设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1236|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 ; C) O+ K$ {4 Y% B  W- i
    1 X2 Y! j. g: S7 L' P
    解释的不错
    - S. j0 Z; B8 i) e( o' S. M+ m. c
    3 n9 k& M4 c7 f. a递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    6 |0 E( j9 B5 l, e5 ^. O) z# ?* K& r1 N5 [
    关键要素
    # ^: e& O, J: [% A1. **基线条件(Base Case)**
    7 B7 n. c  ^' A. T' k1 J   - 递归终止的条件,防止无限循环  ^. u) T+ V5 J$ {) d
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    2 k0 B+ M. i6 A5 Y  t) L/ J
    6 {9 H, ?6 F0 ~' l8 S2. **递归条件(Recursive Case)**' a- @. F* Y" @- I/ @$ L% P6 L9 `
       - 将原问题分解为更小的子问题- D  q" Q3 i9 M& a
       - 例如:n! = n × (n-1)!; P; d' {( T6 N  O

    3 j/ c  Z0 Z7 I" ]$ ^: D/ { 经典示例:计算阶乘
    : B7 b  a* d7 P3 gpython, X1 L- d& n  b. v
    def factorial(n):5 e' P. O; V1 i0 i: E! M  ]$ d9 L
        if n == 0:        # 基线条件7 s7 H- q* X* A0 K
            return 1
    0 ?+ X$ [* \# g1 B& o) a    else:             # 递归条件; j% h3 F3 {1 S# j' y3 O/ B6 i
            return n * factorial(n-1)
    ) b! u* |+ z- |执行过程(以计算 3! 为例):
    ' O4 U) X  T) M( C; F+ Y9 kfactorial(3)' ]0 F2 {% n4 E
    3 * factorial(2)0 D2 R0 L0 ^; Y! @
    3 * (2 * factorial(1))
    ) f* m9 f  p/ E0 z) ~3 * (2 * (1 * factorial(0)))* x* I* z/ R, {
    3 * (2 * (1 * 1)) = 6# |( v9 O0 S* l( G0 G! g, u
      |* j/ C) q6 a2 W/ X3 ]5 T
    递归思维要点
    ) F& }! X7 x- b7 d8 ~2 f% J1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    " m* W2 X: I* i2. **栈结构**:每次调用都会创建新的栈帧(内存空间). A8 }, k9 T' {& a+ d, \" ^
    3. **递推过程**:不断向下分解问题(递)0 }6 R; N# m5 f1 O2 I, ^
    4. **回溯过程**:组合子问题结果返回(归)
    $ \9 ]" p& q- E0 l! j+ H8 r' ^  @& E6 R: J6 K1 t) r; L
    注意事项. O: K, ?( f/ ?* n
    必须要有终止条件; f: p$ Q4 r. R2 G8 z
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)$ B$ i. A6 D3 ]' j; i
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    6 Z8 O/ f# g6 L  G尾递归优化可以提升效率(但Python不支持); F( k4 ~6 @3 b2 c9 r
    3 b5 g  C3 B6 v5 h
    递归 vs 迭代
    * y. h5 I4 \5 K7 X/ i4 u, s  o|          | 递归                          | 迭代               |) f& A8 @: n( w- Z8 }
    |----------|-----------------------------|------------------|
    & q/ L( R" n7 j. c. k9 `9 _4 @| 实现方式    | 函数自调用                        | 循环结构            |
    0 |" K& |, N2 s8 X| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    ! G# {% I! Z( \4 x| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |! |  u  A) J- g% }% E! e
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    & f0 s( }3 G' b5 u* H! c
    # j4 _  c1 u$ Q9 t, F# Z+ f( W 经典递归应用场景' ?# \7 Z1 u  p+ e6 \1 e( b+ E+ J
    1. 文件系统遍历(目录树结构)" G8 g8 `( N, K4 E8 R. b5 ]
    2. 快速排序/归并排序算法7 s+ I* I- a4 ?4 Q' d- J* E
    3. 汉诺塔问题
    # M0 F" \7 ?( _# p& E4. 二叉树遍历(前序/中序/后序)$ \+ w3 U3 s) U- U" x; N
    5. 生成所有可能的组合(回溯算法)
    6 E2 S8 P& X6 J5 {) U2 ~' Q. t
    + i. Q/ M5 u4 `: n; P试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    17 小时前
  • 签到天数: 3104 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    + t7 U) b+ e: E我推理机的核心算法应该是二叉树遍历的变种。6 J5 w9 N9 w# }1 }$ y6 u6 x
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:, k% i, z2 B9 d' |9 j& Z( k6 ~9 F. e
    Key Idea of Recursion
    , V8 Y  d4 C6 {$ K' R, y' P$ B+ t' F) `$ x
    A recursive function solves a problem by:8 T0 b& Z. W. J

