设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1902|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    % ^7 S* p! C8 n0 K/ Q+ g5 F( D, j2 ?- Z$ A" w
    解释的不错1 C; g7 `# p: T

    ( B0 u2 ]+ K3 K7 w+ h2 |6 t) w递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    2 X) _# u7 G. Y& k) \: Q- G
    8 V" w9 W  D( n+ v$ z4 l  a' s 关键要素
    1 \( s$ F2 L7 s7 w- B. r1. **基线条件(Base Case)**
    ! [/ j; i9 `4 M# ~" k' [   - 递归终止的条件,防止无限循环
    : A. F# K7 E' x4 l5 l   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    $ t2 _* G1 v' N( D
    * T2 X/ A, F8 b/ t2. **递归条件(Recursive Case)**
    , a1 \( [2 \5 ^' w8 z   - 将原问题分解为更小的子问题* N4 e  e% y- Y+ q
       - 例如:n! = n × (n-1)!2 S  X2 ^( x1 ~; C

    * P/ A9 A2 l, L! U 经典示例:计算阶乘
    # R9 W. x' i+ {4 w) s- M. E" ^python
    ; U& N5 x  b; }) x4 pdef factorial(n):
    % c) J# }3 s2 a& G    if n == 0:        # 基线条件
    5 E- o+ _4 I" ^( I3 x) I        return 10 A8 K! y6 F3 q" z2 |
        else:             # 递归条件
    * E! V7 d, Z9 K, t* s5 h        return n * factorial(n-1)
    & m# M5 u0 ^+ |- ?执行过程(以计算 3! 为例):* \! Z" e- j" P5 C1 R
    factorial(3)2 a& ]# a$ C# j+ o' K
    3 * factorial(2)
    # e7 ?+ b7 f* F" d. i$ B( q3 * (2 * factorial(1))
    " r1 B3 y- l7 t% t9 h4 U) V3 * (2 * (1 * factorial(0)))
    $ ]  K9 L2 A; O* R3 * (2 * (1 * 1)) = 66 [- a2 @" ~  L$ ^

    % i  i9 O, m7 O# {6 S' F1 x 递归思维要点5 t5 K. e* K, c( L7 ~' ]2 I+ N* P8 B& Y
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑5 \) v% y% k& p) p4 o9 V
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    ! U  c6 H" S- L( W1 I) ]2 D3. **递推过程**:不断向下分解问题(递)
    ; a' @  X! C/ j/ Z: ^0 w4. **回溯过程**:组合子问题结果返回(归)6 s" I- K" G2 V7 c
    $ q4 W3 o% g; A$ e( [% d* P3 a
    注意事项) ~/ f& O6 e  c8 y" g9 |+ ~" k
    必须要有终止条件+ I. F' p) o9 I, x0 [; i3 \3 O
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层): E; H! N2 u8 o% X+ ]3 W: e0 A
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    7 z  C0 k3 C; I4 q+ L) N! N尾递归优化可以提升效率(但Python不支持)
    3 |6 B+ O( ~7 r7 e) I% g/ O$ O
    * ?  P  \% ]$ `& k  i) v: w: X& R 递归 vs 迭代
    ! k5 a2 b9 W$ ^6 x! y5 r' w|          | 递归                          | 迭代               |
    . q' \; E: K6 ^  B4 a|----------|-----------------------------|------------------|
    # @% D5 j: {7 g8 A' C, \| 实现方式    | 函数自调用                        | 循环结构            |1 O- G+ S1 D: b9 e
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    & ~1 X9 J' v" [, |. U9 U/ X% [| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |; H9 ^9 d; @, Y+ x& y9 x
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    ' U; E6 `; ]! `2 _8 o# k: q! [" {! U' I$ t
    经典递归应用场景, c& C3 W- b: `* f+ T( s
    1. 文件系统遍历(目录树结构)/ K' S6 b! N7 h& ]
    2. 快速排序/归并排序算法; z9 J$ P+ v6 P9 E/ n8 O1 v
    3. 汉诺塔问题
    & A" `. c# H4 Y6 p4. 二叉树遍历(前序/中序/后序)
    - K% _. B/ D" E3 W0 E5. 生成所有可能的组合(回溯算法). A( h" _* d( q, q/ g

