设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1557|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    / D1 q2 M( K0 A# e$ ~  V
    ( |: O! e* A0 u! B5 }% F" @/ e4 g解释的不错! g; y" L, i9 f6 M4 K  b4 K
    2 r! h9 e& _; |  W  Z9 S- j
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    2 k. d+ L' Y7 H' G' z" o0 W* E6 o# Q
    关键要素% o( f( T/ C3 T! x
    1. **基线条件(Base Case)**
    & A1 E7 g. P2 u' O" U* ?! y   - 递归终止的条件,防止无限循环# g; h# S; _& D# E& ]0 {" I' A
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    " B) h9 J% t& |1 a8 {+ l: T
    & T- t. |% I! R) H" P. ?2. **递归条件(Recursive Case)**. y- f% k! t( j) V# G- \
       - 将原问题分解为更小的子问题
    " D6 ~% }/ m8 [   - 例如:n! = n × (n-1)!0 S7 @( z" Q. x

    . o* P6 J9 t7 F7 R- [ 经典示例:计算阶乘
    ' \, G# f1 _. `8 c. |* D- Upython4 f0 J% R7 s5 x# j! w, q
    def factorial(n):! g  l9 f4 N; M9 T8 P* A
        if n == 0:        # 基线条件
    7 o6 K7 X" u% H  s2 k5 P8 S        return 1" t' s- q0 l9 K+ L/ Y0 |6 k5 q
        else:             # 递归条件* C& V% e" D: }7 _; `
            return n * factorial(n-1)# `& R% t* g& X
    执行过程(以计算 3! 为例):
    0 ^0 _$ P' G9 A4 tfactorial(3)
    8 a5 a1 ?! |. N4 e3 * factorial(2)
    : L6 I* l' v- W3 _" @3 * (2 * factorial(1))
    & \# j, c" \" N9 x# l3 * (2 * (1 * factorial(0)))3 U  I9 ?& Q- ~
    3 * (2 * (1 * 1)) = 6
    4 p: k$ C; r: \0 h
    & x) d* t0 p4 [# y 递归思维要点
    ) K4 f4 j5 b! v, p, N6 [' j1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    2 K: [4 h3 |0 K1 r1 q5 |2. **栈结构**:每次调用都会创建新的栈帧(内存空间)# x7 @' P$ l" n4 g- k- Z
    3. **递推过程**:不断向下分解问题(递)! @4 Z% i- U. S: W; C
    4. **回溯过程**:组合子问题结果返回(归)$ `& b1 B) F9 A+ O: o
    0 Y( S1 p/ f) H3 E/ L6 B! Z( C3 s
    注意事项. \6 K' S; s) d% m# L& |0 C, p
    必须要有终止条件$ j: n/ g- F" A7 x2 U8 P; h
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)5 M! l: a6 }3 c+ S
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    : n4 D8 D9 @' b7 o$ t尾递归优化可以提升效率(但Python不支持)3 l4 v+ A' \. y5 a
    : x$ O% n& S/ X
    递归 vs 迭代
    # \0 [# s/ E" K/ Z5 h8 {2 W) ?|          | 递归                          | 迭代               |" j4 ?, u$ Q( q0 X
    |----------|-----------------------------|------------------|7 T: W2 E3 S, l) g6 C
    | 实现方式    | 函数自调用                        | 循环结构            |
    3 J9 G6 s  J1 o' u1 U5 M9 \| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    , p% ~3 e4 r$ I) d4 `/ m. K# k1 [| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    $ H3 o2 V4 V4 Q' z| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |# s# b6 e5 T* q- q/ }
    ) t* U: t, {% ^7 ~
    经典递归应用场景% n! f1 D& Q0 r+ `. ]
    1. 文件系统遍历(目录树结构)1 G9 [/ L7 P) |8 k6 ?
    2. 快速排序/归并排序算法1 Q1 \2 b# X. e& M
    3. 汉诺塔问题
    . b3 Q  \+ W9 z' v8 N/ a; C4. 二叉树遍历(前序/中序/后序)
    - x7 U! z" Y/ d0 H8 f" Q- P$ J( J* o5. 生成所有可能的组合(回溯算法)# f1 ?8 w* _' {8 V) X4 s+ Y0 w
    9 g5 A# `1 O# u' s: E, U( `
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    昨天 07:17
  • 签到天数: 3120 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,. U0 [3 V! B2 `" }6 l) o
    我推理机的核心算法应该是二叉树遍历的变种。
    , a, f! U! V+ N  {5 c另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    9 z1 X& C9 q* ^/ M" JKey Idea of Recursion6 ]9 x% U5 y' H! x

