设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 563|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2015-11-30 11:11
  • 签到天数: 2 天

    [LV.1]炼气

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    ' Q+ A5 i: s4 Y/ q6 j: M4 K! o" W( {7 B' G7 I) Z
    解释的不错
    , x1 A! L* [! i* b9 ?1 C+ S0 `! q7 N
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。! e+ x( d* l0 o0 e/ c

    ( E2 i5 V# z6 E3 N) M/ Z0 w2 z 关键要素
    & F: F& E8 G2 j, ~4 b' t1. **基线条件(Base Case)**
    " B& p, A8 g8 ~" E0 C   - 递归终止的条件,防止无限循环
    ( u6 K8 U; _5 f- u% G; n   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    ! \; c) G$ D! d
    ' E3 Y! k" p# y7 }& ^6 X1 |' r  ]2. **递归条件(Recursive Case)**# `' v. H; B! q6 I
       - 将原问题分解为更小的子问题
    + |( f2 u* O5 I& Z/ `   - 例如:n! = n × (n-1)!( E7 y2 [  b$ ~( Q$ F8 J
    2 G7 N# D% d* A+ M
    经典示例:计算阶乘
    7 R7 @" C: m- o! V  l/ N0 Jpython
    * K2 A$ P/ ]0 s( [8 \: U1 v, E$ Rdef factorial(n):7 s; y  _* _0 z9 I; Z, q
        if n == 0:        # 基线条件7 N: H' O# [0 H# i$ x2 F2 I
            return 1
    $ v' ?3 W" [  I6 R    else:             # 递归条件
    6 |  u* a- z" N/ c* }% k        return n * factorial(n-1)/ I% X, J- `: x! K# Z* ]
    执行过程(以计算 3! 为例):
    9 `  B" L( [' sfactorial(3)
    $ ?* u$ B: ?. |" w$ _3 * factorial(2)
    ) g5 F1 a' y2 L* m, Z0 |+ b3 * (2 * factorial(1))
    ! ~0 l4 W, ^1 B0 C4 |3 * (2 * (1 * factorial(0)))
    . u2 }" G0 v/ }) A/ V: i5 S3 * (2 * (1 * 1)) = 6
    $ u# p3 _9 }1 p1 S8 ?# [7 d/ f  {" N. |5 D# t5 s; j
    递归思维要点$ t, j( X' P5 S; `0 s* H. f3 N
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑$ d- y$ {/ ]( A. r: W7 H; _
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    1 ^) {& B1 v" l2 o$ e; |3. **递推过程**:不断向下分解问题(递)4 l+ u7 S) Y# m: l6 `9 j. Q' Y
    4. **回溯过程**:组合子问题结果返回(归)# f) o6 S! W' }" w; p' y

    3 B1 _; `! s) K' {; B; C 注意事项6 `7 i8 |* n  M( m3 q9 w
    必须要有终止条件
    $ w: N5 X, K4 i+ t% l递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    6 {' @' [5 B. _, }6 P某些问题用递归更直观(如树遍历),但效率可能不如迭代
    2 J. |+ {- W4 M' w3 [/ i尾递归优化可以提升效率(但Python不支持)+ l: n8 a: G* f; L/ k4 o% O

      n* K% K! {, K* j 递归 vs 迭代
    9 C0 t& ?- I! p$ Y& M! a|          | 递归                          | 迭代               |9 t9 L  h& @; y: d" B! T
    |----------|-----------------------------|------------------|4 |; Z; e* H% t
    | 实现方式    | 函数自调用                        | 循环结构            |$ k6 O( I/ c5 Q, p8 y
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    ; d+ Q& t: O1 {+ @% z0 || 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    ( Z# O/ m, p* M/ c+ j| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |3 e. o1 t1 L& S) {& t# k- P

    3 Q; \9 z7 L7 h. C; Y! n4 Q 经典递归应用场景# @; t( |4 E: w  Z* {! h
    1. 文件系统遍历(目录树结构)/ U6 ~; h) i; ^
    2. 快速排序/归并排序算法) U: c0 k) K3 o' z. M& {0 G/ Y& f
    3. 汉诺塔问题7 s; l( T& g9 d! c+ s! @+ H( O$ F0 f
    4. 二叉树遍历(前序/中序/后序)& d5 g: `  w( x4 Q  j% s
    5. 生成所有可能的组合(回溯算法)
    9 G) Q1 s- g9 a3 y3 K. q, S$ @$ b. M6 X9 O
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    1 小时前
  • 签到天数: 2916 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    1 f+ u0 o: d) P) Y  m' U我推理机的核心算法应该是二叉树遍历的变种。
    3 G+ `0 w- z3 s0 b4 E3 N另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:8 z- L/ h, Y( `. Q
    Key Idea of Recursion
    ' f7 p* _: V$ H+ u
    & u' I# d5 D4 S) R. \3 ~7 QA recursive function solves a problem by:7 u. C  \( e/ t6 q* X; a% ]* T' B

