设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1366|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    / g1 b3 {2 t: l) K0 b& B0 o; N4 A! z6 x9 n5 z. C0 K9 C4 C: ?
    解释的不错2 h% z) Q+ o* D* b: G0 s) ?
    ) }6 ?5 m2 [' q1 @) P1 Y0 ]
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。% O9 _( H# t7 p& D' s9 p

    + E0 C% c+ k' ~' c8 H 关键要素
    ; z7 p: F" d8 _. z  D1. **基线条件(Base Case)**
    $ Q, v7 r# ]( B. J8 |3 u   - 递归终止的条件,防止无限循环( p7 a& u4 v) \  @
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1- `. ~1 M% }: `  V4 b
    : F$ [! c+ x. X/ H
    2. **递归条件(Recursive Case)**
    0 A: I( |; |% X( R   - 将原问题分解为更小的子问题
    # }: F6 z; x- f   - 例如:n! = n × (n-1)!
    " ^, M1 ~3 }; F( p0 D; m
    * p' P" B6 w! }) o- `: {0 i 经典示例:计算阶乘3 B& ?5 J: G) U$ k
    python9 U9 t7 s# I9 z/ |
    def factorial(n):
    - ~; J/ p) O0 ?$ Z0 T    if n == 0:        # 基线条件
    3 i% W. d, H8 [1 m% S: u' {% Z        return 1
    3 b1 Z" v8 Z, n1 X# `    else:             # 递归条件
    6 `  w& L0 O5 `" N, n3 n        return n * factorial(n-1)+ @2 y9 Y, N- D' O* R
    执行过程(以计算 3! 为例):+ |' Z* [. m$ B5 l, I
    factorial(3). L) ~9 M2 E6 d: |9 a9 J$ Y: O+ [
    3 * factorial(2)
      y% @% L6 Z- I7 }3 * (2 * factorial(1))
    " P! O, `% F! P3 {' h$ j- W- P4 X3 * (2 * (1 * factorial(0))), e* i0 [$ {- o" Q/ ]
    3 * (2 * (1 * 1)) = 6* a! I! f, T% }, ?5 @! y

    ; ~7 v. q. q8 y# V( X 递归思维要点" K/ ?* O( I' [2 {2 Q; Z! [
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑( Y& ?) R1 X6 Y7 j! Z
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)5 b# v) q  k; b$ U/ H% ]8 f
    3. **递推过程**:不断向下分解问题(递), f2 d( x. T; V$ G% I+ _1 J0 U) Q; {
    4. **回溯过程**:组合子问题结果返回(归)
    + Y9 r* i. @, |  c# R( k5 |/ H2 X% g* F  L' V  o; |# ?! }
    注意事项* Y- u( [9 {/ E  q9 T. M: o
    必须要有终止条件
    3 a9 G9 j0 I& ~递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    ( }+ ^% c0 B% h- @/ m6 D某些问题用递归更直观(如树遍历),但效率可能不如迭代
    8 _/ L. K4 F3 |$ d尾递归优化可以提升效率(但Python不支持); i. v7 M0 k& n" J

