设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1598|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    ( Z0 I4 c8 F2 M! a! l0 j4 m* M
    ' G7 V  [& i. e  B解释的不错/ Z0 h, ?: [# j1 I; S* M

    3 J% a0 E8 [. X' A# S+ Y9 s递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    / x  A: {4 ?: i( A9 A. P5 p* p
    关键要素1 d& F3 D2 m7 z: n1 `" E3 d8 P
    1. **基线条件(Base Case)**: L$ n1 D9 F# j$ j: G
       - 递归终止的条件,防止无限循环' o, Y7 C- ^* x8 h2 Q0 M1 Q
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    + `/ o' k, p' ~$ h6 j$ D; x" m
    " J' f9 y  F7 i3 s9 H- }' K! n2. **递归条件(Recursive Case)**7 W% ~! x9 p- E
       - 将原问题分解为更小的子问题
    $ n0 z! o- ^+ K& k   - 例如:n! = n × (n-1)!+ E# y) t. p6 N3 t% C$ X: R
    ; U, _* Q* @/ ]. j9 j
    经典示例:计算阶乘
    8 F3 ^# T% C9 @/ fpython
    7 @5 j: {/ ]' m4 }def factorial(n):% L- E5 x2 v% d) H6 T4 y+ _
        if n == 0:        # 基线条件
    4 U/ I4 F( D( U& m) {9 N        return 1
    " ]- U$ P9 B! \! v    else:             # 递归条件
    ; [; {: N8 O* v$ z2 @        return n * factorial(n-1)
    $ @+ L/ d3 {0 Z  h$ O8 C执行过程(以计算 3! 为例):
    8 r5 p9 o9 z( P# Xfactorial(3)& C; Y9 s6 E! B+ M/ B% n( Y
    3 * factorial(2)
    ' m3 s) |, t/ v2 A! U9 E3 * (2 * factorial(1))2 |* O. k8 _1 M1 s! K
    3 * (2 * (1 * factorial(0)))
    & B" H! d+ r9 N5 Q  i3 * (2 * (1 * 1)) = 6
      k8 ^9 n- C! E6 E. [4 c1 P
    5 b: J+ t$ V* r* {! c8 Z1 r6 Z 递归思维要点
    % x9 c; K% J) H+ _1. **信任递归**:假设子问题已经解决,专注当前层逻辑" A3 d; c5 u" l/ l5 S
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    , b2 D; Z2 j1 ~) u3 E3 t1 d( L3. **递推过程**:不断向下分解问题(递)
    1 d9 }, Z3 j4 E5 w" ~4. **回溯过程**:组合子问题结果返回(归)" u6 a* N. M) o7 g3 ?
    # c- [* n/ y8 f( i! r
    注意事项( w7 h$ O6 F' [, Z3 w
    必须要有终止条件
    2 F, M  C, V" ~1 k+ W6 A' n递归深度过大可能导致栈溢出(Python默认递归深度约1000层). [, {0 k6 M% {9 H) Z4 W
    某些问题用递归更直观(如树遍历),但效率可能不如迭代8 P! o4 x6 F8 `  A5 U
    尾递归优化可以提升效率(但Python不支持)$ e! e$ D- M. e- j% H) o

    - l9 c! D* H6 @* o 递归 vs 迭代
    4 Y- k0 D  E2 _; c|          | 递归                          | 迭代               |# \7 K: N: E1 b2 X/ @- X* _3 o
    |----------|-----------------------------|------------------|+ X2 P0 T% C$ W- D
    | 实现方式    | 函数自调用                        | 循环结构            |
    . J$ K5 H1 S7 G& l1 @| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |6 [: w! ^4 t# m: n; i& t9 {
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |: E# E6 m7 k2 F/ f. \
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    " c7 U; C3 y2 u  o: g
    ) |6 q) b/ U: \! Y! | 经典递归应用场景6 A, i" a+ S  [: ^$ X& j
    1. 文件系统遍历(目录树结构)7 h) v* o1 m( c6 g4 v
    2. 快速排序/归并排序算法
    0 H1 _" v& _; U3. 汉诺塔问题8 y  L9 N" t, S! T1 E& F/ R0 |9 I
    4. 二叉树遍历(前序/中序/后序)* R& A! S, p/ V/ C
    5. 生成所有可能的组合(回溯算法)9 J7 M, g; |& X2 T1 p

