设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1523|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    " Q. w7 W8 \+ s5 y3 A# M/ {+ s& M, e. P( q
    解释的不错
    4 \8 g; U2 R1 d* y' ^+ b# Q
    4 w# @5 ]* a) o0 S- L) ~! h+ S递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。# X: `% v$ l8 E  M6 R4 P
      }4 ~# }1 m- z2 ]* [0 I
    关键要素
    - n& t7 F- ?, ]+ a. v2 j( g: q1. **基线条件(Base Case)**2 \( l  h8 r% d6 G  F
       - 递归终止的条件,防止无限循环" P5 |1 S7 b9 n/ }4 o- A) ~0 v
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 14 h( I+ e  K' Q" r
    ( |/ [# R- f/ E/ o9 N: O& [, N7 J
    2. **递归条件(Recursive Case)**/ `4 P; ^* s# x" h
       - 将原问题分解为更小的子问题
    2 F7 W; ~& c% E: U. }$ }   - 例如:n! = n × (n-1)!* L( Q) ]2 _8 \

    * [+ d2 ^5 j3 t0 n; k- ] 经典示例:计算阶乘& u5 S5 X3 }" G3 B7 g! n
    python$ r1 l- d) e3 E9 z5 ~
    def factorial(n):$ q% v: L9 ^5 M( }7 h+ f$ a
        if n == 0:        # 基线条件
    5 J; V: u$ m9 ^0 k1 G0 F        return 1% Y: p/ U" D  z' z
        else:             # 递归条件7 `) H* U+ }4 R3 V; L# X) Z
            return n * factorial(n-1)- L! R9 p" n8 N' \
    执行过程(以计算 3! 为例):& [' k* b! k  p# I0 R* a7 e9 n
    factorial(3)/ M/ c7 `1 w% i4 `0 N  S9 S
    3 * factorial(2)- `) M2 i0 A% `6 F  F
    3 * (2 * factorial(1))( q; U) }6 R% G# `0 J% o) X
    3 * (2 * (1 * factorial(0)))
      c& S8 u9 s% d# k* C3 h9 w3 * (2 * (1 * 1)) = 6+ P8 C. I5 z$ f( z- }$ B& N+ i
    % @+ g( S# x1 `
    递归思维要点& c. a4 E) o2 u( {3 j( O
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    $ ~* f' V" Z9 `( ~8 q6 L% n2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    + E6 V& }. j5 \% p8 i3. **递推过程**:不断向下分解问题(递)! d# R+ Z; c- x3 ]- _: Y
    4. **回溯过程**:组合子问题结果返回(归)9 V% V0 v5 c0 B2 l/ V: C  n1 }0 S  w

    5 n3 r, U' U8 o. W* b 注意事项8 Q, f7 p! {' I, u( t
    必须要有终止条件0 F: ?0 ^1 h$ `* G$ ~. q) a; Z
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层): j  t3 v; d4 I9 I& ~) @
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    $ ~; ]% |! X1 D9 C; ]尾递归优化可以提升效率(但Python不支持)% c* _& K$ ?- P, L
    ! Q4 q* P7 G; q2 u
    递归 vs 迭代- P/ p$ D) j* |" H# p: Z: L
    |          | 递归                          | 迭代               |0 g3 d0 K# g- d1 ?5 m6 O
    |----------|-----------------------------|------------------|5 {2 V7 ]7 q; g6 E" z0 B
    | 实现方式    | 函数自调用                        | 循环结构            |* n) V) P% q3 k; R: |( F# i" T
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |  ^$ E6 c/ s8 l2 C: z' v
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |6 W; A8 W3 m* K7 O4 F3 H' M$ H- h
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |. B. K" `: U3 t$ \9 [
    2 [0 }% [' m4 M2 m1 n; y* x
    经典递归应用场景# D) j7 r3 ]$ j) Y$ [' ^, z2 c
    1. 文件系统遍历(目录树结构)
    1 W3 Y9 P( B+ k" r5 n% a2. 快速排序/归并排序算法
    ! Q: L: Z2 l+ J3. 汉诺塔问题) t3 \* x6 s4 F
    4. 二叉树遍历(前序/中序/后序)9 p5 h% S. G( Q% ]# f, v$ {5 ~3 b
    5. 生成所有可能的组合(回溯算法); p1 A2 x$ g% e3 r2 T4 s* }3 U

