设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 728|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2015-11-30 11:11
  • 签到天数: 2 天

    [LV.1]炼气

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    6 @, I& K% f: w9 k4 [; N- J
    , y' l1 n1 a& J. q. U解释的不错" E8 O7 G) n, f

    % P) Y8 T5 o) l! L) A递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    # R. L- b8 f2 j: O
    8 @/ {. X4 V1 ^: X$ ^, a, M 关键要素7 `9 s  O- ~( y7 s7 [
    1. **基线条件(Base Case)**
    & m. F3 e1 r! S. U3 w   - 递归终止的条件,防止无限循环
    & h5 X* A# \- b; p. F* O   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1+ z- k' Z0 ^$ m7 }4 J! V3 ]
    $ F4 i9 E6 {* Z
    2. **递归条件(Recursive Case)**
    + V" {% ~3 U7 r4 a   - 将原问题分解为更小的子问题
    7 v) O0 L9 o9 m& L   - 例如:n! = n × (n-1)!/ X# H- s  h- d- t) }

    % ]9 [0 y0 Q! L0 f" _) o7 B 经典示例:计算阶乘- u3 J. K* F# g5 ]% m' W7 b& k
    python- v( e' N4 }6 A! u
    def factorial(n):
    7 r7 S3 Q5 R; V    if n == 0:        # 基线条件
    " N& r; Q: h6 o! i' R! r        return 1
    0 o( P5 u7 c5 W    else:             # 递归条件
    " v: f1 A) P& {        return n * factorial(n-1)4 N/ K) f: e) ?/ g
    执行过程(以计算 3! 为例):/ {$ _# f7 B0 _0 ]( I1 Q3 E
    factorial(3)% I3 G" U  `3 y
    3 * factorial(2)0 Y5 @# {) u% U5 Y% `$ R
    3 * (2 * factorial(1))
    , |& L( F$ d2 e3 * (2 * (1 * factorial(0)))
    & T: h3 y. h2 Y' P9 H3 * (2 * (1 * 1)) = 6
    # s; N$ T" k$ v% u7 f- R( E) V, G5 }* L, w0 a
    递归思维要点
    9 e! Z' M) ?6 s/ X6 g  a1. **信任递归**:假设子问题已经解决,专注当前层逻辑
      ?) p# X( b- f+ ]0 ?0 x2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    / p; Q, P3 k  P9 E3. **递推过程**:不断向下分解问题(递)* f2 y  G  n7 Q: {( @5 I
    4. **回溯过程**:组合子问题结果返回(归)8 V; o/ M- l% g( `

    3 ], N/ _. C" [: x 注意事项0 h" G9 Q5 j  l# R- U; b
    必须要有终止条件
    4 [# {! K0 L3 R# A  B/ _9 C递归深度过大可能导致栈溢出(Python默认递归深度约1000层)2 o& y; G- C  o* c! a' a- ^
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    ; b2 i/ v( C+ F, e尾递归优化可以提升效率(但Python不支持)& w+ K. s' a. R# z1 l) D9 u

    6 I# x  I9 \* D& @ 递归 vs 迭代8 V$ d, n  o6 x) Q& j4 h' t
    |          | 递归                          | 迭代               |
    : A5 t8 v* M+ h! d3 a* p|----------|-----------------------------|------------------|
    9 B5 ]5 z8 s- W5 s( }0 q: X  s| 实现方式    | 函数自调用                        | 循环结构            |
    5 s; X3 E5 I) R& O* O- Z| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |  N1 r6 p+ X2 i
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    + h# ]* V' H, y/ s) x| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    8 T1 F6 W, g- T8 I  _, S5 H0 t# S  Q/ v/ d7 S* W( y
    经典递归应用场景
    ! C; ~4 N, Z  H; y, x1. 文件系统遍历(目录树结构)
    + V( S  B9 {% J- [8 Q, Z2. 快速排序/归并排序算法
    4 j$ J2 e, D8 }! B3. 汉诺塔问题
    - e- K$ U6 W: K2 e4. 二叉树遍历(前序/中序/后序)
    5 i: ]# q4 K* }( T5. 生成所有可能的组合(回溯算法)
    $ s' {0 B; Z1 C! s/ E/ Y$ H, }  ]
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    慵懒
    6 小时前
  • 签到天数: 2964 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,* b2 U1 T; p. B  g0 s5 W3 G% _
    我推理机的核心算法应该是二叉树遍历的变种。7 y8 W% l, P- F
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:5 W4 M) f% y0 _1 |  i- C; b) Z
    Key Idea of Recursion
    # Q6 n6 `6 I' t( q& C
    # T2 f/ k+ Y' H; i$ ~- A! vA recursive function solves a problem by:5 X) z8 u/ |8 O3 h
    ; ?7 n" X3 S4 |' f, I0 A
        Breaking the problem into smaller instances of the same problem.
    7 q8 y  ?# G, b" l0 W4 D: `7 E" J( O) {% C2 D
        Solving the smallest instance directly (base case).. Y: g& t. h3 t+ e4 k7 M7 X; b