    ; W9 p1 v" L3 l" e3 v% V试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    昨天 07:11
  • 签到天数: 3150 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,# N* x' ^! Q" |4 {' Y
    我推理机的核心算法应该是二叉树遍历的变种。$ M) m7 j; j5 W" u; F
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
      F, |4 l% \) l' x: U! j8 T/ jKey Idea of Recursion$ r0 g% j/ ^* `
    0 U7 @4 e0 b% {1 C  U
    A recursive function solves a problem by:1 s3 \7 m+ W/ V

    . w* s( |3 X) F( K$ E' n8 g    Breaking the problem into smaller instances of the same problem.5 S/ H' E! O% R9 q9 W
    + M2 Y7 I' r. M9 c% w' h
        Solving the smallest instance directly (base case).
    . f9 Z  V+ K2 m( |2 a* V7 G0 z+ i9 Z1 @" B
        Combining the results of smaller instances to solve the larger problem.
    - [$ E3 G+ ?: d8 [0 J. j2 }! {4 h
      t* F7 ]7 Q  H; h3 zComponents of a Recursive Function
    / j4 Z/ Z1 v7 ]) {/ l2 ^* z0 G$ W7 a" e0 U# H0 W
        Base Case:
    5 u8 v$ |: y9 z6 A; Y/ |+ w
    ( U, p( `! I4 Z8 k5 K        This is the simplest, smallest instance of the problem that can be solved directly without further recursion., n0 m2 [" w7 J3 `8 O) h
    & w4 E# j6 c1 l9 M
            It acts as the stopping condition to prevent infinite recursion.
    - z- }+ D1 ]' w
    . a! K8 V0 ?9 w; u0 G/ \* n        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.$ X' F+ R( V" W+ d; w

    9 p& E( z2 ^: Q( b5 |) X. S    Recursive Case:
    $ U4 O8 E/ Z9 J/ Y1 y1 R
    4 ]8 K2 \9 X7 Y) h  t        This is where the function calls itself with a smaller or simpler version of the problem.
    ! s" t- J3 z+ D9 l  g( ]& ^" B6 S! T  v8 e# K3 b5 C6 r
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    3 Y5 x* `4 ?! o  D8 |0 s5 T: M" w* H1 d7 w+ M# f7 V
    Example: Factorial Calculation
    5 R+ ?. G6 x  o# g7 I* K
    9 `& ?7 U9 l) m) u9 H5 jThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    % d4 j6 |! b1 t4 f
    2 J; V+ E! q4 D* Y4 V$ r4 B& T    Base case: 0! = 1
    5 s' i0 O1 Z8 r- l6 A; R& G9 r; X1 ~) n* u, w# S
        Recursive case: n! = n * (n-1)!- |* Z# P& O8 _; K% B7 N2 I- V
    % {. k: {8 H- s2 J1 }  Y! n. H; s
    Here’s how it looks in code (Python):& ~  ~% ~% U% k/ A) d/ E
    python- r4 f2 `. L2 C
    4 L: P& x2 \8 o  |: ^

    % V! A( K) t( Kdef factorial(n):
    5 _6 r! Q$ ?5 h+ l+ s. U& P3 c) a    # Base case
      O  b8 C! P6 b6 W! N; o    if n == 0:
    , _. k8 _2 w9 i7 L        return 1
    " ~% Y+ _9 X2 B) J7 b7 {    # Recursive case
    + V( \; n' L% J2 C) K    else:
    + |9 a; t9 e5 i6 [# s" Z- ]9 a        return n * factorial(n - 1)
    7 y. o% U4 X4 G$ @, R1 U/ C
    7 i" E3 h" B  V4 Y5 P4 q# Example usage& G7 \5 {5 h/ ~* I7 ^
    print(factorial(5))  # Output: 120
    ( r7 {/ a+ ^( a9 W8 S( {6 @+ c: n# M: k1 x. l8 n
    How Recursion Works
    + V* L0 ~* ?7 u% e( f/ Y( L/ c+ k& g1 C& u, @3 W) E
        The function keeps calling itself with smaller inputs until it reaches the base case.+ z8 A9 D; D( F! v