    $ M* V5 p- v! _8 I, \试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    10 小时前
  • 签到天数: 3118 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,/ S. V6 [# e! y6 ]3 [
    我推理机的核心算法应该是二叉树遍历的变种。
    . b: p. e5 ]# `5 M另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:- i: ]2 Y% p! ^! W) G( J
    Key Idea of Recursion7 o9 |# ~+ T) m: ]4 ]. U6 d

    8 \+ C9 H) L/ vA recursive function solves a problem by:
      i, x/ _9 }$ j* ?$ m! Y+ u" g  Q: E. O3 S8 Y$ B; ]( W
        Breaking the problem into smaller instances of the same problem.
    $ W# T: G% E4 {+ M" ]; l& w* `7 H4 Z8 r2 P* _+ ^6 d: J
        Solving the smallest instance directly (base case).
    ; }" a+ P0 @" A7 @
    # O# Q" Y3 K  P& C    Combining the results of smaller instances to solve the larger problem.9 b1 i& q! E" e4 _. a( ~/ J1 k  }
    ) ?' P$ d* v# k0 y* ?
    Components of a Recursive Function
    " B0 t  A2 q" V; ^( h6 k% x% {3 E8 D+ I7 o; B$ v4 \
        Base Case:/ X  M9 g  i% B1 E3 t

    * J/ I0 B1 s1 y5 C! @8 N# U        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.3 j; Y& L8 J. ^; `9 A9 q0 T
    % k# r9 H& K0 l2 B3 S: _5 a
            It acts as the stopping condition to prevent infinite recursion.! d3 S  p6 p% R' C/ y5 C

    ) p, W! j4 J( y& @4 [        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.2 z7 P5 o, v- Z" Q# H* H/ W/ C
    , H8 R: |% F0 q2 Z% n7 L
        Recursive Case:8 K! b. T6 y8 |7 w- Y4 w: |& e" v$ }

    * f0 V/ u+ x  ]# @; g2 l: D        This is where the function calls itself with a smaller or simpler version of the problem.+ W7 W0 W. m  Y0 ~' R3 k. s4 d
    $ N6 l1 f8 O- N7 c' i
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).  l: U( t3 F5 d7 O. y2 `
    4 u1 o- ^1 a! T" m6 F9 m- a' v
    Example: Factorial Calculation
    6 d" _+ J: Z8 }+ g6 u- F( M4 B7 o3 u! j2 D1 q
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:6 Q+ E! p: h' K" b5 l2 ^* E

    3 O: v2 k- Z8 _    Base case: 0! = 1
    3 Q% d4 k! x* H+ t; m! u! Q& d- I' F7 N3 S: n: i7 \3 f$ @( l) T
        Recursive case: n! = n * (n-1)!6 B( \& Y5 J7 A6 [- q

    + B- R+ y; ~  r4 p& j! n2 ~Here’s how it looks in code (Python):5 P. F$ v' t# q% d0 O3 t
    python
    ) E( o; x6 T- m3 {
    0 G2 P$ K8 k$ d- p1 t8 j; B9 e; W" s; r, y2 A" g
    def factorial(n):
    & a: j  h$ [  X# X    # Base case$ o" z5 p' l' b% |2 r% m6 R2 }
        if n == 0:
    . [. p+ F1 q/ \. N' J        return 18 H) r, M- Y2 j) X) k
        # Recursive case* L+ I3 k; K7 A7 H9 V) }
        else:
    % ]) y% {( |4 v  r" \* Y        return n * factorial(n - 1)
    2 O9 y$ A, v  G2 G5 }0 A2 w0 ^( H- @1 `
    # Example usage( c5 @" C7 @! L; z% k
    print(factorial(5))  # Output: 120" L0 M  S& {$ W; ~
    / S  D) q3 `0 a/ X: D. R
    How Recursion Works
    # F9 T9 n' L# G/ w  G, t3 w. I$ r0 u1 _: v0 c
        The function keeps calling itself with smaller inputs until it reaches the base case.
    ; a9 F' ^9 ?% w8 S. g" r: ^2 D8 z
    - I7 `# j4 I- k7 f    Once the base case is reached, the function starts returning values back up the call stack.
    8 B: z2 O+ u# E0 M8 l" x' t3 K, t% L* v- Z! W. T
        These returned values are combined to produce the final result.
      D- Q2 n: N4 R& t: [4 l' l* Y) w# T) \) T3 ^6 T
    For factorial(5):' e* v! L6 |% a' s

