设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1832|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 * B/ |. O) J% M, t0 K
    5 e, e+ T, o" d1 q/ ]; L
    解释的不错2 b& [2 G8 K( Y& k

    ; |1 ~  Y: P' M( m1 f) R1 P递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。! H% y5 D6 {& X7 ]
    " A+ d7 A0 T9 I. v3 V2 F
    关键要素" z9 q: G' k7 |# C
    1. **基线条件(Base Case)**
    - ?( X* H, q$ F$ E5 G( q# ]   - 递归终止的条件,防止无限循环1 @9 P7 s# a$ [0 P: X5 P3 y1 Q
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    : W" n+ o" a9 s7 q9 M
    4 f" J3 U. ]! j5 F, A: f3 M2. **递归条件(Recursive Case)**
    ' _8 n0 S8 k5 P: Q: p' }0 ?# J   - 将原问题分解为更小的子问题0 \" y! i9 F, z# J
       - 例如:n! = n × (n-1)!# l4 v2 v3 h& K5 S

    % v! U% b$ ]. }& o5 X! r9 i3 g 经典示例:计算阶乘
    % E1 L  ^, M; \6 r% B8 D  g! y9 u$ Epython
    6 x; a2 |6 S% xdef factorial(n):
    " Y3 E5 ]: }5 n( a: W    if n == 0:        # 基线条件
    5 s$ U) i5 C# L! |1 Q( j0 }        return 1) E; i/ Y1 a( G6 x
        else:             # 递归条件- o2 w! N  H+ J" a+ @
            return n * factorial(n-1)9 S' @% ?7 k- |8 m  t2 u# f  G
    执行过程(以计算 3! 为例):
    8 g1 \" l4 u6 q; h  q! Gfactorial(3)
    " }6 H: e: m- Q' {7 D" F3 * factorial(2)
    ! ?. \: t9 B# n% u1 J* j- a3 * (2 * factorial(1))
    4 m/ F" a. y- s! v9 A3 * (2 * (1 * factorial(0)))
    ; r6 q8 ]; _3 G( K" C3 * (2 * (1 * 1)) = 6
    + R. C, F/ V2 w; Q
    ; W! B3 i% \8 A, F5 K/ X6 s. O 递归思维要点
    / W& ?, r0 o0 B# s$ ]6 H1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    - d2 r7 k; K+ d+ E% L2. **栈结构**:每次调用都会创建新的栈帧(内存空间)- Q1 `  {  r  d' Q, k! ?; r# F
    3. **递推过程**:不断向下分解问题(递)
    + L, i2 }0 l) o( Z* h* e/ W1 Z7 @7 _' O4. **回溯过程**:组合子问题结果返回(归)
    ( |3 h- p0 a3 N# Q1 Y2 j* ]. L6 D* W$ Y- B
    注意事项
    - C+ m8 L! u; _5 P# d) T必须要有终止条件7 Q* y8 X: q# I7 l0 ~' n7 u
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)- X/ o9 l$ c# D. Q
    某些问题用递归更直观(如树遍历),但效率可能不如迭代, f) q6 [, e. c
    尾递归优化可以提升效率(但Python不支持)* E* N* B  J8 d  j! D* {" b
    1 Z) ]% W  m- n
    递归 vs 迭代
    1 ?; s6 M9 t1 y6 k|          | 递归                          | 迭代               |5 w, \$ A, j% j3 H8 H$ M: w$ U! T
    |----------|-----------------------------|------------------|7 ]; J/ Y+ b6 J/ F
    | 实现方式    | 函数自调用                        | 循环结构            |
    ! R) r" _0 s' J$ W: F| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |/ A" ]* l9 L9 `1 z3 K
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    ' d7 n6 p/ g  `5 @7 o3 _| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    $ M, w6 T- c7 G/ y4 Y1 {" l4 U. H/ Z" k, _
    经典递归应用场景+ N# w7 _6 H/ d* W
    1. 文件系统遍历(目录树结构)& c8 q( n' Z- ~
    2. 快速排序/归并排序算法  [1 V2 T* y3 B2 C5 x
    3. 汉诺塔问题
    % F; w+ _7 i  ?& y4. 二叉树遍历(前序/中序/后序)
    ) A1 M0 G9 {1 X9 B0 D5. 生成所有可能的组合(回溯算法)
    % @6 f! E* {* F- w
    8 ?0 F  L# r, H6 V; R' D试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    16 小时前
  • 签到天数: 3146 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    / q( G2 a1 w6 ]我推理机的核心算法应该是二叉树遍历的变种。
    ) y$ c% b* U0 n' ~2 L% O另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    ! L" ?! o& g& F" FKey Idea of Recursion
    ! ~, u2 ?3 x* O( y5 Y# W4 e/ o) ~) F
    A recursive function solves a problem by:& [7 |+ E( W8 Y0 _; l7 }* i; m