    - u, g" t* X& \& i3 |$ o% ?7 B( e    Combining the results of smaller instances to solve the larger problem.
    ' g9 @2 F: o7 e: Z8 {
    # X3 Y% ~- [7 [6 _4 e: jComponents of a Recursive Function) p, [( Z, s) {& U3 |$ U3 h# n" F* o
    " b' c% L1 @5 J4 K
        Base Case:
    3 P, F& j# `, S$ v+ U3 S. K  z; L8 j1 `  o' ?$ A
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.2 u. k% b& }* @. N
    & |+ {) c( P+ }3 w" i( A, x
            It acts as the stopping condition to prevent infinite recursion.
    & B; H! R2 U7 \$ v% S" o/ `9 V
    2 T" Z5 T1 Q% h1 r1 r& I3 J0 L        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
      }% p  ]3 k; t% c5 z
    & S) T. D! Y6 F    Recursive Case:
    # D8 f* \3 [% g: a9 x) [
    & R/ Q, e% v1 F1 t$ h        This is where the function calls itself with a smaller or simpler version of the problem.
      T6 n* L; z0 x
    ' x2 e& u8 B2 b; l% n2 W        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).3 m9 A5 X6 r) x. J( X7 `* y
    , `& M( ~+ Z; F
    Example: Factorial Calculation
    / p& L" i/ i9 J  e
    ! u$ F6 l. V! R  m$ {3 Y1 mThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:' I2 P( O. w1 W& B# h- y0 h

    " V+ b  C8 A  x2 Z2 D/ X    Base case: 0! = 1
    , J7 I% e) x" y9 p; n0 Q- O6 P
    4 }1 |/ r( W# _    Recursive case: n! = n * (n-1)!) M; M5 W7 v/ ?6 x+ f% ^
    ( Y. R/ t; [, @. @8 t
    Here’s how it looks in code (Python):
    $ a* S) {5 [% e* ~3 j5 y+ d5 Wpython/ M: [2 E: f$ v# _) o8 X: j: `
    , b9 B" f, x2 b' v/ e. b

    1 E; b% \7 \6 J. M/ D7 idef factorial(n):
    8 B( Z, @3 t7 ^2 ]    # Base case
      p% `2 F! P$ f    if n == 0:
    6 z8 O3 a3 r7 T) S3 }5 c* J6 j        return 1
    * P9 |# \# N  _8 \0 e7 X    # Recursive case
    + l, B6 Y- ]9 m- ]) A: m. O    else:
    $ M: b  H2 e5 y" ^- E# @# P        return n * factorial(n - 1)) l% \* m/ {' b! w* o& Z3 s

    ; B& N1 u; J# `* k7 {7 F0 y# Example usage/ o' U9 N) D. n1 B+ t% ~0 H
    print(factorial(5))  # Output: 120
      l- s# `5 a7 z; [; J. x, z' I8 i/ S; z8 w! e
    How Recursion Works
    ) l: r% ^. _) J8 d4 ^8 h& j, d' V" V6 ^
        The function keeps calling itself with smaller inputs until it reaches the base case.
    & A. [4 Y; p4 X. U8 V5 ?  _  }/ {; t' C/ j
        Once the base case is reached, the function starts returning values back up the call stack., M' a1 b  H, V( k, d% L
    ! i. y2 M- k+ R' J, G8 B! \
        These returned values are combined to produce the final result.9 b& @2 z& r9 x4 E5 e

    1 |  S# a0 |* e/ y" s# Y$ F3 ?/ yFor factorial(5):* N8 h( m- d6 {$ }; v
    # B5 g8 E" [9 y, L; I# B+ n