    # ]$ `5 Q/ I% A8 F5 Q) J% E/ |- P8 p4 p+ H
    factorial(5) = 5 * factorial(4): O: h  `$ [; g# f# Z
    factorial(4) = 4 * factorial(3): P. s/ Y$ Z0 \/ P
    factorial(3) = 3 * factorial(2)
    ) V$ {3 J4 V; D$ k' efactorial(2) = 2 * factorial(1)0 U9 u1 K. R/ I. K$ E
    factorial(1) = 1 * factorial(0)/ B+ D  v9 Y( x1 v
    factorial(0) = 1  # Base case
    ! A, E! Z( }5 D$ @; m1 A; u0 c7 |  e
    4 `" X% C- _/ j9 r9 ^9 a- YThen, the results are combined:% I! H4 i) I, k
    3 m4 r: |, N6 R9 S
    , ?" F. U* W8 R2 D6 B+ G
    factorial(1) = 1 * 1 = 1# U, O: S3 z5 I
    factorial(2) = 2 * 1 = 27 m& V9 \4 @! @, \0 v8 B
    factorial(3) = 3 * 2 = 6
    9 K9 R% {9 f5 |+ r, Xfactorial(4) = 4 * 6 = 24
    ( s% C% ~- c; L& {( X" U* mfactorial(5) = 5 * 24 = 120
    % J' m! \: s( F6 a) N, g! L" n3 @9 e3 j: s  T/ ^* \# ^, k4 e  f
    Advantages of Recursion4 _8 g9 X* x7 D+ O
    & R8 L% g7 x. p: n4 {1 y$ t
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).6 J) ?- L# @8 }3 W9 h
    4 n- v+ ~8 _  N4 P& p# H
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    3 w% F( Y1 ]4 W$ e! y0 B5 b8 ]
      S9 V6 K" Q% `# M  e$ |6 xDisadvantages of Recursion( o$ A7 m1 T( C1 i7 ~
    / W- m4 _! y& \+ g
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.! E  q! t1 i- o1 j. d  ]
    4 `/ s" }- }% t
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    . M7 @; ~$ ~, ~" d& V
      X2 M: \/ g) j8 e& o/ rWhen to Use Recursion
    / H8 C- W+ z( C* X  G  k  R  L( N4 B) H' S* ]2 b5 G6 V6 l$ w
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ' K- ^2 S' B# G! \& s7 ~% F5 m" ?5 d5 o* U( A+ U  ~9 U+ _, C
        Problems with a clear base case and recursive case./ r5 G; P4 O  u

    " x0 g6 w" [3 H; z* K  v+ hExample: Fibonacci Sequence& q* d4 t* D: |: ^( Y* K0 ^+ S5 n
    : h8 s& |; D/ |7 R2 O- c0 e, E4 N( Q
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:9 g, i, n2 @9 ~
    : Z& a0 c$ T2 ~5 \
        Base case: fib(0) = 0, fib(1) = 1
    ; V" R7 \' P2 L" {7 k' U5 U- s% y. M4 ?
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    5 n$ p- H& b& o" k4 o$ q2 L7 _8 g+ c6 i* s  [' F: n. n
    python
    / c, K- {9 `- J8 ?8 J3 ]7 _2 y& I0 ~" S
    4 n3 o' c3 ?! K) o& g
    def fibonacci(n):
    . x! c/ i8 T* L7 j; I2 I8 q7 W9 o1 P/ W9 v9 N    # Base cases
    - T( c" Q. [* J- f    if n == 0:
    ; n* w5 L$ f1 P9 }        return 0  J3 A1 D( J0 f/ N, ^! s1 M
        elif n == 1:, u2 l! d) B) C8 w3 l2 D
            return 1+ O% J1 r# }/ c0 F2 U
        # Recursive case
    0 E. X# q: Q9 F    else:
    + y$ V  W8 b' {        return fibonacci(n - 1) + fibonacci(n - 2)
    $ N  R& S9 H! i. ~- x) }# B+ f# Z8 A$ a8 X/ X. o  Q. i
    # Example usage
    & O& ^6 P5 j( r# j3 N/ s- u3 fprint(fibonacci(6))  # Output: 8# f6 \  m/ m+ }; F* D+ ]9 j
    7 k5 k2 h# \7 V
    Tail Recursion' C7 s, Q! n) I) y" l
    4 x. p. O' k  {. h
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    4 ?* a' ]- ~# C8 `( L( x# u  w9 U% p5 F, G
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-15 17:10 , Processed in 0.037007 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表