    8 Q: T, K' F& M) [8 @% J试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    难过
    6 小时前
  • 签到天数: 3124 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    2 O% |2 \) o! W2 R) [/ i: X( ]我推理机的核心算法应该是二叉树遍历的变种。
    ) M5 P& O1 C4 J9 ~另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:0 F; k( R; X. W1 e& q- [
    Key Idea of Recursion2 r5 W0 f+ Z9 U

    " o' K2 B* |2 V( ~+ T  y( {- L8 SA recursive function solves a problem by:4 f# A3 ^$ `/ U' w/ U. j1 }2 ?- [

    5 s% E  ~7 y4 k% }. r) @    Breaking the problem into smaller instances of the same problem." J$ e6 w8 a6 x! }5 d: `% e/ |8 c: v

      X6 z/ b% ~6 _7 D% B    Solving the smallest instance directly (base case).
    ) C( m$ P7 o, m1 w' u6 t  B) Z
    ' K6 Q' |1 @% W$ y' O* w% |7 y) N( F    Combining the results of smaller instances to solve the larger problem.
    8 y, q" X( ?1 _* q* H, l" c7 M9 e# U; U% u
    Components of a Recursive Function- a8 _9 i  n6 y; `: b, X

    : z# d' [& o) e' G" {4 N3 y    Base Case:4 \+ r! Z+ j9 ^7 |( T8 q

    ( p$ }  S$ p9 M; w        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.2 `2 N# C5 E: E5 F# t3 G( N
    ( r! J9 s, N1 v2 }* \
            It acts as the stopping condition to prevent infinite recursion.
    ; A5 ]4 O  s, |: |
      Y" K& Q% J. x; B2 z% Z$ `8 X        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    3 t5 u' C6 Z& v8 a. s1 s7 D' ~" M# ?% y/ t" U
        Recursive Case:$ t2 h) ^! G% r- W8 W

    + ]+ N$ C0 I. x2 n4 k, t        This is where the function calls itself with a smaller or simpler version of the problem.. e  v# w4 v% }. z) @0 h5 g

    9 `/ a! a2 l1 @1 t+ E        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).4 Z& j1 k- e  ]9 X: P$ |

    ( l/ p6 P. T# M# K5 `Example: Factorial Calculation  [$ a$ i8 _; }4 W/ V5 _% h. k
    4 Y; q- ]- a) E4 ]# I2 y+ R$ j
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    ; N2 E, q# Z4 Z: }2 P7 z7 I, m$ {. S( T. o  |8 g
        Base case: 0! = 1
    ! o- G6 p! l7 g% ?- M4 w6 W
    6 F; b) l9 z* ?; q0 Z- Y    Recursive case: n! = n * (n-1)!( E  T! m3 i, T3 t; e4 U2 D0 a, y
    ( Z- c' D. b# T# R; a
    Here’s how it looks in code (Python):
    + f3 e/ l7 a! L& d6 F' B- kpython
    & s5 M4 \9 Y$ I' i7 K5 [9 e/ I4 Z# D( G: h) Z$ ]
    % s1 Q/ Y# _& ^* ?' t$ ]  X1 P( C! P
    def factorial(n):
    , |8 V& h, I, [5 {! T) _& x    # Base case) }0 o( R9 |1 T! {: Z
        if n == 0:
    1 k1 A9 Y( M" s0 V        return 1
    ( @% u* F2 I4 q    # Recursive case! H* Y/ b, ~+ a
        else:
    % C" q# l6 [$ b8 H5 L% K        return n * factorial(n - 1)! [& T* K0 Q0 H* I% C8 V/ s; W. }

    * s' Y. ^" d% o6 \, d- y3 U3 h% C$ `6 Z# Example usage
    ! r1 Z0 c4 o  g2 r6 {' Zprint(factorial(5))  # Output: 120
    ( q% x5 m: a2 c
    + ]( G& d+ x. Z" k+ `- U/ |How Recursion Works: i  D/ X! K' J9 d! P
    & A' Z4 N, \/ V, l
        The function keeps calling itself with smaller inputs until it reaches the base case.8 n) }6 Z7 ?; E. {7 f" m

    0 |8 H, y2 j( m% c    Once the base case is reached, the function starts returning values back up the call stack.* x+ [! i8 ~; D6 ?! u
    : w. F1 U- r/ Q4 ?- N
        These returned values are combined to produce the final result.5 {2 l" N7 m- C% n1 |$ u. V