    3 }& {6 Z2 s! {& d6 @A recursive function solves a problem by:
    & t& m2 Q' ~" Y. n+ V5 ~
    , h# V7 t1 L7 [/ c# i    Breaking the problem into smaller instances of the same problem.8 o! y" r4 E& K6 K5 ^
    3 G% y  U  G( s/ U5 i, K2 B( M
        Solving the smallest instance directly (base case).
    % @5 n5 n3 B+ U% Q6 ?  V3 \; s* X- h1 j  v; s2 w4 T: s
        Combining the results of smaller instances to solve the larger problem.6 E* a6 V* L, u" d# w5 ?7 Y, W
      [7 [0 W- E/ N$ j$ s" X8 v
    Components of a Recursive Function
    ) n' \9 {: Y1 b9 c% @( K$ `4 t9 A' |- I# j) R- C" U
        Base Case:
    6 A# j( B1 y7 ~( k% [1 u4 A' @4 _, t% f  ?; M6 G+ f: v7 B
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    9 W8 S: Z3 G9 n8 ~# S! O
    6 b8 |1 h; M4 \5 [        It acts as the stopping condition to prevent infinite recursion.. `# D- f, A; y# w5 ~

    9 v4 X  ?* D9 X        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    3 X8 ]: v2 o$ Z3 ?0 a
    4 ]( I! |4 u2 b    Recursive Case:+ ~# k) ~. D! i7 ^( m& t# p
    ' v# o( M1 g9 O- c3 a0 i  ^% D
            This is where the function calls itself with a smaller or simpler version of the problem.
    , {: f  ~- h- z4 S6 s
    ! i. M. o# ]) _        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
      k! s. x5 ~+ S% ^4 w' W* y( M2 k; P# d
    Example: Factorial Calculation! E1 M3 G! }6 ~3 ?( R' ~" e9 D8 s, H

    , T5 V: e0 L! F* P: I4 ^: }) h: bThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:2 c8 a& n8 _# j" ?5 W+ L( X

    $ A. d- L6 i3 X# w0 o5 O  M2 ]& M" E    Base case: 0! = 18 c# D) F# S. J; a9 H- \: c2 X

    : a  W- G* _& e$ e  M    Recursive case: n! = n * (n-1)!; U- Q0 u; v9 B7 f8 H! \2 i
    0 I) \) k8 |* T* @/ C# l& d
    Here’s how it looks in code (Python):
    # `. @& r* N  X+ }8 X/ wpython5 S; o/ v* Z3 F* ]0 v
    9 ^' [" I- \8 n! G! h

    : R( K) m0 M' fdef factorial(n):
    . m! `7 F. C7 B7 b8 {    # Base case; I" |' V' G" r  t! D
        if n == 0:4 ]5 Q; Y+ J8 }1 G
            return 17 G$ X1 V6 ^3 e' [
        # Recursive case
    ' r0 B* \$ r" T2 \% d    else:
    $ w+ y8 V/ p9 A        return n * factorial(n - 1)0 l; h4 Z6 d5 c* D2 F8 b0 v

    5 p8 }8 B  u0 q# Example usage; e" G# l7 u3 i, l0 b+ q, h9 O
    print(factorial(5))  # Output: 1206 ?0 T1 R0 i9 Y1 ~( L
    3 ^2 z  p8 u: j; K1 U
    How Recursion Works! O' h7 E: F6 u( T; }; E7 M4 ]+ R6 F

    . y* ?3 A( ~+ i/ D  B' a    The function keeps calling itself with smaller inputs until it reaches the base case./ n$ G" r0 g9 B" O& k% F7 ^
      C' v6 Y9 C! |- a  c2 q( N( ?
        Once the base case is reached, the function starts returning values back up the call stack.' _. b) ~" L, d' S( I3 L5 r  d

    3 L/ v5 v9 v- E5 D# j    These returned values are combined to produce the final result.7 E5 N5 m& `$ ~/ \' Z

    $ B' V/ Q0 z0 R2 m) A8 }For factorial(5):$ @4 G( A- }+ F% s  |% b- U* ?