    $ G/ X, S/ n- r: D. z; `* \ 递归 vs 迭代
    2 R- N  f# Y0 y5 l. q. G$ o5 A' g|          | 递归                          | 迭代               |
    6 _# @# z' x+ O$ E+ E|----------|-----------------------------|------------------|" |! u" m% H' H; s* b/ v% x) L, W
    | 实现方式    | 函数自调用                        | 循环结构            |
    , ?. Q3 N3 \$ k% N| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    & P( s5 e3 L  X/ M4 k| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |% Y7 }9 w+ s( o! Y/ R! \$ l- y. K
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    5 j9 _1 R9 e$ ]8 }( ]9 o- A# N5 H9 I0 s6 l
    经典递归应用场景  u  N0 b' \8 n$ B; b; x
    1. 文件系统遍历(目录树结构)7 d4 Q! N" j. L
    2. 快速排序/归并排序算法
    ) ?: S" y  r' ]% S$ C3 l$ K3. 汉诺塔问题
    0 a& @7 c; G0 u% ^$ K8 g4. 二叉树遍历(前序/中序/后序)( q( w" @& I9 Q" C" R
    5. 生成所有可能的组合(回溯算法)) X# D# g1 M4 C1 M# L* l
    " c6 X  K7 `" Q
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    10 小时前
  • 签到天数: 3110 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,! y9 O6 N$ y1 m) H% M2 e  o1 C! T
    我推理机的核心算法应该是二叉树遍历的变种。1 {  m7 {: t; h7 e. I$ x; S
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:& y1 a& ~& p. ?  r9 c# ?+ e
    Key Idea of Recursion
    3 W+ |& J8 R$ E8 G
    " I6 u) M; C* eA recursive function solves a problem by:$ c$ e8 U0 w' \% `- b4 M9 f
    2 e0 w, I# g  d; I
        Breaking the problem into smaller instances of the same problem.
    8 m( G8 d( D1 X; s- \  ]+ k0 J7 }$ c8 l
        Solving the smallest instance directly (base case).
    2 ~5 `' d% N- y# Q# r: {. m. @
    + g% Z4 A0 {- [# Z    Combining the results of smaller instances to solve the larger problem.5 [! V4 u8 A  I6 f+ M- T$ z
    : @, W4 L" F+ E& `; v1 e: Z
    Components of a Recursive Function
    ' L/ c  j$ ]! p3 y% [
    7 n3 ?) j2 e, j: b* X# Q    Base Case:
    ! E, \; d: g8 f) O9 I, x/ J! {
    7 w" W7 E* \, `$ N" Z; |5 Y        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    : Y. v4 A8 r/ M1 P
    5 o! e9 e5 {; p6 J: o9 _4 e        It acts as the stopping condition to prevent infinite recursion.) u- I- B: n+ O0 F
    " J8 Q+ L5 L2 l$ A5 G+ `
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    : C+ `6 n/ I% H! \  k3 J
    % k) r: w" F6 s    Recursive Case:' \3 z9 ]9 }% q

    2 }3 i' L: N6 Y        This is where the function calls itself with a smaller or simpler version of the problem.: c+ ?4 N9 K& X" F# R) p: Z
    ; w) E/ N. |: N: W
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    . ?0 o8 X& U% V! p* x" K( i( K! {7 O
    Example: Factorial Calculation
    - I9 w/ k( ]& G; G# S1 {: G; V$ Z/ K2 E9 k/ L2 d% R
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    . w2 _" l$ S" h1 b+ {" [) A) W- b' z2 r$ D1 ~7 \5 v# J6 m
        Base case: 0! = 1
    8 s3 I8 I7 E# |' q7 U1 q
    9 u* R" c3 _/ H5 B* W    Recursive case: n! = n * (n-1)!0 K) |$ G7 i) x8 B/ A7 u

    9 k  i" i/ r+ P+ P5 @% s7 N/ oHere’s how it looks in code (Python):
    ' }" |- _% [& O' X2 y! Tpython
    0 `7 p4 ^$ e6 |3 [
    ; q1 N& X: N. Q3 U' w/ j9 a  i& a9 t" {6 W
    def factorial(n):8 M" Y4 [, b# O5 z
        # Base case9 T- m: B( _5 N4 T, S$ H, s
        if n == 0:) t% ~+ \9 d! u6 D
            return 1# p" w5 [) w/ S) w+ {1 w7 Y
        # Recursive case
    ) p6 C$ B9 I9 J/ W    else:6 R5 @9 y0 h7 e, ~* q2 P( X2 V
            return n * factorial(n - 1)& V. `; k9 h  e( D. I4 b
    : V* n( [2 r$ C, U
    # Example usage6 O  m( j2 d# T6 ?
    print(factorial(5))  # Output: 120
    # R  W7 R* F8 m6 p( S
    + p' g* v: e; d% {7 p4 H7 L/ y, cHow Recursion Works
    4 U' t8 d/ L! y. r" i! l
    0 ~& j. `- v2 f  t    The function keeps calling itself with smaller inputs until it reaches the base case.
    $ J% e% J" Y0 C7 J! a! [! K8 C( ~# J$ z% m. W4 U. P( k
        Once the base case is reached, the function starts returning values back up the call stack.
    1 j$ t* l1 ?0 J/ Z
    0 p. R, j# O1 n2 C" v; n    These returned values are combined to produce the final result.
    4 R, D; i- o& z  g+ P) k$ M1 {6 q; ~, P/ k
    For factorial(5):* t/ m: `4 h; Y0 u