    9 ^/ {" n* \7 X, N& S6 j1 R    Breaking the problem into smaller instances of the same problem.2 K* `' t- t- M7 v, c/ ^7 v! f
    0 }4 L* r4 z2 @, }, g6 b9 E
        Solving the smallest instance directly (base case).1 |" F  i* D5 _8 z- W4 T& ]
    * Y; u# A4 U7 _4 P
        Combining the results of smaller instances to solve the larger problem./ N% s- S: x* r
    4 P& I' U6 K5 b8 J$ h; m; H7 G
    Components of a Recursive Function8 B8 s+ a0 D$ @3 C# @; E" E* q9 J; G8 ?
    ! r7 ~+ u, K6 ]/ e1 }6 V4 s5 l9 L
        Base Case:
    : |, f$ I( Z8 F; e" H3 s: C
    ( Q+ J7 F  \5 j5 }9 h! G# h        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    8 {% J+ d/ d  d
    . z# u  y* c( S( i6 _% h+ M        It acts as the stopping condition to prevent infinite recursion.
    0 D, e0 J0 x+ g9 g( E6 d
    ( d' b3 u+ I, {6 F/ }' j        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    0 e6 k1 B9 `* v; z
    ! ?" u) }6 g' c0 I    Recursive Case:
    # L2 E$ Q3 t  I: H& x/ Y: q
    9 J7 t5 b% V- K9 }! l        This is where the function calls itself with a smaller or simpler version of the problem.5 I  @7 P+ w  D: E% b; I
    , n3 \: ?4 m* Y0 }
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).7 z2 t2 ]* t( \- F
    ! n  l4 w  b) r8 i" V4 b" U1 G
    Example: Factorial Calculation% G! J8 D7 S; C; M  f6 Z
    . E- x0 ?9 p0 ]- r4 ]# a2 q& D
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:, J. V2 K' X  Q6 H1 X  Z7 h( f) H8 s
    # z) M8 \" N" g4 G0 d' I; i
        Base case: 0! = 16 Y0 G. c0 A- i+ a7 y) _, m. P# S
    8 _* J5 }3 U7 i0 i/ k$ @
        Recursive case: n! = n * (n-1)!
    ) I6 r4 P, I" W, {2 t# O  P/ B; n8 N# j% x0 Y; S
    Here’s how it looks in code (Python):: r6 n7 C# O# E5 N
    python# I8 M5 l8 w1 C4 p9 U) `: _

    & Z0 `! f: B* O9 f6 B4 ~6 C6 ~
    ) ~# @3 e. G  R+ B+ P9 f' Udef factorial(n):- f+ v/ F: D7 V8 G! e
        # Base case/ \3 s4 f; Q% H5 r' b1 n. t
        if n == 0:
    3 e  X1 U2 G$ W5 r0 \, y+ h        return 1
    & l6 w4 e; w  L; X5 B9 l/ X& m    # Recursive case
    * F' Y5 `: b5 k8 I    else:
    1 W) K" S: q# ?; C; S        return n * factorial(n - 1)- I7 e4 j- b; S- \
    1 p! P0 q' G( h
    # Example usage: i6 L; A! Y: {
    print(factorial(5))  # Output: 120
    2 S8 o, e2 k- j5 e4 i; x  ]3 x! N, H4 s/ W% n& w2 ^/ @
    How Recursion Works
    # f8 b( m7 n" Z% q1 I3 e+ ]( f& w' ~& h1 H+ y5 a( M
        The function keeps calling itself with smaller inputs until it reaches the base case.
    $ h* o' M* P. O4 N5 e- h) {1 k, H. Y
    ' G! R9 n: y8 E: }$ I# H    Once the base case is reached, the function starts returning values back up the call stack.
    ) L2 x. F4 A; i4 Z6 z6 z$ e' Y' b( O+ W  B
        These returned values are combined to produce the final result.8 F( I8 ^( }: }/ Q1 I

