设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1731|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 2 B4 s6 P& b0 U7 ^

    ! _1 Z0 Z4 [, y解释的不错# f$ F2 a! C/ f

    - _! l" u" N/ {" q- J8 m递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    7 h& `( C, _3 X/ ?- \) U+ g7 t6 w5 W+ n  C6 K! {
    关键要素
    + ?# T. P$ {4 D* h  I4 d" p( b1. **基线条件(Base Case)**
    + t) t, q$ }1 R5 d& {, P   - 递归终止的条件,防止无限循环( ~  ]3 @. E# x9 C; k
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    4 h. d2 b, g6 n$ o( y
    6 z0 q/ h( n( Q) g9 y/ x$ S% x2. **递归条件(Recursive Case)**$ s; |3 g( q: b, p3 ?4 G) L
       - 将原问题分解为更小的子问题7 F/ }1 V. @0 c/ m; c# K& O/ i
       - 例如:n! = n × (n-1)!" O0 M; N6 |. F7 `1 Z, ?6 p% A

    7 U: m8 u5 E( O, L$ j& t 经典示例:计算阶乘
    5 b/ y: E9 `9 f, Xpython" U2 \$ g" }5 Z$ I
    def factorial(n):! B7 M3 Q3 Y: F
        if n == 0:        # 基线条件
    # M( C6 s" ]# C0 L# a3 I: L$ ^* O7 ~- J, b        return 1
    7 J9 G) M2 l& `. E0 c, P    else:             # 递归条件
    0 Y8 Z3 T- m2 u        return n * factorial(n-1)" Y. i1 j/ N! n9 C* I
    执行过程(以计算 3! 为例):# P1 X6 x: w, X( `( z, m, {% t! u
    factorial(3)
    & O/ w/ [2 P  g6 R6 i8 k3 ], K) B3 * factorial(2)
    + O9 r) P2 i# I6 |, v0 `* H. B% L3 * (2 * factorial(1))% m* X8 r; z" f6 i* o( q
    3 * (2 * (1 * factorial(0))), u$ N) |+ ^; n) K  G
    3 * (2 * (1 * 1)) = 6
    $ @3 m- j* Z4 v" y) a
    % ^9 L! z% y; h+ D 递归思维要点
    - \" a8 j- a. Q7 w# _1. **信任递归**:假设子问题已经解决,专注当前层逻辑) S- F( R& @4 o" q# D8 _* K4 e
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)5 n3 A0 C/ {" k. G$ E- \/ G0 W. C
    3. **递推过程**:不断向下分解问题(递)
    - {5 q  U! I/ Q1 g2 J9 E2 v4. **回溯过程**:组合子问题结果返回(归)
    : l( C1 @1 v. d! X$ Y  i, Y8 b% {
    . U5 j" i5 g! J7 F/ U; F! A8 [- a& S 注意事项* Q) H8 E6 i1 G( e! M9 c7 a! }
    必须要有终止条件* D- l, C% L6 ^1 z/ j  R- y
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层): I" f" e8 y9 ?! ^1 b
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    . B' r7 o; t% e8 p# X0 @尾递归优化可以提升效率(但Python不支持)
    ! x* }, J$ H4 g- b2 e. w
    4 u: [# ~% U5 e2 _; ~ 递归 vs 迭代, L* B8 G% m6 M- {; o8 ^, }, ]
    |          | 递归                          | 迭代               |3 S# C( h" K. S* h* [
    |----------|-----------------------------|------------------|
    0 ^; L9 T! `+ [5 e! T4 n$ c* B! f| 实现方式    | 函数自调用                        | 循环结构            |
    8 Q. ^. w! V. e$ Z| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    * F3 _: G7 C* @# [7 t* ]| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    + c3 |$ k2 @0 ]7 Z2 g) ^: c5 u| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    & M# @3 [8 J; }& i- l! H- X: t3 y
    & t; d7 S3 U: W 经典递归应用场景- T4 @0 _8 \# W# ^$ ]
    1. 文件系统遍历(目录树结构)
    2 k/ _4 s! n- x7 g2. 快速排序/归并排序算法  j% ]& }1 Q) b. Y3 ]1 e
    3. 汉诺塔问题5 K8 B5 P8 z" ~( [2 s6 F( `. U' b& K
    4. 二叉树遍历(前序/中序/后序)
      h0 u" h/ C' g, D" B5. 生成所有可能的组合(回溯算法)
    9 N% D* o5 K/ s( b( y2 c/ @
    $ {2 C# b. o: {5 ~( S- O试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    郁闷
    1 小时前
  • 签到天数: 3135 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒," m- W6 E: a# r/ F0 P: f, M1 G
    我推理机的核心算法应该是二叉树遍历的变种。
    & a, K! r5 I$ a7 k: l: k另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:, p2 }$ l" }* K' Z6 [7 `; k( y
    Key Idea of Recursion2 _" s2 T) p: c0 U/ E) b! `
    ) t6 D) j0 E$ D% h0 v7 }
    A recursive function solves a problem by:
    % k0 g' s# a& _! i* R- c: t* X
    / v# R) C  P# ^/ I. _. c9 R    Breaking the problem into smaller instances of the same problem.# U; r5 ]1 z0 z1 L

