设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1836|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    & b  c" d( E4 w8 T% S8 G# }, n9 A% q$ z( |* t4 a- s' [1 t
    解释的不错  z- C5 a/ u2 E% E

      _, `# Z5 O& V- [8 S" C递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    ( G% p( ~. i$ T, h" c8 ^  r. h5 J- W3 V1 @6 S( @+ g: y
    关键要素
    - l  S: _  X, b1. **基线条件(Base Case)**. B. w4 [. l9 ]/ h
       - 递归终止的条件,防止无限循环
    & [# U7 k$ Y, y   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    - o5 P% F, q8 V& j9 |, V' u6 }$ O/ U7 g0 \5 @3 ]
    2. **递归条件(Recursive Case)**+ X# i* k2 {1 ^( `' @3 p/ J
       - 将原问题分解为更小的子问题
    % s' x# C$ B1 R5 h! c. s4 L   - 例如:n! = n × (n-1)!
    ( f: n: D/ b# d. t
    % q! P' x6 E3 V; z6 b6 P 经典示例:计算阶乘
    # B; F' ^# a$ `9 C  Zpython; h: C' @+ C1 A' p$ U
    def factorial(n):# {& z# x9 N  I4 [
        if n == 0:        # 基线条件
    - }2 N$ N  u- E* ?! \4 P        return 16 x1 |/ \0 }, g( i  r
        else:             # 递归条件
    $ r3 G- }$ S1 f        return n * factorial(n-1)3 s* c! G0 y/ C& `2 y8 G0 e
    执行过程(以计算 3! 为例):6 x0 q  {: E2 Y) U* ?/ c- o6 J. @7 f
    factorial(3)+ _. S6 y0 E3 d
    3 * factorial(2)
    / G8 V) s( a. [1 u3 y3 * (2 * factorial(1))
    ; C" n4 p( S# A% _/ a0 @2 O3 * (2 * (1 * factorial(0)))
    7 y5 G# D& C% ~" N( \) I3 * (2 * (1 * 1)) = 6$ I# ^2 w- o2 b8 E1 l
    % g- j2 c, Q6 k2 @( e# \: c) a) l
    递归思维要点
    & L& Q8 |. K% @) j# i1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    4 `4 ^, a2 y! N" S9 y2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    ; r% A0 A( E" s$ G3. **递推过程**:不断向下分解问题(递)6 ~% C8 o4 E3 s/ X6 D9 x5 d' R
    4. **回溯过程**:组合子问题结果返回(归)
    2 P, _. E: T# o% B7 c
    3 L" M6 A# H) J: Y 注意事项
    - L2 n0 q; [/ M/ J# M. X8 u$ ?必须要有终止条件. q$ N- M: K, _& x" Y  z
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    ' c* ~: B8 n6 P5 l: Y7 z  @某些问题用递归更直观(如树遍历),但效率可能不如迭代5 A4 X& j1 l" g# r+ L, Z
    尾递归优化可以提升效率(但Python不支持): ?. ?3 g7 V' G; R9 L8 r! H$ a6 t; @$ L: T

    6 s: [6 J% B0 d1 J8 r 递归 vs 迭代
    5 L1 o" @2 r% B  x+ @$ z|          | 递归                          | 迭代               |
    1 O. N- i: D1 C9 m; \: B|----------|-----------------------------|------------------|
    0 c) a7 F& R& Q  c7 @1 j) F& Z| 实现方式    | 函数自调用                        | 循环结构            |2 O3 d1 X& T: t9 Q0 R! y6 ^
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |9 k1 v4 D' n9 J7 w
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |; W6 p% e( ~' m; c. Q& c
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    ! |2 w* L+ S0 C9 Q( j' r/ p  l5 p4 N- Z# V% l2 i# e
    经典递归应用场景
    4 ]3 s' S& v4 F; O+ d1. 文件系统遍历(目录树结构)
    - c2 W2 \0 e1 v" [( S% @" N2. 快速排序/归并排序算法4 G/ a4 V' L% S* G. d$ A  v+ o3 Z5 D
    3. 汉诺塔问题
    * U( ~, Q' p  y+ T4. 二叉树遍历(前序/中序/后序)
    3 R  {  e1 j& I! i7 `5. 生成所有可能的组合(回溯算法)7 e. Q7 A' [: O- k' c% p+ m4 _