    % M3 p- L' }) w; Q- D4 G' V" y
    , A  B' R* V8 Ufactorial(5) = 5 * factorial(4)4 F- _/ q# L1 f
    factorial(4) = 4 * factorial(3)( C  s/ P' w# E0 N5 f
    factorial(3) = 3 * factorial(2), H7 e, w$ c- Z7 }. N* h6 Q
    factorial(2) = 2 * factorial(1); o# E( p( m) |3 c
    factorial(1) = 1 * factorial(0)1 J* D- y+ V: f) b. G* A
    factorial(0) = 1  # Base case
    9 S3 N3 p4 M3 Q  w3 W  s. Y& r# i  H# Q6 a9 L4 `
    Then, the results are combined:
    7 m1 z7 r( `$ ~9 O
    6 g5 z3 b9 d( E2 b) w
    . y- H/ e: ~# T7 ^, C* Z2 tfactorial(1) = 1 * 1 = 1
    . l6 P! b, z2 i: S  R1 ofactorial(2) = 2 * 1 = 2
    % ?2 U" r0 j: q4 m0 h) f2 vfactorial(3) = 3 * 2 = 6
    - o0 q2 |  Y. q8 p  c& `+ kfactorial(4) = 4 * 6 = 24
    ! f4 D' f" R% z4 I* Mfactorial(5) = 5 * 24 = 120, W2 s. G8 V3 i* l, T
    * F8 w* H% @" x$ [1 I8 e; @, \
    Advantages of Recursion
    * N" t8 a6 T2 [, A3 L3 ?5 f2 ]1 K- M% M. ]! h/ |, Z
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    : b7 t% [1 j5 @
    ; |" m! u+ H$ T( _' I    Readability: Recursive code can be more readable and concise compared to iterative solutions.
      q% G" `5 k" k6 k/ H
    6 N' _3 ~  q" v0 `' }7 N0 ?5 iDisadvantages of Recursion" V& I4 J; w" h1 O8 }+ P* x' z  x

    ; x# S6 c  W5 g: g    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.* C; p7 V% S4 G* S) O
    . A: v8 k. E' U9 v3 _9 g
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    6 G% c" x1 ^$ ~# x4 T; F' @
    $ K# O3 W8 r! |- }5 |1 nWhen to Use Recursion
    , \6 {6 a4 a. z/ V- Y
    5 c  T( V4 O5 N* @8 ^# l    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).) r+ f" w  [; c8 H

    8 l5 F" S% M5 I2 G8 ^4 a    Problems with a clear base case and recursive case.
    + a. W3 M% i) k, x/ ~$ e3 W. a! c4 F
    , @4 x. D; A7 e$ \4 ZExample: Fibonacci Sequence
    6 K' O2 A" L9 @, E; V0 v- `! j* i* @8 z% G4 l+ h
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    ! o$ d# z" _/ V+ z
    ! j' a) b4 d& S: D2 d& I    Base case: fib(0) = 0, fib(1) = 1& v9 K2 g" Z8 J; T" L

    1 |' I* y. p, O5 {- G    Recursive case: fib(n) = fib(n-1) + fib(n-2); U# b! A; c% D+ Q# {" l! K6 d3 N
    , g$ g6 {3 I  f
    python" y7 w! {, R5 H

      K3 A2 P& k* t8 s; s
      \& ^, F+ r2 g1 S0 U! X" Adef fibonacci(n):
    9 x' J( J: w8 C2 S" J, J' f) Y    # Base cases* v/ Q* ~" u" w5 N+ O8 q
        if n == 0:
    & c* `$ r0 j( T# P4 k; y        return 0
    ( j! q" W4 |+ i' t# t& d    elif n == 1:
    / w) X* O$ v, q7 m) e8 c& t  c6 V- o        return 1
    ) R! u* f' U. v( g4 H8 A8 k    # Recursive case! K% a/ \% B& S. i- @
        else:4 q! }( Z3 Q: I5 ~7 ^2 y# [
            return fibonacci(n - 1) + fibonacci(n - 2)
    ; F+ C, m" d- e# C6 G& d! Z5 y9 z# j8 p+ X. G5 r9 E& v
    # Example usage+ N8 Z+ r! W" x$ J7 r
    print(fibonacci(6))  # Output: 8* T. _( M9 E, s7 V* ~2 x- T# K6 p* \. P

    * T. S* i# O$ ^0 g" @Tail Recursion
    : g; {3 M/ n( O
    % k/ r! V6 @  t2 @Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).9 `& F" m; t4 H
    8 r- m6 h% w$ D+ @: f* s
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-18 08:22 , Processed in 0.033617 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表