    ! P5 @5 `: G6 H, u; L    Breaking the problem into smaller instances of the same problem.
    & V' I  @& L! O+ B" r0 J( q3 I* k% f4 T% s4 V0 x
        Solving the smallest instance directly (base case).2 A' `3 A) D& r' z- Y# S% c( c

    7 ?, R9 h% P7 B( B1 T, N$ {    Combining the results of smaller instances to solve the larger problem.
    ( E. U0 q+ ]: _' k) _5 _3 D& c3 T4 b' C) t: O8 T7 f8 S
    Components of a Recursive Function
    : W' x; T  |7 C. ^; M
    4 z8 C; e' [. P9 |" \3 j1 |3 V    Base Case:
    5 n* B5 I0 }" N3 o3 x- J0 j
    8 r; K9 d% S/ K        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    ; ?, L# [! j2 B' M6 a
    ! h) t( |+ h# ?; i* V/ N        It acts as the stopping condition to prevent infinite recursion.
    9 T) X5 w+ W1 t- ~3 a; w5 ^% g: w0 t/ G6 G+ }8 g4 Y7 v
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1., A2 {  v  ~$ J: x! m, L9 ]

    $ G2 s$ Q: ]- C! Q* W    Recursive Case:0 \, _8 i7 x) w
    2 l1 r; i, b! K7 p7 K" w0 C3 S5 H
            This is where the function calls itself with a smaller or simpler version of the problem.1 d2 x  m, y  @: I1 S. R2 W: {

    : ?3 S9 N3 D+ _$ S3 V+ d        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).) P' \6 s% ~5 }2 d% m/ \9 S
    , w- Y8 G7 {8 Y" _) l  p
    Example: Factorial Calculation
    * p' a1 n/ v; X) j/ o( E  C5 j- h9 O- [) X
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    / Y' r( k7 }. G9 Z/ o0 O3 t' M2 ?# k) S2 l0 S
        Base case: 0! = 1
    + h1 J5 V9 E1 g  X/ J9 d8 E3 J+ H6 p; k. y( r6 g  U
        Recursive case: n! = n * (n-1)!6 x. y, v& \% x! |3 B( Y1 w

    ( H# b8 b, t5 R" T7 o4 UHere’s how it looks in code (Python):8 O. u9 S6 n6 [
    python4 h& l: R( D1 V1 q

    0 b; O0 f, Q& x0 v9 @+ e
    + |" B2 `; e; ~# G/ Sdef factorial(n):) Z: p: _% ^9 F) k+ m* I
        # Base case: v# C+ d) @- ]- k' m+ Q
        if n == 0:
    ' D- z  a7 x; j        return 1" z# K+ k: y" y5 f0 d
        # Recursive case
    8 j& q$ o5 X+ o1 t' h+ A8 [. o    else:  w; i. u9 [1 H- w7 L/ X% c
            return n * factorial(n - 1)
    , `3 j. @- X0 G9 u  j- n: F; D) c) c2 t
    # Example usage
    ; `3 W1 u2 U% L8 b2 N+ ^% Y2 |) ]print(factorial(5))  # Output: 120. I" a4 S) e: t$ v; H% S