    0 x4 Z6 A" |* R; s- K" T    Breaking the problem into smaller instances of the same problem.0 ?* u& B+ V# |  l( |5 B- u  d

    $ ]/ P( Z+ |# _6 p' o% u    Solving the smallest instance directly (base case).2 N- b3 m9 L  ~( s, C6 k
    % \4 K& G4 f1 h2 @1 P
        Combining the results of smaller instances to solve the larger problem.
    2 _8 H6 ]7 O% I* `- r. j2 B3 t$ C7 D* {7 E
    Components of a Recursive Function
    5 m  k" u; `6 N# a% k+ \# w, n( d9 X) t0 @
        Base Case:
    5 y  j2 Y# z& `: _. m6 o" }/ [2 C8 d* V5 q  V/ p, i: E! z
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion." g+ k- Q5 U& }: W4 \" [

    $ b! T/ O; g5 G9 ]        It acts as the stopping condition to prevent infinite recursion.. D9 ~9 O$ e# j

    2 R2 d& W4 {, s) H+ p( e$ a        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    ; i: L' V3 f* {2 v+ t/ {
    " B5 o8 C% ]5 N+ A0 @    Recursive Case:
    & B3 [% G6 [* M4 p& Q, D
    $ r1 Y& p1 [. U/ f+ u# ?        This is where the function calls itself with a smaller or simpler version of the problem.- C% S6 B) g" ~6 {9 m/ [9 }! ]5 x4 s- b

    # a0 v4 |$ D, ~, _) g& w0 L( M        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1)." B! a  q+ \2 ]: s

    2 d' M# ]6 G# G) IExample: Factorial Calculation2 t' F1 }8 X* q3 y0 ^" M5 F
    ! H) U' s/ G+ p' {+ s
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:# \2 u9 C9 ]* N$ B0 n" [

    - ~/ I; p5 b8 @5 y2 R6 T    Base case: 0! = 1
    ! ]: r9 w; _# d
    2 t/ _* R& W- C7 S    Recursive case: n! = n * (n-1)!5 M$ C4 |8 a# B7 A* T4 v

    / F( w4 }) q4 c+ V" |Here’s how it looks in code (Python):& M3 ~! Y: q/ C# K" G8 S; q
    python6 ^# ]' h: Z6 ]
    ' t/ [( e" N* T2 j- G6 J
    * o7 j- U9 X* H# N5 P8 c% `7 T
    def factorial(n):7 e$ K  E& M" y
        # Base case8 I) H  M1 k! v! W  b5 N
        if n == 0:
    1 z; A- w+ k/ u, m        return 10 n& p2 V8 F9 K6 a* I  p& p; a
        # Recursive case7 x% E0 R2 |- y/ p; \+ R% Q
        else:0 L* O8 J: z$ c0 l/ T7 [/ m& m
            return n * factorial(n - 1)
    * l" g4 b; B; [  z! K6 m& C8 @7 Z' |/ N. I3 V" V
    # Example usage
      E9 w6 Q8 r$ V9 Eprint(factorial(5))  # Output: 120
    5 t9 z% b& E3 g7 Z5 C: }, P. ?% J; p* C5 P- T( c& K1 _
    How Recursion Works
    5 j* @& O$ C8 k/ M. G& [. Q: m( ~9 K7 U4 B: E
        The function keeps calling itself with smaller inputs until it reaches the base case.
    0 v  t- |% v. \8 k/ y! f
    1 c4 a! d* s0 D  a" l4 Y    Once the base case is reached, the function starts returning values back up the call stack.7 U  N, {  i! h: @, N
    9 q3 O) V8 ^5 l3 P
        These returned values are combined to produce the final result.
    * z8 p: \" m1 L) q. t9 Y- U3 M. z( l4 }1 V, K: k
    For factorial(5):' I8 p: B. k' ~
    / ]8 ?' m$ n' P) X/ I9 ]! \% U
    ! q2 |8 V5 {% Q+ `  Z! \: D
    factorial(5) = 5 * factorial(4)
    ; |+ r- t2 R5 b9 n% |8 ^' y9 J4 qfactorial(4) = 4 * factorial(3)+ o# f$ e: J3 y! o0 i3 _
    factorial(3) = 3 * factorial(2)
    + H4 f/ K  f3 @2 q  b/ Yfactorial(2) = 2 * factorial(1); q$ F- q3 x( H7 p: g5 A
    factorial(1) = 1 * factorial(0)
    - `" r3 m3 [( Ufactorial(0) = 1  # Base case
    5 h% n. \/ f1 m- l' V# E& z
    . i3 y. M) e/ l, @: ]' [) SThen, the results are combined:
      C1 y7 i) \3 M3 y4 z* b# t, I3 m% A/ z3 A" T5 R3 r) A  _
    6 I8 D! |1 q; z" e# T) d
    factorial(1) = 1 * 1 = 1
    : i/ d' E$ Q9 j& Z, E) X9 ?; G( ifactorial(2) = 2 * 1 = 2
    " h5 L! m# [% V+ M6 U4 j6 `factorial(3) = 3 * 2 = 6
    # f4 o0 J3 n& c- b' ^) tfactorial(4) = 4 * 6 = 24
    1 x% S0 @1 P! z5 ]7 Y5 t8 g: S* Efactorial(5) = 5 * 24 = 120' {% a# i3 \; f) c