    ( H" e, N- A1 P# _2 C" T! mfactorial(5) = 5 * factorial(4)
    ) l% `% e0 ~- l' r$ ~factorial(4) = 4 * factorial(3)
    ; F' E( Y1 O! `1 v2 B; b9 Vfactorial(3) = 3 * factorial(2)) A) F  h4 L1 F% M3 E2 k- Q
    factorial(2) = 2 * factorial(1)
    4 x8 i+ `5 ^$ J. F% S. M2 }. efactorial(1) = 1 * factorial(0)
    4 V8 G4 ~% m, o1 }% ^factorial(0) = 1  # Base case6 p5 P, ^- z  b7 o

    9 G3 j1 P& j8 g) IThen, the results are combined:. Z, f- x) [* R. y2 U5 \: L6 s4 g

    * ^/ B, T  \  J" `* e2 f; @1 h7 p/ o* r( |8 \; M% s
    factorial(1) = 1 * 1 = 1- ~* A8 k/ v7 P& D4 ?( }
    factorial(2) = 2 * 1 = 2, d$ s4 h1 O" Q$ _& P3 N+ _/ ]6 P/ j
    factorial(3) = 3 * 2 = 69 o: M' T$ u( g2 M: ~5 }
    factorial(4) = 4 * 6 = 24+ q" I3 O; z! `3 ?. o
    factorial(5) = 5 * 24 = 120( K6 l/ u5 V+ Z! n
    ! C4 S2 i( @, o/ f& {+ p) @
    Advantages of Recursion( {" V" [0 A2 k; x% {5 s
      P' m7 @3 f+ T. x* a1 G! h
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    1 z, r8 Y9 U# `  N! _- h
    % X% P  @$ q- |" i    Readability: Recursive code can be more readable and concise compared to iterative solutions.
      X+ q! x$ {' I& r4 z6 l! R2 B4 R) D! [4 `
    Disadvantages of Recursion
    # w+ Q2 }' Z2 x# _: \8 ]- K+ B& I; I3 c! e: ^( I& G* M0 B( v% u" t! C
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.# z& i- I1 m+ Q4 ?

    " U) |* E0 y3 b4 z5 \2 l/ l    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    / k. r( o: f& Z2 w, C- C8 v+ p$ @( p, `' d; J
    When to Use Recursion) q( B. t( q7 Q8 A7 h/ ?

    + u+ D4 U3 H" x# X4 t9 k( W8 ~    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).: J* j& P$ X# \9 V4 [

    + [% a, [: o+ Y4 D    Problems with a clear base case and recursive case.
    4 U8 E3 d, s! m) Y& H; J( v& k
    : F) _9 \, G$ U* b& r! K5 S! [! mExample: Fibonacci Sequence# t5 n8 G! x# }1 B5 v8 x
    0 x" {9 w+ A, o( N7 E8 K2 Q
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:5 m$ f/ O- t4 }& b

    7 o: ^/ z* |2 T9 v9 c    Base case: fib(0) = 0, fib(1) = 1
    / n; \3 w$ v7 p" Q/ \1 f( w7 q$ k. U* o/ ^( c( E
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
      r0 H5 K/ @; e7 S! Q" A" A/ Y3 f
    7 j6 u2 Q5 ~% `6 A& w( Y: gpython
    2 {- C0 I; M) m# n, W1 h+ Q' `! B; x/ P% h( X$ T1 s
    4 @, z, l! r- z. U7 Z
    def fibonacci(n):
    ' N! r( |! K. B1 w0 F( _( X# N    # Base cases
    - F1 h2 ]8 p+ o    if n == 0:6 ?) A6 D9 ~# k- Q
            return 0. t/ ]1 I7 H2 R9 N- n; \
        elif n == 1:% K+ w8 K- a7 i1 D. {
            return 1( Y; L4 W) v* [/ b- j
        # Recursive case
    & j9 |$ t+ ^' g. o( R, B0 h    else:
    ; ?& D  {1 D  j4 F) r9 P* W        return fibonacci(n - 1) + fibonacci(n - 2)- B. A  t& R) c' j2 S* {- q

    ) E2 h6 m7 }' ?9 L# Example usage( T% Z% H  }; h3 |: D
    print(fibonacci(6))  # Output: 8" Q9 [& F5 P/ X6 u. x
    + f1 w$ X# A( Y  R2 z/ u9 q6 w
    Tail Recursion
    2 M# Z( q/ p3 s0 W' V% T
    % d* D/ f2 ]. U) X5 p; ]5 a& FTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    $ t  j& ^4 n# b2 D
    " Q# c- g* a0 ~9 V" \In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-6-28 14:34 , Processed in 0.040758 second(s), 21 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表