    ! P3 M: W  f. O( x. _; k& t3 L试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    昨天 06:31
  • 签到天数: 3146 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,7 U7 G& y7 _9 w! O; \. P: C
    我推理机的核心算法应该是二叉树遍历的变种。
    " v0 U/ C1 G4 ^另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    ; O# g  N& r* L3 lKey Idea of Recursion
    5 X4 `- y, B9 h- O5 t2 Y6 ?* c$ S; l1 ?
    A recursive function solves a problem by:
    : i+ }# P6 q6 C% @* M7 Q1 i+ D  O( F" Y6 @* V+ Q. j8 a$ u
        Breaking the problem into smaller instances of the same problem.
    / X$ U, {5 \+ x1 k7 [/ ]: n8 L* r. Q$ C5 L; P. j& {
        Solving the smallest instance directly (base case).: x. R3 @- F# |+ ~

    * _4 `* e3 i9 w1 e    Combining the results of smaller instances to solve the larger problem.+ i7 e. |" P. Z, P# h4 C7 |

    % {# N7 o) y5 }& u/ ^Components of a Recursive Function- i# o/ O9 f3 W
    ) n8 B0 U9 [4 h+ v; Z$ s2 U
        Base Case:. W9 R" h) Q0 }8 _% R! D7 E
    ) G0 o* \+ a, t+ I6 Z. `
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    ) ^: Z$ ^; c$ n) o
    8 R8 ], y% R2 s6 p% o        It acts as the stopping condition to prevent infinite recursion." m8 W2 D# A0 D+ E) ~
    " e2 K+ j6 T  U
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    3 l; @& U: W2 {) C* |3 Y* @  `8 k
        Recursive Case:. p' g. |* b! k# V# u
    . P4 C; Y8 B  ?% C( V
            This is where the function calls itself with a smaller or simpler version of the problem.+ q: ?# H" O" z9 Z" W0 f

    : y& Y( X: K# Y, X' G! n: i        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    9 x$ g/ P: z+ f' N4 J. r* w  \7 I7 H
    Example: Factorial Calculation
    0 ~& U4 o2 e. x+ v9 E
    " \$ t7 W8 `" g- }! a; cThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    1 Q. c. _" N) l: ^$ ]( ~
    : }  w& i' Y+ \, j& C' ]    Base case: 0! = 19 b$ l' r8 U/ c% Y: A; {1 I

    # D- P' D7 Q& c( u3 C, A/ A    Recursive case: n! = n * (n-1)!
    # w! x4 ?% O* k0 x
    $ L  R* {/ \3 S" y  N: F, s1 h5 jHere’s how it looks in code (Python):
    - ^3 u2 Q- l) a, a7 W( |python
    6 y$ R5 s& E) E4 V) \$ w) _% \0 o6 L7 C- H  F4 D

    ! Z0 @/ L1 y7 ldef factorial(n):
    6 [7 t. h, @( [; W& g' _% T    # Base case
    . x2 E3 |" z8 g2 z7 |3 i    if n == 0:
    2 T/ U/ o9 {& E: T& a        return 1
    7 t6 x8 b: {, p: R2 H2 |    # Recursive case
    4 P% y& D/ z$ p9 N& g) p, u2 g    else:$ u. W% c" D; w0 F
            return n * factorial(n - 1)
    ; A6 W6 _6 f& |% {/ n9 L2 h: q. m1 ^
    # Example usage
    & r0 B+ b, @9 Q2 i, z/ r4 m% Fprint(factorial(5))  # Output: 120; l2 ~9 @4 G- }8 j$ [# t8 \/ H
    : m- o; U9 N- W2 L6 [
    How Recursion Works
    2 x, o& e* ?+ P% o& J# T% J" z- b3 Q+ p
        The function keeps calling itself with smaller inputs until it reaches the base case.& d& G* t# w5 u5 m9 v/ i, W/ H

      F4 ^4 Q: G( z) h" P# j* I: z    Once the base case is reached, the function starts returning values back up the call stack.
    6 ?2 ]" z4 R3 |$ p$ @  b( q: f
    4 ]% m! Q  x5 ?6 R" u    These returned values are combined to produce the final result.6 u" i7 F) l6 X  O0 B
    2 r$ b# F' Z5 F% @+ w
    For factorial(5):
    0 y/ Z9 d$ U' a, x0 q! B* ]& g
    % U- C4 H& P- C% d' p* \. U0 L; x3 i, ?, k) I  F. C
    factorial(5) = 5 * factorial(4)
    7 {' h1 a! r) e" V" V: }$ T. U8 {factorial(4) = 4 * factorial(3)/ @& L( e& F7 Z5 v7 h' I
    factorial(3) = 3 * factorial(2)5 I% n# [) ^; W" `' k
    factorial(2) = 2 * factorial(1)
    0 O0 E" w; R; y: p' gfactorial(1) = 1 * factorial(0)
    4 O" `. Y( _4 G2 L  q! v% T/ bfactorial(0) = 1  # Base case. L* a& e% _* A2 k  d0 A) f

