设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1612|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    / c0 w. M2 A, D8 x  O: b9 Z+ ?% t# K
    解释的不错
    $ a- G  d+ K, x7 e5 L0 \% O1 r7 o8 l$ b' O
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    ! k. i% g+ E2 `; y& f3 t& S. q7 r7 ~% ]8 j- }
    关键要素, f" j  t& ?' F2 O  h
    1. **基线条件(Base Case)**/ H4 a# b# Y: @
       - 递归终止的条件,防止无限循环6 r2 L& d" O; e1 ~; A
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1" u5 ]; \$ J) a

    4 _7 u5 P2 g7 F) p  L2. **递归条件(Recursive Case)**; t; d1 t$ x* Y! P. @5 D5 f7 L
       - 将原问题分解为更小的子问题& i' v5 s4 _, l* v
       - 例如:n! = n × (n-1)!6 U/ ^# o0 W4 ^
    / W+ L2 P* e, ?8 B1 y* g  c
    经典示例:计算阶乘5 ~& N2 a+ i8 r7 P$ H0 n
    python
    , z4 N' A" D' j1 t! v# kdef factorial(n):  i7 Q* {; d( }: t4 @. ]
        if n == 0:        # 基线条件
    2 g7 t" A0 {) N) }5 _- Z1 m        return 1; [# U$ u8 Y. U+ \8 |( P: z5 ]
        else:             # 递归条件
    : ]5 _. o% e7 r, \+ X1 {        return n * factorial(n-1)
    " ~! {' K7 @% _执行过程(以计算 3! 为例):1 A+ u4 L& _0 ~. L4 h+ f# }
    factorial(3)9 C! w$ S/ N$ t+ D% d( |9 O
    3 * factorial(2)5 F4 l9 C, G- P2 l+ w
    3 * (2 * factorial(1))
    5 }$ A$ l5 g- m5 l: {: t2 j3 * (2 * (1 * factorial(0)))7 ?3 C( O" I& x' e
    3 * (2 * (1 * 1)) = 61 R* L+ J; o# O' j, j

    7 {; z4 {" B2 D) L9 r* X4 [6 F 递归思维要点
      o- M, h) t3 m1. **信任递归**:假设子问题已经解决,专注当前层逻辑" `. R: q( g" i, p/ F
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)4 w  m) o; U" X, K
    3. **递推过程**:不断向下分解问题(递)) U  u- V9 r& C! n/ G0 \' j: p6 u
    4. **回溯过程**:组合子问题结果返回(归)& a6 B" C( G0 i

    2 v# a5 q1 x7 m6 V1 y! X 注意事项
    4 d2 j& l* ~5 F% F. w0 \7 K必须要有终止条件
    + s. L! B5 ^2 |0 W+ c/ @递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    , g# K5 }  J' q* ^6 v某些问题用递归更直观(如树遍历),但效率可能不如迭代
    4 `0 _- ?9 E  l% s4 E" v( j尾递归优化可以提升效率(但Python不支持)
    $ {0 c) q1 L: \: C# _% @, r' J1 u# U1 ~
    递归 vs 迭代
    % O2 F+ A+ D6 V) p  w|          | 递归                          | 迭代               |
    4 m( H* |6 N$ s* U9 I% `|----------|-----------------------------|------------------|6 G2 V' p; |% m  Y! M+ V4 v
    | 实现方式    | 函数自调用                        | 循环结构            |1 H6 D/ ~( U, A
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |) m0 e8 e2 j. ]/ f0 }  \
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |" o' T" ]& \" N9 {
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |: Z. o1 v8 f4 s6 O9 T# y
    ( U' i0 \  j2 L' A, X- @2 z/ W
    经典递归应用场景; p( X, K& Y. C( a! S& G: p
    1. 文件系统遍历(目录树结构)3 |9 [# V, e) X! N% }, y
    2. 快速排序/归并排序算法
      H( H0 X% B( R3. 汉诺塔问题
      f5 \/ ]2 [9 j- y* u4. 二叉树遍历(前序/中序/后序)
    7 Z4 }) j- O* E/ N( l5. 生成所有可能的组合(回溯算法)
    ; E0 k* M( x7 w+ ?$ T6 M9 O/ z9 ^0 n) J2 n/ W
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    难过
    昨天 08:45
  • 签到天数: 3124 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    " U* L- U: y; A2 ^3 _我推理机的核心算法应该是二叉树遍历的变种。
    * G' S" |9 S2 g3 a  _4 V另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    ( o: Z. }0 R" b; ], ~Key Idea of Recursion
    " j0 E7 }2 Q0 G9 ]3 J4 \
      |  }4 a: R( h7 z7 w  {A recursive function solves a problem by:* R' K  f' [, O' a! _" u+ l$ `6 i