    2 a5 t; @) y/ o+ x- q. q1 B& d2 W8 ?: q5 G2 t
    factorial(5) = 5 * factorial(4)7 d; e9 I4 |" b- U, J" S
    factorial(4) = 4 * factorial(3)
    6 U8 U5 t+ q+ T5 H' ufactorial(3) = 3 * factorial(2)4 c1 t, {. z- V
    factorial(2) = 2 * factorial(1)
    7 }; k: m7 k& h9 Bfactorial(1) = 1 * factorial(0)& ~; Z0 a  @+ [5 l
    factorial(0) = 1  # Base case
    % p" P: l) z. R$ L# u
    * Q  Q$ q4 x& i% n4 `8 s0 pThen, the results are combined:
    " x% t+ O, d6 W1 H* U, m
    + `/ K4 n" O+ N3 v. w" E  j! s
    9 T" n" |% j% E3 E- {6 Kfactorial(1) = 1 * 1 = 1* D* J" P5 L# ?$ ]# U( j9 @" A# X
    factorial(2) = 2 * 1 = 2) Z2 K8 _' X! {! K, L1 W
    factorial(3) = 3 * 2 = 6
    / q" Z5 ^1 w1 A# L) y' d6 Afactorial(4) = 4 * 6 = 24
    5 D" T3 Q' N- }& tfactorial(5) = 5 * 24 = 120
    ! f7 R( c% x' t6 }, y, f  S! b- z1 O9 A% v' E) x. T& d* W
    Advantages of Recursion
    - C" ^8 {" q4 V7 }0 G) T
    ' e# l6 l9 E- n8 J  ^2 M. H    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).* w3 Z4 K" m2 n3 j

    * ]0 C0 Y9 E' t% U" f    Readability: Recursive code can be more readable and concise compared to iterative solutions., o  ?4 |( b1 h3 p( o
    - f8 J+ Q- J' l# l+ p6 H
    Disadvantages of Recursion
    2 X; U  f4 v% G; J( O& S9 K6 d0 c% u# @; G; L
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    0 `+ f& e& i  a& l" O. s& \3 V" b& Q
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    0 M* M. Z2 c# B  A7 G
    8 ]1 J( y9 X( N: w' q6 c4 f+ pWhen to Use Recursion
    8 ^7 d* ]0 F" J8 O$ ^+ f1 K
    % u: ^4 D0 P: Z* `    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    7 f) F$ I. ]/ c( M5 a  p9 {3 F5 p6 @$ ~$ i! p1 w* G' O9 p
        Problems with a clear base case and recursive case.
    7 u- c6 a2 J) e6 f: R( y0 q5 N; q, J' I. O& V
    Example: Fibonacci Sequence
    2 B3 I* H/ h2 z* K* @& [, Y4 Z" N8 o' S0 c' Q! l! B
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    ! ?# i# @( Y( M- w0 T
    ; _) n9 g4 D+ ^' h0 R/ F6 B2 E- {    Base case: fib(0) = 0, fib(1) = 1, V0 B7 H/ [( V9 g; J) s+ m' ?0 w
    8 W& e  N" Q* [: N, i, A0 G+ g) z
        Recursive case: fib(n) = fib(n-1) + fib(n-2)- p; X% J! u6 k1 M# }6 A

    4 @* [* X2 y& ypython
    6 J: {% [2 x8 g$ p8 D$ q; F. W. j; L
    5 T+ j& N2 G5 ]: Y; m5 z7 k1 F" s! o2 s/ s$ W" R: w
    def fibonacci(n):- Q3 y+ l+ K1 {* z+ ^7 I
        # Base cases
    " O" U! V5 b2 N1 K- w6 n* ~+ g    if n == 0:
    2 H# u! T6 b2 y& ]        return 0
    9 C8 t/ W7 M+ q, |    elif n == 1:
    " P* N4 G1 F- {% d; h        return 1
    * ?  N" F! i1 J% Z! F    # Recursive case
    ; D" @) Z5 ]1 z9 o    else:# f- K/ n8 S) R, i% Y
            return fibonacci(n - 1) + fibonacci(n - 2)
    $ L. E0 a3 Z. g
    $ }1 f& l) b0 Z1 A1 T' h# Example usage
    ) w! [. ~' w5 Q5 W8 Cprint(fibonacci(6))  # Output: 8& B  S6 `- I5 ]( e

    9 {. [- B3 n6 H' K. G7 u" {; L% vTail Recursion
    / U6 C  K6 F$ ^0 U1 C( T$ Q* a) E$ m% t; z
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).& @' [/ D# N! ]  x( N: y+ V3 M
    3 t% U; k4 [; p( p0 H4 G; g
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-6 16:31 , Processed in 0.036579 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表