设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1410|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    ' o0 u* l& ]; w
    ; X& s9 F9 l3 w5 m# u4 X% z+ Z" ~6 [解释的不错
    7 d1 g  l8 z- M0 B9 [% S
    ; I* u' P3 T9 m9 N( e, @/ @' r. }/ E递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。+ P! r0 m/ w# u6 A  c

    ; o. c* C: z4 N( @# \  G 关键要素. o/ U+ @% `7 Q* {
    1. **基线条件(Base Case)**4 v9 |, H. }, S% E" k! |' E* m: j
       - 递归终止的条件,防止无限循环
    & U' Z2 c/ v  ^& ~  q   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    6 p/ q0 N9 ]2 i, `
    6 ^: y! l! f$ c' ]4 j, \' d2. **递归条件(Recursive Case)**8 |0 F' Y5 K7 r* j: N  `+ u" ]: C
       - 将原问题分解为更小的子问题9 e- A6 k" U# o7 B/ A; Q% \' z9 F8 q
       - 例如:n! = n × (n-1)!
    0 O1 z2 S% h3 y; |
    0 _0 W! s/ |! ~* `  ] 经典示例:计算阶乘
    $ ~1 e. _" W# P# h5 `python, V. r+ N8 D  \. m
    def factorial(n):
    + g) \0 Y. ]  |2 N7 c9 N    if n == 0:        # 基线条件
    7 d; a; v* B7 c9 R* w1 a        return 1! p3 i& _: w! }# \, P; C
        else:             # 递归条件
    4 y, a( `! j" K9 _* |2 l) P, i8 c        return n * factorial(n-1)# Z8 M5 ^$ B4 x$ m
    执行过程(以计算 3! 为例):
    # A5 s  ]7 _5 ^1 t, {' dfactorial(3)7 s) ^1 v7 P! l& W6 d8 R* D. A
    3 * factorial(2)* e+ c- \% l, O7 m. b1 J1 H
    3 * (2 * factorial(1))
    * s5 n$ @  p- y3 * (2 * (1 * factorial(0)))
    % P9 Z8 _6 r9 F/ q- _  \3 * (2 * (1 * 1)) = 6
    * B/ n1 Z3 P' P) v- f) R1 _% E  p& G: n# s' {
    递归思维要点2 Q% J! N" q: s6 o* m  J% m# `
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    9 _. R5 u' p8 S2. **栈结构**:每次调用都会创建新的栈帧(内存空间)- t2 N6 ]: r5 k* r$ _
    3. **递推过程**:不断向下分解问题(递)
    & ?% {, G4 S5 w4. **回溯过程**:组合子问题结果返回(归)
    , q% e7 D4 O9 }! d! ^
    $ @. x* F" Y/ S  F+ }7 } 注意事项
    $ E! s$ w. a. r# k# U& b9 F必须要有终止条件
    # j3 ^8 c+ H* U* I0 c递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    8 `/ c. Y: a. w; S* q0 K某些问题用递归更直观(如树遍历),但效率可能不如迭代
    ' q* \$ q% {* D尾递归优化可以提升效率(但Python不支持)
    + D7 T4 z7 \) c) W. v/ o5 D2 C
    % D1 Y/ z( |8 p- w1 Q* n9 j$ V' q 递归 vs 迭代: J7 f# J1 g  N  A
    |          | 递归                          | 迭代               |
    3 P$ f( V* @2 q; u5 X|----------|-----------------------------|------------------|
    ( v1 J( S$ v# g5 R2 \: {/ a| 实现方式    | 函数自调用                        | 循环结构            |
    ) t4 `- P+ `9 L* S2 J, k+ C. G| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    - {* \& X+ k& H$ K1 d" `| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    ' q1 n% d  v2 v2 D9 m" x| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |- {8 @1 p8 }0 A2 V% d
    & m4 [6 M2 }4 t& t
    经典递归应用场景
    * |. N  `1 r, A. n1 b/ Z$ f. o1. 文件系统遍历(目录树结构)- `2 p3 P# F$ C" Z
    2. 快速排序/归并排序算法
      u) h2 S' _0 v  b& T3 @% F8 p3. 汉诺塔问题
    0 o5 B* q2 @9 e: k- q) |4. 二叉树遍历(前序/中序/后序)5 R3 f  v8 t7 X3 f$ L0 I
    5. 生成所有可能的组合(回溯算法)) D8 _8 y# l3 S% d3 f( E