    - M2 ?5 c. Q$ ^0 P7 Q! q2 F    Once the base case is reached, the function starts returning values back up the call stack.9 t0 U9 c6 V) B3 w4 s
    & _9 T) T: `; z
        These returned values are combined to produce the final result.
    + n4 n' L9 f* Q. y4 c/ _: I
    ) b, x7 j, ^$ X2 ]! [For factorial(5):
    7 O8 z( u% W6 o8 g5 A0 w
    , c  h* [$ A0 E. D" j" M3 h8 L  ~7 S2 [6 n; e) p  H
    factorial(5) = 5 * factorial(4)
    ; n6 e1 r5 T# \factorial(4) = 4 * factorial(3)0 _* n. ~7 C# ?& x$ {5 ]' e
    factorial(3) = 3 * factorial(2)1 z3 y4 S+ A3 A6 u
    factorial(2) = 2 * factorial(1)( k! M. L9 x% T1 E% V+ n
    factorial(1) = 1 * factorial(0)
    " K$ n5 g: S3 Dfactorial(0) = 1  # Base case
    ; q7 c7 J9 _7 T5 Z4 _- M+ G" X7 j& l; V0 r, l0 c
    Then, the results are combined:
    : |1 x6 P  T# A, s) G3 n' R5 I, r: g9 v  Q$ Q
    ) ~2 f: f* ]' ~6 N
    factorial(1) = 1 * 1 = 10 x6 d- k+ O) y* H, F% u( e: `
    factorial(2) = 2 * 1 = 2+ I) k. P4 {4 n" V
    factorial(3) = 3 * 2 = 6
    ' n9 |1 |" k$ e/ y( ffactorial(4) = 4 * 6 = 24
    # k' {5 |/ |$ Q5 H: N5 I. u4 kfactorial(5) = 5 * 24 = 120
    " f, I- Q6 f5 i$ d0 P$ @
    ! i2 T( s' A& U2 v1 X4 \) KAdvantages of Recursion
    9 Z2 {2 I6 n4 \% q9 g+ m( ~  _1 A' I& A4 |# g' E- D
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    ) Q" d, h! W7 }% V- S
    + h$ M( p" D$ O, u- ?8 ~1 d    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    ( @+ f8 T; |* X) h
    * [$ [  A; E1 i: v6 K# {Disadvantages of Recursion
    * C/ |, f2 R' X4 A: f5 ~/ @0 f; K) ]; a6 {
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.0 K$ I! X0 L+ z2 `
    8 A7 ~- }# J+ k+ C. W! q( G! o  l; G
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).! _0 Q7 c; n4 E% a/ n- q
    ) C( z: G) f* e! {8 Z
    When to Use Recursion) z7 I) {+ ]( A' R: q' A( X

    9 H5 W3 y) [+ K) S5 z- W( u/ y+ ~1 V    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).: u# `" w. P" ~0 ?- |: c
    7 K! u2 H; ^4 v9 |$ a
        Problems with a clear base case and recursive case.
    / A* y9 |# @0 s$ x. G
    6 ?- `9 [* u9 }8 i( M  AExample: Fibonacci Sequence' \8 W) m4 s- i

    1 w4 y" E' F' u5 M' u; |The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    # W7 S! V. A% P8 q2 r+ g
    " O, ^% \( l! v. D    Base case: fib(0) = 0, fib(1) = 1
    & C+ e% d+ z7 _4 A! x
    5 R1 W5 l8 b" v% I, H& B9 j    Recursive case: fib(n) = fib(n-1) + fib(n-2); @: `0 S! j8 C+ ~# ~- I- L

    # E/ A0 V! Z- G. zpython
    - i; z+ f" R; d+ \( H0 n+ P4 t
    ' c2 l8 ~8 w7 |  m( A  [) f3 a- c  |1 K1 u
    def fibonacci(n):, \) l8 I3 a0 C
        # Base cases
    $ y6 c* Z4 ^$ ?- N. T8 q    if n == 0:" `4 g$ z$ m# z* j
            return 0# d) L" r* t" d7 t0 C
        elif n == 1:
    , k* g3 m6 r8 u0 C: Z        return 1
    $ U% m" m$ G" K. m, C6 S. w    # Recursive case
    7 d4 O' n6 @5 q' Y# S    else:5 B8 I3 |$ b) K! z, q
            return fibonacci(n - 1) + fibonacci(n - 2)
      j- H, T, c+ a: v8 @5 C( i* [9 J. Y! C9 C$ k, E
    # Example usage
    ) H- @5 V7 W5 Z5 ]$ c  R/ t$ \) Nprint(fibonacci(6))  # Output: 8
    ' |( ?2 N7 s$ m' P0 r" p
    / F5 t3 m* L: D4 E& [' J# VTail Recursion% r1 r+ J- T1 Q" U
      [8 d* _) E' U; ~5 |: i
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    ! e8 n* L0 T; x+ `: q+ O& r, k# s- q' z; X( A
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-21 06:33 , Processed in 0.066619 second(s), 22 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表