    + M4 F6 s# ~: S* V1 o! W+ G    Solving the smallest instance directly (base case).
    6 \& b( X1 b% n8 m5 W, Y) C
      R1 n0 r5 i0 ^" U+ \    Combining the results of smaller instances to solve the larger problem.
    ) w" l. E' K1 N6 i1 B9 W
    $ y4 O) ^& W2 y4 x$ O+ o+ eComponents of a Recursive Function$ e1 Q+ }: c9 @( h2 P
    $ |" g9 @, a. i; U/ d, X4 d" m
        Base Case:- S# l) z* X8 [1 t3 X
    , C' I& ^( [# k7 |/ m4 Q
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion." [5 i6 W  }* ]/ s5 D
    ) j5 ^$ X' @6 z5 c
            It acts as the stopping condition to prevent infinite recursion.0 }( _# b0 d, C" ~' K' F
    7 W+ t3 s  I* I8 M9 M" r* A$ |
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    ! l; l$ F* x5 N; n# M. a9 V# s- B+ @2 m& J( s6 ?
        Recursive Case:
    - Y, j+ H) a$ x, ]; l
    7 k" `5 ~/ @( q; c  W        This is where the function calls itself with a smaller or simpler version of the problem.$ D; s$ V  `+ b; v1 d% f! o& Q

    , W; Y  h6 P7 q! w8 R( D  p4 j, S        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).3 l8 G1 T% n4 R1 R+ t
    6 ^* \8 i5 r' t- V1 a; C5 Q3 l
    Example: Factorial Calculation
    * z6 H9 x' N( R
    : A% p( H" z" u1 k. N! TThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    3 f- r/ D$ G; G, ]: u4 B9 j& Y- c- e6 Q$ e$ p9 p' D) G, b
        Base case: 0! = 1/ h, }! Q( h7 M- ^: i9 w& K
    ( k6 ]0 g5 k; a1 P: ~. M5 D
        Recursive case: n! = n * (n-1)!
    5 Z9 f" u! U1 G0 {
    ! p9 @# T# @) I& B0 F; lHere’s how it looks in code (Python):) m7 s" Y4 Q: k
    python/ N) N% u2 H0 m. u8 [- R! S
    / [9 N$ ?0 W9 y7 X; t% V; m$ I

    9 ?0 e4 m1 Z0 T1 x! udef factorial(n):
    3 q) B* L. J7 E$ T) J9 p( l0 M    # Base case
    ! y* c( \6 N* U. W! f9 `+ i9 ^    if n == 0:
    , n+ W' X4 B! ^5 Q- f        return 1% I' P) I/ A- W: P
        # Recursive case0 G& C& B) m" a% X* f" L
        else:
    ( |5 Z# N  b$ _8 [4 z) O        return n * factorial(n - 1)
    , {9 d/ s6 e% K* @0 G) E
    ; [- I3 k: x  T) T' ]# Example usage
    , T" q, f5 J. @( E# k  v/ w* Hprint(factorial(5))  # Output: 120
    1 T6 G7 @% o+ a$ K* _. r7 a, _& p+ P
    How Recursion Works
    1 B" D0 W4 m9 p1 o
    ) T! X( w5 s. d2 {3 [6 m    The function keeps calling itself with smaller inputs until it reaches the base case./ L: A5 I/ U- s. Y) B