    3 p/ F) R/ N( Z9 i. `, F# w0 x% {$ sHow Recursion Works4 z) H3 W& C2 U$ x2 ]- E" P: e
    , \; u7 o1 w$ b1 y0 [
        The function keeps calling itself with smaller inputs until it reaches the base case.
    0 |: Q' O3 j8 y% j. t8 }2 b* X* d9 w" R7 Z: ?7 c0 Y: ^
        Once the base case is reached, the function starts returning values back up the call stack.
    7 f* `4 p$ g# ~1 W9 T0 @& ~- B
    - Q6 u# {; g! p6 s$ b    These returned values are combined to produce the final result.$ }$ N  N( n$ F
    . \& j) L* C& @# }; X$ B1 |
    For factorial(5):
    . `9 \7 ]/ [+ e5 W, d; r6 A1 x" O  p" G8 B* h
    + b: W! x/ H& N8 }( N4 b
    factorial(5) = 5 * factorial(4)
    : e4 P. v8 M3 L; H8 A  gfactorial(4) = 4 * factorial(3)# z  o: `+ I! t4 g( T
    factorial(3) = 3 * factorial(2)
    & t1 R9 X& E& p. P# Jfactorial(2) = 2 * factorial(1)
    : }# \! U2 v9 R  j9 Nfactorial(1) = 1 * factorial(0)8 T- H2 S  T* i- Q% m' l" C1 s
    factorial(0) = 1  # Base case
    ; z1 \1 D  z* r5 c0 N3 B; i
    ! p( W" |7 P8 Z( M7 c; GThen, the results are combined:
    - a$ Y  t& u3 w8 ~; h' S1 E0 e' X( ?- G3 _! `/ b5 K2 F
    ' M0 u! S3 t- ?; p% Y% z
    factorial(1) = 1 * 1 = 1) R4 d; F, ]* i0 m+ b5 w
    factorial(2) = 2 * 1 = 2
    + q' N/ q  }6 k- \! O5 I+ i" ^factorial(3) = 3 * 2 = 6! S: T) c$ @3 `8 s. ]
    factorial(4) = 4 * 6 = 247 u- ]4 \! F+ I9 u  e: M+ u+ [* f
    factorial(5) = 5 * 24 = 120
      q. h$ |7 }' o( b4 z* t/ I7 P; O! ]1 j
    Advantages of Recursion
    ) e5 d- j7 N) W" x( S+ I8 K# I- S" v3 x( ~- N
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).8 p. O$ p3 `6 G7 ]* \% ^6 n: a
    ) b/ e( y" C4 Z/ r
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    - U; P$ v4 A- g+ u! q9 D( V9 z6 h
    # |0 x$ `' S1 q! c) f" T( GDisadvantages of Recursion& H! p  B: F4 z& h7 }
    / o* [3 u/ p4 i# T4 n* P, i0 O
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.) w0 {6 g9 G: G+ U* U; ~' \* z) P
    + j( F" D/ b* W- ?8 {+ ]8 g
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    $ E9 Z$ S: J7 l3 ~, f6 n! |1 V7 f7 c- V3 B% d0 I3 L
    When to Use Recursion* x# T' R; S1 q" P
    3 `( Y1 m$ f+ l& K4 b1 t
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    5 H" V6 b" f& J# b
    ; x! o% k: G" [8 x& Y6 V- `    Problems with a clear base case and recursive case.
    1 H$ V( s( n8 ?7 Z, I8 u9 |
    % t# Y! k3 q2 `0 wExample: Fibonacci Sequence, b1 u5 ?2 s' _# e, b% Q

    9 i5 c9 C; H6 d) J0 JThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    ( u9 q" j0 i4 o. ]# @
    6 e% b4 e2 L: k/ i/ O" e/ F$ T    Base case: fib(0) = 0, fib(1) = 1# |* i; k' D4 M6 K& Q4 T- L
    . {& a- n2 \$ m2 H: {2 ^" i7 S; L
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    ! I9 P) P9 }, i( Y7 R6 }4 q; D( Z2 \" o3 Y& `
    python  S' E! V3 C! u  A' B6 ~9 ?7 ?* l
    . K  M  c) }; U' G' H) p, }% h: \3 a

    $ A5 u& Z- v( D" w" \) A5 Rdef fibonacci(n):6 X7 e1 t  r  @; m, X
        # Base cases2 R' Y) {2 P$ Q2 U' g1 e
        if n == 0:+ V/ u7 p1 s' R' j
            return 0
    : Y7 ^4 X+ W* {. Z    elif n == 1:
    2 Z* ^6 N1 _3 e6 T        return 1
      x8 d# r6 `& ]1 D# T5 c    # Recursive case* _* l$ F+ B/ C/ i0 q* z& C- |5 O
        else:( D& E1 c: a4 ^& K+ y9 Y- F
            return fibonacci(n - 1) + fibonacci(n - 2), T! @. v- |  v. i4 x: z

    9 U2 S5 `% _; f1 p# Example usage+ ~# I9 u+ u4 x4 P4 S7 L8 J2 s
    print(fibonacci(6))  # Output: 8
    / M$ G# L* q9 I1 ?. |) c8 n- ^' L- ~5 d- m
    Tail Recursion9 E$ H& V7 l/ `% L4 y8 N6 Q' J

    7 T' }" o2 {1 V) R4 ]( ^# ?2 t5 K- pTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    1 N# e' W) p# `. f6 |0 H) ?. P) P. ]: w
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-29 23:50 , Processed in 0.034760 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表