    & L( W6 H# Z# qAdvantages of Recursion
    5 T" [6 V: A! D
    & ~3 Z2 F+ q/ V. G    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    % S+ v, E: f% H% [
    9 i% c6 F5 M1 a1 S1 Q    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    0 A, ~/ `8 B7 D
    ; C3 Q: e" P0 T" Z, A2 D5 XDisadvantages of Recursion* }$ X4 T8 T0 V  n! y+ ?

    7 l% r7 h, `8 R: U7 U/ u) p    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    % W) {; o) x" P' G8 Z/ g4 ^" ?! t1 ?; W- @
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).; S0 E4 N" b, k- K% s; d6 O. T- z
    8 U$ B9 O7 e8 c: [/ p* S
    When to Use Recursion
    * x5 R* o1 C& \& w6 z7 X
    . v& c" j* |3 O8 ~$ Z  J5 X    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).& z" P3 Y( C0 b; j6 X2 s3 x

    0 g. e4 b# G7 @( H. i" a    Problems with a clear base case and recursive case.4 i/ S& Z0 p2 X/ Y  H
    6 ^/ m8 h3 }# L) T1 B! k/ R
    Example: Fibonacci Sequence( v( Z0 s4 H. h2 h! ?6 d5 s/ c

    & G* H9 g" l! c* O4 c0 mThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    ' ?- F9 U; ~  i2 L% I
    & H9 ?9 A& o2 W! Z6 ^& |    Base case: fib(0) = 0, fib(1) = 1
    ) A% }/ |* H2 D( g" O/ I& y! C7 j3 `, j: f& c
        Recursive case: fib(n) = fib(n-1) + fib(n-2), M- r( S: g+ f  |

    ' D: w! }# `* W) Cpython
    / k& x4 U) ]& Y/ {  v0 X4 Y8 G( B; P
    1 v- Q+ D# L; \8 t7 _
    def fibonacci(n):0 S$ |1 l; B0 w
        # Base cases9 e% i- F# @2 {& v1 m  H; o) V
        if n == 0:
    6 A! z2 q4 w& r0 }& f1 o% X        return 0
    $ G" D. C' N1 m1 L8 l' Y    elif n == 1:
    8 _+ |( Z  X  V6 c0 `, J. G        return 13 {) W6 w' Q; ]1 z. M
        # Recursive case
    1 y- Y7 C6 F" o9 A    else:! f) J; h  v* J' W4 {3 ~" F6 v& v
            return fibonacci(n - 1) + fibonacci(n - 2)* x$ B/ W' l8 \

    3 _8 c/ g( ^& Y3 S" k# Example usage
    1 K8 K3 H; z5 Z% }$ e9 t" Yprint(fibonacci(6))  # Output: 8
    : T2 A! ~& r- ~! P) B7 z& {
    2 D- Y( M+ I  n/ s  v: [' nTail Recursion$ _: q: k( ]8 H  I6 o- O

    ( s: ~6 K" q2 f. @9 h" l3 s8 ?Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    ( i* b. S9 o4 f# p, P. x7 v8 D; r3 i+ J* O1 ?# q
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-5-10 01:31 , Processed in 0.034855 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表