    ' _+ ?" z5 S( {+ G. s' o9 }For factorial(5):# L4 m+ Y0 p  n3 H

    5 Y; v+ K* I0 m* I" @1 k0 }0 f' K8 H7 {6 l  E
    factorial(5) = 5 * factorial(4)
    6 f' r! r( D( ^; i! S- |factorial(4) = 4 * factorial(3)
    ) a/ P+ `' ?5 x$ g& Y$ zfactorial(3) = 3 * factorial(2)5 B, m' _8 P$ T2 y2 f* Q
    factorial(2) = 2 * factorial(1)5 C# t& w* P* p
    factorial(1) = 1 * factorial(0)) o4 q, A$ G- o7 }
    factorial(0) = 1  # Base case6 l0 }: y, y% \
    ; y, c8 A, g0 N$ M8 x* n1 j
    Then, the results are combined:
    ; q  m- V! h9 o5 |3 ^6 d' ~# _6 _  n/ S

    2 d  y) K/ B) E- ^factorial(1) = 1 * 1 = 1
    ' E/ d; R# x) q. {1 e0 R$ yfactorial(2) = 2 * 1 = 2& Q- I  A, b! `$ Z: F4 C& S
    factorial(3) = 3 * 2 = 6
    * p. Z" D' @+ j; P/ A/ t. Qfactorial(4) = 4 * 6 = 247 j- z9 ]/ \- z; D4 C* `  Q* q
    factorial(5) = 5 * 24 = 120' w2 q, W) R' i- j, l- U
    & K* }* P- {, x& j, ~2 A
    Advantages of Recursion4 w5 t2 {% X# K3 V: J% G

    # X: E4 V! S8 y/ n, ]    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    7 Y% d9 K8 W8 X- w& E" I9 r6 R- ?! X" @) b1 ?) n- D
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    2 R; _" ?, b6 v% F& @8 h
    & D8 f. x1 a% s5 Z7 Z/ K% {% ~Disadvantages of Recursion4 g/ a. z2 w* e/ F8 p4 h5 u/ L' G
    ; j$ B# `0 f+ j' @. R) R! K
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    5 G5 @6 ]. K* \- ~. H" w3 `9 A: r  R; D
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).7 W' {  n4 u- X( Q: p7 L) q7 M

    . v8 k$ I% j, o; [* SWhen to Use Recursion6 }3 t) ?) I  `) O3 @
    # Y" @0 n) H9 d7 ~; y9 O
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    6 E6 z! D  ^6 ]3 p% Q
    & J, S0 p( l2 E' P: {, D    Problems with a clear base case and recursive case.0 s. c# W% |' k- ^$ n9 E+ n& c- A- O
    + G9 W5 a9 O( x
    Example: Fibonacci Sequence
    5 Y  V, B1 @& ~$ B; g8 b
    % r$ |+ B: E& c; Y# h/ FThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:, U5 Z' L% p- Y8 h& y# \4 O
    2 D( @- |; c* k" ?# a  ]
        Base case: fib(0) = 0, fib(1) = 1- c3 y, r; Q, V8 e9 v  H

    2 a+ Y: C8 ~3 r& v+ H, V    Recursive case: fib(n) = fib(n-1) + fib(n-2)' s: t# ?4 [2 o: W5 D" t- x& c7 y8 }
    " U) o. T. p' P9 i
    python
    6 H$ Y( W3 P" h  P( z# _' u. p- M; f  @
    3 X7 w5 E7 Z- S2 s$ C' f
    ; I) s( i8 P& Wdef fibonacci(n):& \$ l2 Z% j/ I: R
        # Base cases
    9 b6 b' z2 F( L1 X) o    if n == 0:9 `( v/ ]; ^7 P' y' m0 c; d
            return 0
    9 ?  I4 l3 H' b3 }0 R6 g* s6 S    elif n == 1:
      G6 |) Y% _+ A6 G7 H3 D        return 1
    * A3 g% F0 l( i( [: E  G8 V    # Recursive case  e& E; e' U2 r! g; Y+ T& Y; R
        else:& T' {9 N8 D+ }
            return fibonacci(n - 1) + fibonacci(n - 2)
    % L  b2 Y. E4 ~/ j& A3 |+ G# V' s2 A5 A! N" Q
    # Example usage
    ! E2 Z! ^& o! F; [7 d) l# Sprint(fibonacci(6))  # Output: 8
    2 W- Y+ C6 L) A! Q* e% Q- @3 }3 J2 j0 J6 }0 {( L0 [1 g  F# b
    Tail Recursion! \5 I  {# J" u- q8 \

    6 O& o) r. m5 A5 N$ J% uTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).1 ^; `4 `. b6 e( p9 o/ v

    . F  h5 Q( u4 f3 c' MIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-22 15:09 , Processed in 0.033022 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表