设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1361|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 ! m5 P0 \! U# `3 @5 G" i6 F, Z
    6 L# S9 b8 W3 C5 O+ V; U
    解释的不错& L4 D0 S9 ]2 b: {2 m- l
    7 u5 B) c9 }! [* K2 S
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。1 v8 I; G! Z: m5 \, w

    # L; w1 R  e9 @- E$ Z: D 关键要素1 f6 _7 y4 [' Z  k3 f
    1. **基线条件(Base Case)**
    ! f: H. c' L! A   - 递归终止的条件,防止无限循环$ ~3 Z! K" h; K- v9 |& {
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1: a9 r- {( D! a5 J6 }
    2 E- r  R. d9 o- \" h7 g* C, V' b
    2. **递归条件(Recursive Case)**$ J5 H$ K8 w  b% y
       - 将原问题分解为更小的子问题
    " m' T3 p# b5 o8 {! ~0 g8 O' H   - 例如:n! = n × (n-1)!
    ) Z* f# F' I6 E# B8 C( n* h, v9 ]' I+ H  z
    经典示例:计算阶乘5 p" ^7 K# H# X% |$ J& _
    python. V6 u, f2 ?2 Y
    def factorial(n):
    7 J9 ]2 [9 Z6 S6 B    if n == 0:        # 基线条件
    & x& @, I4 d3 a) L% _$ t7 U        return 1* z+ g' ^6 s2 u' e
        else:             # 递归条件
    ) ~  n- m& w' X4 w4 |+ G1 K        return n * factorial(n-1)
    3 H  m* l0 b. r5 u/ {) z执行过程(以计算 3! 为例):
    ) }: |( u; X& h% V& H& G, Tfactorial(3)
    8 I$ M* X3 h. L; G3 * factorial(2)# ?; @- f/ F3 D$ b; W
    3 * (2 * factorial(1))
    # \- `8 Q/ s! H, V* i3 * (2 * (1 * factorial(0))): e* K  m( i* ]3 d
    3 * (2 * (1 * 1)) = 6- m2 q0 s1 M4 q3 `! O, S
    . D# f% ^1 ?9 O2 |5 H# |
    递归思维要点' @* H  ~$ m; I% @8 _
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑0 t% \. z* O! Z' O& X0 ?
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    ) ~, H  Z' ^0 V) Y+ Z$ w3. **递推过程**:不断向下分解问题(递)
    % F6 A; a! J/ s/ h4. **回溯过程**:组合子问题结果返回(归): E% i4 {$ z8 H4 U" j2 Q
    / U% B0 B3 n$ j7 z, h
    注意事项2 }: R; j4 k0 p3 e  ^$ {; y
    必须要有终止条件
    $ `4 d; c) `! o& t: ~递归深度过大可能导致栈溢出(Python默认递归深度约1000层)2 @: r  [" Q* h2 @$ H
    某些问题用递归更直观(如树遍历),但效率可能不如迭代/ Y; `6 X8 M0 v0 i$ I$ n
    尾递归优化可以提升效率(但Python不支持)
    ! A9 @3 k1 l& Y  T3 m9 h. e1 _( ~4 w3 V# w  z
    递归 vs 迭代
    ' x! F2 ?+ C. \0 R, a$ R- n& Z' w|          | 递归                          | 迭代               |' u# s! j" Z# ~
    |----------|-----------------------------|------------------|
    3 S0 Z* B2 }+ v# E% \. X: [4 l| 实现方式    | 函数自调用                        | 循环结构            |
    & |2 n2 T: ]& V  ?| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    , ^" G" l3 J0 Q8 c) ^| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |2 K" M0 S6 B8 _) j- w! F2 w
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    % N& D8 Y! m9 u- w/ h- W/ m! H. b; R9 E- ^
    经典递归应用场景( a. R# L+ R$ k7 Q& g: b
    1. 文件系统遍历(目录树结构)
    % _5 ]- Y1 @* h* N/ W2. 快速排序/归并排序算法! n8 [6 h6 A. m% x, ~* {! z
    3. 汉诺塔问题
    * i0 |" Y6 |9 G, l3 d0 W4. 二叉树遍历(前序/中序/后序)+ R  D9 W9 _& R: {8 V& }+ o4 u
    5. 生成所有可能的组合(回溯算法)! Q. M& ~" o2 ^; X5 W9 A
    5 J+ I* t: w6 f# J! W& p
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    4 小时前
  • 签到天数: 3110 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒," C! m2 d- a* t& R
    我推理机的核心算法应该是二叉树遍历的变种。
    , u+ d  L; Q& k: u# C- c另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:' Q" @$ X9 l4 Z& o, A. T3 B
    Key Idea of Recursion( R# ?9 [  m# h8 h" v4 V