    & Q0 Q% [' X3 J* M) I( ~* g    Once the base case is reached, the function starts returning values back up the call stack.
    * C5 W; J% \2 `' Z$ y8 j0 f% W
    ; _4 ^7 N, t: A2 x    These returned values are combined to produce the final result.
    ' X7 r$ }  f3 T( g+ j8 K- V5 Y' Z$ F; a$ {' D5 _! s
    For factorial(5):
    ! k6 J7 B$ _3 y. Y. l  ^5 F7 M: L! h6 u. M) Y
    9 w" r8 D3 C# q& M! E
    factorial(5) = 5 * factorial(4)4 K* y8 p8 Y7 t) I# W
    factorial(4) = 4 * factorial(3)
    - j, {  N( o, N5 U  vfactorial(3) = 3 * factorial(2): y* R( p2 o5 p. q- S
    factorial(2) = 2 * factorial(1)2 F" B, t, E7 O2 O3 }
    factorial(1) = 1 * factorial(0)
    5 `1 E8 K+ `& E) I; m# I4 r! ufactorial(0) = 1  # Base case3 N/ _3 u6 \1 \  b9 B2 x* Q/ I
    0 ~: V0 i3 L3 B: i+ {
    Then, the results are combined:, l& a9 u$ ]5 n7 d5 A/ D0 L) ^! y
    " s6 G6 e4 n+ m3 }" o. _
    - P; }$ I- M0 [% h
    factorial(1) = 1 * 1 = 17 w, b( Q6 @/ x% t) S
    factorial(2) = 2 * 1 = 26 Y  i; G: a3 J$ k- G* _
    factorial(3) = 3 * 2 = 6
    ) a# B' X: v) Mfactorial(4) = 4 * 6 = 244 D# y, M& q) u' L7 ^" F* Q1 V
    factorial(5) = 5 * 24 = 120
    5 b7 v- j3 l( ^$ _, g( h( m5 i) ~9 w  g% m
    Advantages of Recursion" H0 K3 x" W7 s2 V5 i0 X* e# T
    3 |7 C: ?" U+ o% t7 f- |: K3 c. S
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    7 _7 ~$ u% J& F# a6 `  ^& |6 ^# G# P/ n: j
        Readability: Recursive code can be more readable and concise compared to iterative solutions.: i: Z* X' s, J) w$ o
    ) h3 W, y. s" I
    Disadvantages of Recursion1 C+ H" x6 @+ Q! D6 d7 b; B; o
    # I: D: Y/ m- Y& h) `( j/ M. t
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.% \3 M( t6 v$ n. a. f+ \+ U1 u

    ' p1 L9 [+ w" w1 `/ S- |% A* {4 J    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).* b# {4 B3 G" J. Z1 L9 q

    : `, b/ y, |' S! B6 ]5 h" j' fWhen to Use Recursion' v8 k2 f* h" S8 P$ D  p

    4 q( d3 E/ G4 F. v# _    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ' R6 D% @2 @: L: r) v% `# X' k1 |
    0 Z' F7 _, |: K+ f+ B7 U' Y    Problems with a clear base case and recursive case.& e9 U# o6 Q/ c: p! F
    ) @: O5 M) {. x. A# y
    Example: Fibonacci Sequence/ e) ^  }8 b0 ]! |' u, D! ]1 A
    5 ~- ^: d5 r) |2 H
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    3 ?- e9 u: t: t% I; ~/ _  O5 a; s% Z3 b3 R7 G  f1 s
        Base case: fib(0) = 0, fib(1) = 1: a' S. U( o6 A, {& N" f

    " C) ?! s& L3 I: l9 g6 g    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    , x! I3 V2 g3 ?$ Y& M* Z
    1 Z' `6 V8 a& f: A- \8 Tpython
    ( ]% O: x1 B& c: f
    9 p* s+ g( [  {6 D# G. S; Y6 f0 o  Y& x. d) r6 O
    def fibonacci(n):
    ' _/ ]' `- D/ x8 g2 b    # Base cases$ e( @0 L% q$ J
        if n == 0:
    % o/ F% Z" q9 [        return 0! X8 W9 M2 d; e& [8 F+ P7 _, i- |
        elif n == 1:: R; d- G& y2 g& a' D1 _6 @
            return 1
    1 i1 P/ B, `+ u: V1 P    # Recursive case: `) O) y! @& K
        else:
    , o8 r* _3 U( K1 I        return fibonacci(n - 1) + fibonacci(n - 2)3 p6 k# C8 s. G( P  W, _: p" ]$ e
    1 Q. B! q& I8 f1 J8 [+ O4 q9 t
    # Example usage
    + I! n/ `  B: r* kprint(fibonacci(6))  # Output: 8" B6 P0 t' r4 @2 c( q
    & T4 c: I9 U0 O. a
    Tail Recursion& R4 ~. k+ `! Y0 O) c3 {

    . `5 E$ |7 J" A$ @* k+ T# L3 {6 wTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    & t: O& E" P  t
    8 u* x# p2 x- t. J% L% D+ zIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-3 10:37 , Processed in 0.034740 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表