    ! ]2 R' c3 M* T9 Y( x8 ]    Breaking the problem into smaller instances of the same problem.
    ! d1 A7 m! O) E- c" z9 d% e  q
    9 `- f" f9 N. Q7 {- a# D    Solving the smallest instance directly (base case).
    5 _* I5 \% s+ c, ^/ z" [6 M' Y
        Combining the results of smaller instances to solve the larger problem.
      O7 i( ^) _9 l5 k. ^! W/ p# C' P, U! j, _! M
    Components of a Recursive Function
    9 V  e" R8 t& @. T+ U3 X, \7 @$ z( L& \
        Base Case:
    " J6 X2 L* G& n# h4 S, Z& s% n
      v8 l$ i, S) {9 z/ {3 T# k5 G        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.& s0 t/ j( q5 V

    7 N; H& u4 v. p2 G# }' m        It acts as the stopping condition to prevent infinite recursion.
    . O# E0 n& m3 c3 u/ V. K9 A9 w( g' ^# {% e( P
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    ! N# l; ]3 o6 Z
    7 c! q5 s. t" \! K# _    Recursive Case:
    : d" q9 O' y/ Y6 z0 H7 X
    , j$ C" D% a+ Z2 e- _        This is where the function calls itself with a smaller or simpler version of the problem.$ M$ |& G+ T" I7 W

    8 q  B) k; p2 w. E8 v        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
      D5 B% N& G0 M: M( y/ {+ ~  O/ N- C$ i8 g9 y4 t) a8 v. @  V3 d5 ]2 y, [6 J
    Example: Factorial Calculation
    ( ?7 v" i7 E+ }2 d6 b7 c* f& P1 R9 o' Y; Y0 b5 m  @; p
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:* Y; [% O- k$ H1 k, N# j3 ?- G
    7 n# P. S1 e5 p; ]
        Base case: 0! = 13 }5 ?) Y/ y  t( Z8 _

    + a+ A3 g6 C8 u$ N) L+ X( D    Recursive case: n! = n * (n-1)!
    ! D5 v+ n& h. E& m$ ]1 J0 r4 s' B3 o
      [6 n% v' v0 UHere’s how it looks in code (Python):
    2 p# ?4 K6 H$ g& ^6 cpython2 |. u" V4 f  e7 g0 o7 A
    - x6 Y$ n* ]! {! f6 j& G5 Q( J. o
    / Y$ H! n: B, |% b% U
    def factorial(n):
    ( E& Z$ A( A( }4 N7 W0 f) ]' j    # Base case/ a# t+ J$ m- d% h2 F! y! F& o) ]
        if n == 0:( t- U" g" H& X4 U
            return 1
    * A; F  W2 G2 J2 v    # Recursive case7 x! S* Z( X" g) q/ y: J
        else:
    / ^1 D( w. w) G/ I+ B2 `        return n * factorial(n - 1)
    3 q8 |; r  d8 S0 |1 ]0 f, Y9 N2 e$ r5 Z3 b8 o
    # Example usage
    8 l6 H4 y) q; F3 C% B+ C( r# Vprint(factorial(5))  # Output: 120: E% M0 i5 t/ D/ O, g

    $ x% g0 A3 {" a$ C8 vHow Recursion Works+ O! y% T' V/ b
    0 Q# v4 K' N  r* H: o+ E, {  [
        The function keeps calling itself with smaller inputs until it reaches the base case.
    ' `' w6 N. c; U7 G) M' `, q& I: y# E
        Once the base case is reached, the function starts returning values back up the call stack.3 F# @4 k7 ^. W8 r/ Z: q/ r9 R# M