    0 ~( \; ~/ [% S( K, ?; o3 v: r4 XThen, the results are combined:
    " e+ E4 e6 r4 v" v: R4 Y4 _" J7 c& ?% r, i9 N
    * S6 ^2 t+ O0 T6 d. K
    factorial(1) = 1 * 1 = 14 a9 S7 H& |7 L& h1 A9 d& o
    factorial(2) = 2 * 1 = 2
    ; r7 K( P0 u- w& O) ~& I: T9 jfactorial(3) = 3 * 2 = 6+ d' E" c2 K+ p, R
    factorial(4) = 4 * 6 = 24) l, r. [3 O9 ?1 G
    factorial(5) = 5 * 24 = 120' ~7 d* I% d; s' y; x/ e5 j

    6 R) I+ E9 O' l( w! v4 r9 kAdvantages of Recursion
    ' Y8 a9 W5 t0 S/ B# q; i+ N
    1 \$ p* v' t3 Y# G+ w; G4 m    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).) p3 k% w% y3 s$ H) l+ v. `
    ! e# V$ k8 j& p: T7 e
        Readability: Recursive code can be more readable and concise compared to iterative solutions.% W& \, s/ K2 P
    5 ?$ U5 v3 n! N9 ~% u, H7 N
    Disadvantages of Recursion
    / l1 s( |3 ]1 Z- q1 C0 g0 _' s7 H  @
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.  S4 p) O6 G! J0 u# b9 S
    + f. x7 W. i" s7 y
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    8 }4 q6 [' m; t. K
    % |7 A- _. H" \When to Use Recursion  K% ^0 ?3 {: @/ Q7 R
    - V2 c( D& v7 k9 k6 q1 w* A! D
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort)./ {+ g( y# U8 E( H

    6 P0 W6 C2 q4 R$ `7 I    Problems with a clear base case and recursive case.. k2 e: t3 _. ?+ M
    , O; i! ]$ j+ g0 O# [4 L  P/ {" J: F
    Example: Fibonacci Sequence& o# x  j1 m; e  v! i0 s
    1 ]$ G* G: ^) f$ N
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:/ Q0 J# W9 f% b9 C, ?$ X

    ' F! F! x7 x$ O& i; E# x9 M. T    Base case: fib(0) = 0, fib(1) = 1, C6 f* r! A+ T

    # z' k! L" H! m    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    . I' w/ F$ x7 o4 y2 N, {2 r1 g: A% h: u
    python8 w+ d) |1 U9 @) e5 z4 @% S
    % t/ a8 R9 C* L4 D/ y
    + Z1 ?! G2 u' _# _  h3 K+ o! S8 x# y
    def fibonacci(n):" E8 r& V  k3 ~' r3 S4 N" o
        # Base cases& P8 y$ c  N! ^* y, Q" U# g; y; K$ ^
        if n == 0:
    + Q( f8 M* i+ g/ z' U. _; w        return 0
    2 g* L7 X: e& E% U2 b9 u# m8 y    elif n == 1:* P9 b: L  B$ z
            return 1
    , X& @9 D! D9 r. _    # Recursive case1 }8 e  g8 |! G9 c
        else:
    5 n( |7 T3 H! u! P0 Q/ t$ I1 e        return fibonacci(n - 1) + fibonacci(n - 2)
    3 a3 G1 j4 h  x1 Q; s1 ?, d! p5 P6 G! t* @/ h# R+ z
    # Example usage' Y# A+ O2 P; B# X# o
    print(fibonacci(6))  # Output: 8) j6 d) D5 s/ R( U
    ' |/ @- y: H5 J8 }" k3 {
    Tail Recursion
    8 G+ x0 J. v4 h/ I  B+ |4 D  F2 \2 @1 b9 S, v! h1 u* l
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    7 h* S" b+ U4 ]( f( p! r  C# R
    # C/ x5 {( C5 GIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-15 04:25 , Processed in 0.029957 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表