    0 |( G+ j2 u7 h6 Z( o# ?For factorial(5):
    # j. d% X. W: S8 ]/ ?
    ( v4 |  N( B" L1 d- t( |0 a
    + f4 _& b6 J9 l9 U$ q+ x* Dfactorial(5) = 5 * factorial(4)0 y1 |6 K" L9 g  z
    factorial(4) = 4 * factorial(3)
    % {+ g6 P% g; Nfactorial(3) = 3 * factorial(2)$ @% c4 L! x0 C; E4 _3 l2 \/ K) y
    factorial(2) = 2 * factorial(1); [( ~4 ^8 _4 N8 _- k4 H
    factorial(1) = 1 * factorial(0)
    $ c% j& h8 H$ Q* L; ?- k/ bfactorial(0) = 1  # Base case" R; i* O, b$ q  G$ ]2 H6 [) r7 K

    3 a8 k& F6 o, k' I4 y9 C/ V5 _0 j! rThen, the results are combined:
    * e1 a, U7 ^; h
    1 T$ h: h/ A3 E9 }, H1 X
    , Z# N4 q) S0 u6 h* H1 y5 F" ufactorial(1) = 1 * 1 = 1
    6 p* n* O* a7 Q0 ~factorial(2) = 2 * 1 = 2; B' t9 v2 Y% X1 i
    factorial(3) = 3 * 2 = 6
    . B5 a9 V2 }+ ~* Yfactorial(4) = 4 * 6 = 24
    . g7 S" m* J9 bfactorial(5) = 5 * 24 = 120
    ' P8 M4 m/ W, r3 X  s% Z% t( D1 t* O+ U
    Advantages of Recursion2 j) i8 Q" G# o& }$ j1 n

    , d; d. V! X3 B    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).+ [! e2 b- Z* g4 p& w4 |
    , N5 B- t& e- ~( }# ?6 ^3 k
        Readability: Recursive code can be more readable and concise compared to iterative solutions." P! C0 o5 F2 O6 ?: n4 n
    & u6 {/ K9 U- T" v/ l- h' u
    Disadvantages of Recursion
    # \* D1 F% N6 M' O! x4 S" [4 [3 d' I/ t( r; [; b+ n5 W
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.3 i. q8 s( I9 Y5 H, n  h

    ) l* S4 z2 Q  j: Z$ q' ^- l    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    / Y# V; n4 S8 o, I1 j  L" C( E$ n- V1 y
    When to Use Recursion
    6 ~9 _4 c: z2 G1 y. G9 c! j9 p0 ?1 p1 ?  l9 j! f
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).9 r, @/ U! Q+ i1 M8 b" S2 _
    1 y9 W; ]8 q" E5 I* y1 R& D# X
        Problems with a clear base case and recursive case.9 M. B+ ]& a, g9 _

    $ T. ^. p4 ?* P) b2 \: u; v- cExample: Fibonacci Sequence
    + G/ c2 Y% }9 S4 j, ^
    7 o+ Q3 U: [3 V: G; O' c$ z! {The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    2 ^. M) C: |; g/ R) c" C, j& X/ F% R: _) }3 i) }/ u5 T
        Base case: fib(0) = 0, fib(1) = 17 `  S) r( M( J4 |
    8 ~" o( r7 A) q
        Recursive case: fib(n) = fib(n-1) + fib(n-2). `( }+ M7 [0 D1 c/ A- h2 ~

    ; \, q3 T" \) \( cpython4 T, d7 G3 a9 Q+ n1 F7 |! E

    1 Y( @2 K" {' E& q8 c  k3 S  j" _
    def fibonacci(n):( f4 U# s& ^- R0 o
        # Base cases5 k7 W2 }" x) c
        if n == 0:
    : n1 V+ c. w! z3 l( {        return 0' G" L. o& l/ q( E( l
        elif n == 1:, u, H/ R, d% Q: S7 @# E) V: S& ?; i
            return 1+ Y( [0 H3 E/ t4 E9 K
        # Recursive case
      Y: f8 C/ S/ E6 t- S" @    else:; X# v% ?7 t( l. b7 R9 ~3 `
            return fibonacci(n - 1) + fibonacci(n - 2), J1 c6 g( e0 j0 k5 h
    & F: J4 H9 T6 L& E% B
    # Example usage
    , O, d6 C7 @1 ^/ I( J* V$ Iprint(fibonacci(6))  # Output: 8
    3 k0 Q/ V8 D1 j+ h! d. y$ u
    " P5 x3 ^8 q8 c/ wTail Recursion3 ~5 O3 s7 }) O) F! j9 e2 ?
    - g* J- j7 G. X2 @
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    ' _5 H* b* M6 f2 w7 ~* a( w
    8 {1 |# k6 E0 @( W6 A4 ]In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-14 22:43 , Processed in 0.035717 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表