X% {) g% q
    3 N& o3 Q( ^3 B5 h& H; w
        Base case: 0! = 12 e0 {4 I( |2 l/ W, N2 }
    & `/ h6 e- S. n8 a1 u5 X; z
        Recursive case: n! = n * (n-1)!5 K! q1 L/ v- N4 O7 s: e: X
    + |5 q8 g* l2 L& Z' c6 |, [. H$ m
    Here’s how it looks in code (Python):
    * F- _( `) k! M) Z* npython
    % \& ^& v% t6 J4 {7 l- p! |' k8 Z! k$ v& S, ]$ q: n

    0 N: c6 U+ i5 i5 n& _* a1 ~def factorial(n):6 y0 j1 i3 e$ K- b9 `  B
        # Base case
    9 l; j/ H7 ]6 a    if n == 0:
    ! C. W# e+ |1 w) J/ g! a* x9 l        return 1( R  z: p  |0 `! n$ ~1 l
        # Recursive case9 P/ W0 Q  u* J
        else:
    , N! U0 E4 x4 y  H* }9 K; I        return n * factorial(n - 1)
    5 T, E$ {$ A* K, f2 L: p- s& ~0 _
    # Example usage  n5 J& ^) S! g+ E; h
    print(factorial(5))  # Output: 120
    ) E# d! J! `* |0 D' V1 x6 T! ?
    : M# q/ N. y4 o. eHow Recursion Works" z' Q. _" A! ^$ F
    # v+ u6 N, R( m2 L
        The function keeps calling itself with smaller inputs until it reaches the base case." a5 C& T: [" a/ V

    ( w6 w( Q  e4 B/ h/ L* K    Once the base case is reached, the function starts returning values back up the call stack.
    " V% ], I" f& A+ d% u3 L0 }
    ' P5 H. u( ~3 K  o& r/ q0 m    These returned values are combined to produce the final result.
    ) R' O" y! q$ e* C8 w! ?7 F9 q% q9 f: H
    For factorial(5):
    5 ^( L+ o3 O8 t4 V/ f+ b- p0 C
    # x7 O. \& B+ W$ j% N+ V! V
    0 g3 E5 H5 G5 k7 F, Z  S4 r8 nfactorial(5) = 5 * factorial(4)
    " K. N! @+ X/ X! W; ]" t6 f3 Xfactorial(4) = 4 * factorial(3)  W# j# K5 l; U& a2 j' Z6 ~# v
    factorial(3) = 3 * factorial(2)
    4 ]2 L  N* t/ @: J7 Lfactorial(2) = 2 * factorial(1)5 G0 v0 J: S( W  F) c3 j
    factorial(1) = 1 * factorial(0)
    ) |- U" Z+ t" P. ]" ^factorial(0) = 1  # Base case" h! \' t# a* U" t

    # v; r, V$ a+ \4 L4 JThen, the results are combined:
    , g) ]! e4 e! B4 t9 x8 q( Q& a' E8 O; G% u; h6 O

    ; b0 l$ O# x5 E6 ~9 ~factorial(1) = 1 * 1 = 1
    . }  E& ~4 s, x9 z! Ifactorial(2) = 2 * 1 = 2( T5 U2 @5 ?& C8 Y0 I& S
    factorial(3) = 3 * 2 = 6
    % N( s/ q1 S$ {, Sfactorial(4) = 4 * 6 = 24: n& c  k) f5 N' \7 a
    factorial(5) = 5 * 24 = 1202 N2 w9 m* [0 J9 G, h

    7 z2 G% o. R; t3 a' T( S  tAdvantages of Recursion2 s1 V; l" g( `6 O' L
    ; h/ J% ]4 h3 @, s
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    - C3 {7 ~" [* X$ @4 m0 N
    * M# }% ^0 s' g: f    Readability: Recursive code can be more readable and concise compared to iterative solutions.  R* x: T0 X7 W2 T
    8 `3 h/ T8 J9 z% c
    Disadvantages of Recursion
    $ Y! o0 E$ G* h( O) }1 ?2 h% ~. {, H3 Y* X: O; T3 S1 ^
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.% a( f) h6 X: T/ _3 k* n
    % p' B& {- N& _! `
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).4 e0 X3 Z6 x, A7 g( {
    # j5 ]. t+ G9 W! L# H# \+ G# |
    When to Use Recursion5 {5 w: n2 C8 q0 o* a1 H0 {+ U6 l
    3 M* N% o  m" D4 c, J* m- J
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).# u0 J) E# P7 W6 d% L+ W) |
    ; y- K3 R* t7 j+ ~
        Problems with a clear base case and recursive case.+ n7 O' o/ h7 v4 \' p% {

    $ G% l( @, P% cExample: Fibonacci Sequence
    $ Y$ b. j" N) k' S/ A4 c4 f
    - c/ ~7 Z2 l- \. T* {# hThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    9 }3 h" B( Q4 [& i& T4 D6 K! y- g) e
        Base case: fib(0) = 0, fib(1) = 1
    1 e" E3 d  K" p: j: w) R
    , j- b) V$ G- q# Y- D    Recursive case: fib(n) = fib(n-1) + fib(n-2): \( A! S% P, J6 F! l
      Q7 l9 L! t9 u& I6 Q; h/ T+ X
    python
    3 m/ x+ K. a' r# `& q2 |
    & m% P3 z$ s- x- G7 W8 R. ]( W9 x* `0 U. ]5 y9 A5 e6 o  ?/ X
    def fibonacci(n):2 Y& ^* ?6 |$ v/ V1 d9 F1 [% _; s
        # Base cases
    # D' m- }" J* L8 I/ Q, u1 N    if n == 0:
    / r& o, y' [8 \' }6 ^; d        return 09 _1 L& I- e% y
        elif n == 1:
    : k9 c+ o% K6 d        return 1
    " J% I3 m) {" a, z# _% X7 u    # Recursive case
      ?: y, P; E( T& f, D9 F: U    else:
    ( Y" z: `$ Z. z+ g        return fibonacci(n - 1) + fibonacci(n - 2)
    7 L5 O+ y/ o  z- h9 ~& y8 I4 S* x4 j( S5 w% b5 o) q' l9 r* ?
    # Example usage
    4 R) @. x- ?1 ^; V! G9 I) Hprint(fibonacci(6))  # Output: 8
    4 f( [- ~& w8 P* N8 [$ b
      X& K: H. {$ `Tail Recursion
    ) H- z1 L! B7 A% {+ u
    & j, L, f& c" ?5 r# R8 O8 e( C* {Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).2 u6 t% w- V. ]4 r% X+ n* V
    4 D+ D' B% E9 ^, W1 h* g
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-28 19:30 , Processed in 0.033662 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表