    / Q0 g9 n1 v& [* x# R3 O试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    慵懒
    7 小时前
  • 签到天数: 3112 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,, G0 }1 `% d  g+ c/ q* E* U; X
    我推理机的核心算法应该是二叉树遍历的变种。
    5 \# g; F, J! n, B) L% O另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    , k( }7 a8 Z) O9 Z! y/ T$ j, _Key Idea of Recursion6 q" J) v: v$ f3 ], g% X
    # a" K- m0 x; }3 z1 s* x
    A recursive function solves a problem by:! V2 Y# C2 `5 I) o
    + ]! A. Q/ s4 i
        Breaking the problem into smaller instances of the same problem.! H2 e# _; H$ _. C
    # Y1 ~2 `2 \4 z
        Solving the smallest instance directly (base case).
    * A5 v/ q! c' u+ |1 }! h. F
    8 i) Z; z2 W1 s! a) }0 f    Combining the results of smaller instances to solve the larger problem.
    * T1 T/ p& C; {% ?. c5 ]4 f' {! D9 Y7 g
    Components of a Recursive Function
    ; ]+ ?. N! m9 X1 W; l$ }
    9 A5 f0 x- O/ J% h, R2 ?    Base Case:+ f  @4 F8 K2 m5 q9 ]

    ) N) ]; H! i( Z4 h( q        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.$ g8 t" P, X9 a% A1 @
    ' F; B) ~# ^# e3 m
            It acts as the stopping condition to prevent infinite recursion.( v& y  |% d& E( k. ^
    & Q  n5 v3 q! Y% X2 c
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    * C: b1 i! |) s9 k9 ?) I/ t: ]% C. X5 \6 H; S; f
        Recursive Case:
    : r; h2 U4 l9 S  n% r6 O& E7 {! I/ l' b4 ?# k  M9 T, G% i7 k" R
            This is where the function calls itself with a smaller or simpler version of the problem.# X# k/ q0 I1 Y6 @" M
    4 S. h) h& I4 P
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    9 v  u1 j7 j) o0 b8 \. j  Y( S" @% O4 n: s
    Example: Factorial Calculation8 t) r' G4 L# L$ j& s

    ; |! I5 R9 ]9 `  AThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    5 R: F* D0 Y2 Z* O# ?( u1 G/ o  J* x7 T9 M, f' D6 R# \9 Z
        Base case: 0! = 1
    - \" |( l' U% T2 R$ M2 l7 R
      F# u1 d, Y5 @9 _+ q    Recursive case: n! = n * (n-1)!( y; T# v6 X' ^# ?5 ~& Y, ^
    % D, j! N! A5 x& q% u, y0 c
    Here’s how it looks in code (Python):
    ) m; B* X' `7 R1 Qpython/ V7 l9 V: A5 ~

    * `0 S/ z2 G8 ^' H# x/ v1 v1 }& B
    # |4 j  L- K5 C/ t" p7 K9 ^0 mdef factorial(n):* r; H6 m" p+ B) z+ Q3 X
        # Base case
    9 s; D* z; {5 d    if n == 0:8 @3 p' N- K6 t6 n, d8 {4 `9 |
            return 1
    % h& n. W0 p# |7 D    # Recursive case
    * s+ Z( e1 x. J6 Y5 A9 @    else:
    9 N0 C. k, ~/ b* e2 c* v( ~* S        return n * factorial(n - 1)
    & B7 i4 Y3 W  ?2 ?4 g8 g2 N
    % X4 o- O4 L$ x: k( z4 ^# Example usage
    / F- n: }1 T) }0 G3 e$ V/ _; uprint(factorial(5))  # Output: 1208 t+ ?9 e  [2 W0 Z& N' V1 v9 N6 I" U
    3 n5 c6 r9 L# M( J0 p7 ~3 P* b8 C, s
    How Recursion Works! {' Y* `5 V& D+ m
    6 o2 c8 R  E! {3 C9 E3 n+ G0 D! I
        The function keeps calling itself with smaller inputs until it reaches the base case.
    ! O( Q% W! |$ B# k/ f9 K' K0 k/ R5 B) s  d+ c) ^9 k
        Once the base case is reached, the function starts returning values back up the call stack.2 M' S+ V/ p* S9 y7 v& q
    1 b) \2 X" z8 T' K+ m+ P: z4 N+ L
        These returned values are combined to produce the final result.9 d: J& V5 g4 ]5 U