    ; k/ B7 [- o& S. A0 A' n' N    These returned values are combined to produce the final result.7 ]% X" z! K5 y. Z0 y4 r
    ) O8 t" y( g* {' p
    For factorial(5):
    # Z( n. I; J0 W: g4 w6 p. J
    ' d$ N' G( A7 H  C9 P6 y, G5 z7 u" t7 P. A
    factorial(5) = 5 * factorial(4)8 U9 \' Q$ p" M" W+ s, s9 A7 b: Y6 |8 J
    factorial(4) = 4 * factorial(3)7 |, t/ q$ |! m- N3 B: E
    factorial(3) = 3 * factorial(2)
    $ G: d7 l8 N! l5 y9 ]factorial(2) = 2 * factorial(1)) l2 Q9 _# V4 b$ J! I
    factorial(1) = 1 * factorial(0), I, X3 s3 l+ H/ g) i& _) _* K
    factorial(0) = 1  # Base case* m: A; H- n, c$ w* L
    $ h1 D4 v$ {8 d5 p  I
    Then, the results are combined:
    + d* h9 ~! B' w: @) H# {) }7 O7 T; Z0 V5 r0 ]9 Z
    , L9 L5 s6 ^9 ?$ `5 S( S
    factorial(1) = 1 * 1 = 1
    8 P: e* h* S* E9 a. b2 A& a5 [factorial(2) = 2 * 1 = 2
    7 O/ j/ s7 q4 u; V& u* }, U' U- ^5 {factorial(3) = 3 * 2 = 6, U' V1 v8 K: {$ b4 Q
    factorial(4) = 4 * 6 = 24
    $ c, ^3 n( D. T! w4 D% [) b/ y, Xfactorial(5) = 5 * 24 = 120
    + j6 q* _5 D, a) M- K5 `5 [
    1 a9 n2 T% Y7 x2 U% g, lAdvantages of Recursion
    0 k6 |; s3 K( _  g1 l8 }" J2 d6 k, e+ _$ j2 m
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).# u/ x! ]" p* Q& w0 q1 K
    * _# A. ]- u& l+ F
        Readability: Recursive code can be more readable and concise compared to iterative solutions.5 S# X6 d/ F! ?+ E1 B- f+ |* F. e

    3 v4 N9 r6 \* d3 Y! S+ ^! U) XDisadvantages of Recursion8 U, c) L2 F( ]* p3 T8 ~) C
    : ~/ r: D' t6 ^/ T
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    5 l( l4 \7 k: w# T8 r  E3 r1 ]# F  c
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    ; s7 P. _# U* X: n. E, y6 k
    ' a) x: F3 l0 i3 j1 O  X/ QWhen to Use Recursion
    8 B: ~9 {+ g* b0 N. S3 Y3 r/ U* L- K$ x$ y
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).4 z3 G3 J2 e8 n3 q* h

    / ?9 I8 t! m& V    Problems with a clear base case and recursive case.- U/ f$ y; E3 A* g$ b9 N. X
    5 ]7 {& P* J; ?8 N4 U
    Example: Fibonacci Sequence* R  R5 A6 L/ f: G& b$ B

    + E) F! x0 T+ i5 C" o& YThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    9 z' w1 C5 h" g- T
    - e6 b) R3 s* R$ G& i    Base case: fib(0) = 0, fib(1) = 1
    . ]$ ~( K% [; l' z/ r4 ^# L! y" e" k) F5 a$ M" p  a/ q
        Recursive case: fib(n) = fib(n-1) + fib(n-2), T0 w& X: L; D$ ]: h4 O6 d
    / B1 [" ~( I& V, ^1 ~1 \5 @# z+ P
    python
    & G  H+ ]1 Q0 _, j% @" l9 i) L/ r" k& N6 ^0 D

    $ e2 ~2 D" t+ |0 ]def fibonacci(n):0 C% ^: R: F8 ]1 e
        # Base cases# l' p" v" i. L$ v) c! i
        if n == 0:2 w3 h" e5 p; \: d
            return 0
    1 b& @6 ]0 p: x& {; l( o' z% ^! @    elif n == 1:* k9 k+ f( B* }
            return 1- d" D2 B' c4 j) l5 S* B/ T4 ~
        # Recursive case
    & R- |9 D/ D+ y    else:
    0 L% i3 j2 g, [: i' C! ]& q$ J' S        return fibonacci(n - 1) + fibonacci(n - 2)* K: a- }1 d/ `; W6 X) \

    ) _: q( F+ Q5 ?! u2 z6 Q' b# Example usage+ S+ D3 d$ l9 A/ b/ ~! n1 e
    print(fibonacci(6))  # Output: 8- A2 ^& f* F7 ]  M, Y# E6 j

    % |/ t7 Z8 Y8 l& Y- LTail Recursion) O. D+ s: `( r8 }, e' M& e
    % z, s6 @8 R7 G
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    - V1 |& Q; g5 v0 ~0 G  Y. k  j2 l6 l7 W8 u, d; W0 g  O- J
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-23 13:44 , Processed in 0.029701 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表