    2 _0 E' Z  P8 k$ ^A recursive function solves a problem by:
      }; O1 o8 t2 l, l# W1 E# A
    ' c: O$ ?8 p% L* u9 U. [    Breaking the problem into smaller instances of the same problem.2 O, G5 K# e4 Q) `& f2 u
    , v/ W9 ?* k( u
        Solving the smallest instance directly (base case).
    , Y3 o; D" A( Z6 K  r
    ! v, D1 B7 q5 n! g  Z    Combining the results of smaller instances to solve the larger problem.3 M0 o  u: u, n' a& X% N0 R5 F4 Y

    8 @$ Q1 Z# |) h- r& aComponents of a Recursive Function" ~+ I! z7 S) d' I; @
    1 P' t) _9 }1 m6 q
        Base Case:& Q  S% _' ^" a; m0 E6 |4 V+ T: t2 _

    : y' ?$ @' l* f; F& ?0 V) p% B        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.5 M4 J) `, ?3 J
    9 Y+ `1 }# G* d& ]# N) J( U( B% H
            It acts as the stopping condition to prevent infinite recursion.
    & @' i: S, D/ G/ k3 F% t, U; a% [$ C  X$ @; A. h' i- O1 [. g+ B* x
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    : U' N* a- i% g3 f( N- v3 ?" T1 P: k3 z& S& d+ b$ S8 _
        Recursive Case:
    " v, x$ Q+ \7 q3 |& E
      V7 N( s1 a" t: M        This is where the function calls itself with a smaller or simpler version of the problem.
    ; ~) A: X  f& W7 q' ?8 C* S/ k0 \8 B; H) A/ u
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).1 e6 t( ~4 V0 v3 H- I; }
    / B2 L" g! H3 `
    Example: Factorial Calculation+ _" n- V% V0 I- {$ ?9 Z  Y
    2 |8 r' ]& [3 n2 ^$ q# R& j. u& x
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    6 b) F; _+ }$ |6 m8 i8 T8 K
    3 x" m8 V, V- j1 `8 a    Base case: 0! = 1( h7 \% G; B; \! o8 {) c
    : o; O. V! Q: j# k1 g  G
        Recursive case: n! = n * (n-1)!
    " K7 w, `5 y( G- T0 J$ B% c2 U4 Y+ n5 z* r) \, I4 R3 U* K
    Here’s how it looks in code (Python):
    ; H! {. R) j) R% h; Hpython' C' E2 M6 j6 {# ~. [9 p% R

    7 v, g7 _) r" W( [4 f) L+ g% I
    ) m1 {1 V( v$ c3 E9 ?- K9 ~def factorial(n):& e5 W% S" u7 P1 A2 G  G- ]
        # Base case
    ( x) a$ y4 ?- o/ M2 }% ]    if n == 0:
    9 ]. d" o& L  J9 r        return 17 W9 x  B+ l, v; A3 I- \
        # Recursive case
    , a9 \4 a7 f. U5 g( J; f9 j    else:
    ; t: I: m0 K' ^6 A        return n * factorial(n - 1)
    1 K, h% ^/ Y( J" a( ~- O
    / U5 h3 O: m5 Y9 R" z9 r' m# Example usage0 U, W0 E. f0 G% m) f. ?
    print(factorial(5))  # Output: 1205 y: U1 g/ l+ f. t
    6 \4 _5 l& P% |, z6 ?. u: H
    How Recursion Works
    6 u* S+ u+ u" o# e3 ?% l; L( l/ z$ B' F' j
        The function keeps calling itself with smaller inputs until it reaches the base case.  i2 E3 H& K) Q3 P

    % s2 H4 _- Y# O( Q9 c2 n    Once the base case is reached, the function starts returning values back up the call stack.
    ; Q# e7 X& ?- w8 l* e6 w+ ]# t/ C' ]$ _! P8 A
        These returned values are combined to produce the final result.2 R0 S( b% v% u