    9 G9 o& `9 q8 bFor factorial(5):
    ! P! E9 e2 |& L( Y' Q' i) N) s& J2 B, [+ _3 v# K

    6 @( n5 i/ c. ?, _- q# ?( Pfactorial(5) = 5 * factorial(4)
    # d* o, p1 g' k( D! |factorial(4) = 4 * factorial(3)/ @6 x( B/ ^7 z1 e9 r3 t6 S
    factorial(3) = 3 * factorial(2). e0 z" Y& S8 b5 B+ O0 x& u/ s
    factorial(2) = 2 * factorial(1)
    2 U0 {/ \( u+ [. Y, q' Nfactorial(1) = 1 * factorial(0)# m( h) \: v2 L: ~7 G
    factorial(0) = 1  # Base case  N% a! K8 g! g' H* ]

    % g. S, M. W9 o' mThen, the results are combined:( |) B+ c& v, K% H5 z8 @

    0 k. y! F( W) ^3 r6 k. i
    % c" O% f2 R1 E% D* _) s: c2 nfactorial(1) = 1 * 1 = 1
    0 A* O( _$ m# P! F; ^4 _: Hfactorial(2) = 2 * 1 = 28 b. {& t# a" n  n1 M. w$ q
    factorial(3) = 3 * 2 = 6
    1 N9 T* f. X( h9 k6 qfactorial(4) = 4 * 6 = 24( N' f0 \1 J; C8 {5 S- U
    factorial(5) = 5 * 24 = 120
    / N' U6 b2 n. j! O, R: q0 ~; U/ E( V  w. o/ Y9 q0 O
    Advantages of Recursion
    # E6 k$ P7 z7 B) P
    8 k! \7 f' c! R$ E* k    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    5 O/ Y3 |% d) v- _% S; H7 X4 B# t  c# H5 k+ L$ C1 X0 Y3 s/ {
        Readability: Recursive code can be more readable and concise compared to iterative solutions.- U" T# r9 q; k. h  l9 H& H& G* C2 R

    4 e1 m- R) e. l) n8 EDisadvantages of Recursion, l2 l0 I" D8 M! i

    ; F' y" R/ q7 q8 U3 h# ?2 \: b/ [    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.* M8 h1 v7 W) X$ k8 l* X3 Z

    % T0 {, `) ^3 _    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).5 j, J/ l% Q) i: z
      x! l7 @* s0 O4 U! x! N: E: M* \
    When to Use Recursion
      F2 J) e6 x+ e0 g- L) i' }3 `. V3 L6 y/ m" T: N
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ; R4 H) T; V9 b% D5 M$ _! c4 A" L0 q% C1 o
        Problems with a clear base case and recursive case.9 c/ _; n; b3 E, C' e

    5 @0 F0 p2 j5 K; RExample: Fibonacci Sequence" q' a6 [' x7 t0 ~
    3 Q& M: M7 n4 g  e! S( N
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    , p5 K7 @) l% O( D$ }
    4 o# N/ D% v6 d! ]    Base case: fib(0) = 0, fib(1) = 15 K/ |+ ^! I4 j

    & m) S1 w: L. e9 J; L    Recursive case: fib(n) = fib(n-1) + fib(n-2)- Y$ T5 x% C% T1 F

      Z( B6 c( c8 O) Epython
    / @" r+ p8 {- B1 j# a( [) _: J/ B; R, ^
    7 K! K8 L  ]( @, x- v4 v% G/ ?& \. G
    def fibonacci(n):! Y2 d4 A% U0 W3 `& }2 s2 t
        # Base cases' Y4 x* `/ i' ]; M6 i* E/ O- i
        if n == 0:
    % ^1 C( I9 f, C$ k        return 0: n, o* t) m6 U8 s8 f7 S# ^) ]7 g4 z
        elif n == 1:
    $ M7 r: k0 U- {4 ^0 k        return 1
    & D/ G+ w; U# b. x* l  M8 g5 W$ e    # Recursive case# B/ e9 N$ M  {
        else:! G. U1 B. x+ H. k# n  X! L- [% @
            return fibonacci(n - 1) + fibonacci(n - 2)2 p* {5 P& y7 N1 z9 h6 T. f7 R/ L

    4 E  m7 f2 A. q- H7 d' R# f% e# Example usage
    1 u5 d" R, b6 j6 B, S2 Hprint(fibonacci(6))  # Output: 8" p3 y' x: k% S1 M4 @" f* G/ ?
    ; B# P0 V* h& f) I# h+ h
    Tail Recursion& w6 j. B0 T0 c

    5 ^6 \9 t6 L3 p$ L- kTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    5 X4 B3 h& E- g8 I! G8 I6 e! T# V# N2 T$ q
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-8 14:38 , Processed in 0.030727 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表