    4 [  R$ G% E' F( ~* b2 ?For factorial(5):. n6 z: T+ ^  _1 v* d6 c

    7 z! N8 F* T0 e- d5 n" A- X+ y* A& H5 I9 i' N2 E! K
    factorial(5) = 5 * factorial(4)" K; d% q' O, W
    factorial(4) = 4 * factorial(3), m$ h3 }/ U4 F
    factorial(3) = 3 * factorial(2)( `3 s4 k/ E7 e- ?
    factorial(2) = 2 * factorial(1)' j/ X; o) K* Y' l7 z3 [5 j1 [
    factorial(1) = 1 * factorial(0)" u4 x. s6 j& x* `& ~
    factorial(0) = 1  # Base case8 x1 x9 R9 b$ ^/ F3 c3 z! u" \, [

    % q4 E( h: G8 P  c: F2 y7 X2 B: O# XThen, the results are combined:$ l. p+ ]' g6 v& P+ E: G9 i
    6 }2 e( Q. r0 i: X+ j2 W$ U
    * l6 v" M: Z, [6 @; Z
    factorial(1) = 1 * 1 = 1
    ) X, T! H* `# w0 _4 ^factorial(2) = 2 * 1 = 2
    # `; E/ I; P: kfactorial(3) = 3 * 2 = 61 H4 I: w7 e  n0 O; l# z9 b3 ]
    factorial(4) = 4 * 6 = 242 D9 D7 W+ }7 ?
    factorial(5) = 5 * 24 = 120$ g4 F4 U# M* j( W. `* s8 ~0 d" ]; D2 t
    / |5 U6 U8 T# i; ]9 R4 X* Q3 ^
    Advantages of Recursion
    * y  O5 r% K" ?2 d/ {7 i0 E) U6 y0 y$ c; ~2 p/ R
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    0 j! ^! q2 f0 F$ D% J* G) r
    . c) o6 I3 @- s) U5 Z- _    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    ! K& u/ p+ M/ S, G  |6 [1 j3 S
    0 E- |" W6 B9 ZDisadvantages of Recursion4 |! ~7 d/ E3 N( r

    - _8 {5 c9 s, C    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.5 Z* X# H3 x  i/ R9 {# Q/ a2 v

    ( D' E7 a$ f! V    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).% t; Q; Y" p' k: v; \

    ; ~. M  B8 k1 QWhen to Use Recursion4 n6 P) E2 k1 y" I; u

    . J# O* V) _4 h7 N9 m2 q" o# s    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort)." Y' Q0 @" b  j$ D; R) T9 q, k
    1 l* i! W4 o4 t1 `
        Problems with a clear base case and recursive case.( ]% Y2 P+ A2 d2 J8 `* J
    8 z- R- I4 O7 F
    Example: Fibonacci Sequence
    ! d( [; a- b. d# r
    ; ?8 ^# w5 ~# x# o" k$ h7 [8 D8 ZThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:) B4 {8 l) ?6 z% D( Y' B* U5 r( u

    - l2 L' }$ @% E$ |' m    Base case: fib(0) = 0, fib(1) = 1
    ' Q1 d7 m# _1 {" u' N8 j
    5 v8 D% p" X7 `( C9 y7 K4 |    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    0 }' ~& {- w- H. L7 N. Z5 q' S4 }
    python( F+ k4 H' X9 ~/ r/ M

    / J/ L( ?+ t/ u3 b7 I
    , K6 F9 D3 p( [2 l+ z5 b1 Edef fibonacci(n):
    9 \0 g$ V( M/ \7 [( E: u7 g    # Base cases" c/ d) |" p1 {+ j8 o" f
        if n == 0:2 [8 o; b8 d' |
            return 0* s& ~4 C3 r$ U. ]5 L. O. j
        elif n == 1:2 Y- E0 j' d4 F2 H
            return 1* Y6 Y! A2 x0 [, i) \
        # Recursive case
    ; t% t$ X( ~) J  M1 C& f) \    else:
    1 [8 M; `1 ~: }% {7 ^  l) k        return fibonacci(n - 1) + fibonacci(n - 2)6 C" r1 ?7 K; o% V% W. G& r

    0 M* k' c' B5 z: i* I8 ^# Example usage9 V& J. s2 O  ~* E5 W" I6 c0 w
    print(fibonacci(6))  # Output: 8
    ! ?1 H1 e; X: d! K0 M# \; n4 `9 z. G  n5 |2 j8 @8 j* v/ j
    Tail Recursion  r7 ^+ [1 H+ {, z

    . _5 K4 [% |; |# Q6 @2 _% WTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).% w5 D5 a; f2 ?; f( V  ^! O" u

    7 A( f/ t& _( Y) JIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-6 10:18 , Processed in 0.030182 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表