设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1566|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 3 i. }( T( j. a5 ^' r# Z& m- ?: a+ p
    3 r" V! d) V' k9 z* B( D
    解释的不错- r8 D  r3 y3 |, V' l

    2 R5 y# o+ `! U% C+ p) i- U递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    + v0 ~& l9 K; X' A
    * Y: W' b: Y7 p! r 关键要素
    # x5 ]& t/ j. w; h9 M1. **基线条件(Base Case)**3 o9 X+ _8 L" }1 w2 \/ A
       - 递归终止的条件,防止无限循环
    " f4 r/ m# }% [( Z9 _6 L1 g   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1& ^7 P% P7 A$ j$ |! g

    & A  z5 p+ f) B, r* ?# `% V2. **递归条件(Recursive Case)**8 V+ U8 L7 z$ Z. `3 @
       - 将原问题分解为更小的子问题9 Z$ ^4 l# F. \3 H
       - 例如:n! = n × (n-1)!
    , n! ?  M- C& U0 ?8 N: t9 n( P! G3 d/ M  g) \
    经典示例:计算阶乘  q+ `% s2 \1 G: m$ e
    python
    7 D+ _! o: m2 n5 z1 pdef factorial(n):1 S4 E  F" t* ?' K' I  @7 L+ M3 e
        if n == 0:        # 基线条件
    8 t+ A$ x+ |( q8 p/ v        return 1  o% k+ L& Z  ?: m( r2 @9 `
        else:             # 递归条件
    * F5 x0 B$ D+ Z0 y) ?        return n * factorial(n-1)# r# p* P: C- W- j7 P: W5 n
    执行过程(以计算 3! 为例):/ B/ x- V; }# s7 s3 V
    factorial(3)/ g4 o8 C# K, w+ o# y
    3 * factorial(2)
    / S) T  E$ `6 f' j$ |- ]0 @3 * (2 * factorial(1))
    7 W8 ], X6 [) G2 `( T  H3 * (2 * (1 * factorial(0)))
    0 D( w& b- P9 S4 g/ ?) p/ ^; o; h. i3 * (2 * (1 * 1)) = 6
    ! I  _5 p) Q: X7 K  v! ]0 a3 |; L- f. Y: x/ M% h' I8 Y
    递归思维要点
    2 ~# |6 {" h: z& X7 f1. **信任递归**:假设子问题已经解决,专注当前层逻辑1 }' \; b5 l$ N/ ]9 K9 e6 ^% x
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)- |$ i/ n8 t/ j! i" r. V' Q
    3. **递推过程**:不断向下分解问题(递)
    , o+ P3 A8 V! d9 V6 r4. **回溯过程**:组合子问题结果返回(归)
    3 c$ ]% Q. `8 p; J$ a9 [3 I7 v) y8 }6 b  @
    注意事项  e! F$ n' `* d! f6 k
    必须要有终止条件
    ; a9 Z2 t/ p2 B# W递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    ! D7 @. R6 k$ _$ j. D某些问题用递归更直观(如树遍历),但效率可能不如迭代! O5 k; z( Q/ }% Q# r& |, x% [
    尾递归优化可以提升效率(但Python不支持): X2 m# M6 y  x$ Z
    # q; {  V* ]/ c1 B: A, v
    递归 vs 迭代
    / H) L5 _) U+ N! `|          | 递归                          | 迭代               |
    : Y0 D7 o* ~, o4 u5 a* W7 W7 m|----------|-----------------------------|------------------|
    & g1 \) x* I( W! o+ u| 实现方式    | 函数自调用                        | 循环结构            |
    $ U% [4 T2 h0 K* L/ e| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |: Q7 ~; [% t" ]5 H8 |, @
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    0 x& }/ C# f# I$ W# C| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |3 V2 Z! A$ A' q2 F; _- D

    " R' ~& p  V6 ^: _7 j/ p% m 经典递归应用场景
    - h4 s: w, `, j/ x9 {1. 文件系统遍历(目录树结构)
    $ Z3 W# f- N* i2. 快速排序/归并排序算法  @0 t, }& J0 v" ]! J
    3. 汉诺塔问题& a7 k+ u7 f" l
    4. 二叉树遍历(前序/中序/后序)
    ( l2 O! s2 f# H7 O. [5 @! w. X5. 生成所有可能的组合(回溯算法)
    ; K% Z. o! H4 U0 x# c
    / g! R3 k1 g2 _+ p$ }3 z试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    慵懒
    昨天 09:21
  • 签到天数: 3121 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,/ H6 A! `7 @7 z( {. d3 b$ ]) q) J
    我推理机的核心算法应该是二叉树遍历的变种。: |. a* }# s. E2 t$ q" _
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    0 l, c4 s3 z8 F0 m6 z, i3 FKey Idea of Recursion
    . C. e6 u% X8 U. c0 y3 j" B8 G. i0 {
    " d8 e. e% y- a" |+ y9 C( xA recursive function solves a problem by:' r9 k' I7 l- h/ O5 |( T  [' e6 _7 p( F
    6 t% H; s! S2 e# k  Y
        Breaking the problem into smaller instances of the same problem.3 [( L" Q2 T& k, C% p$ O7 C5 h3 {6 e
    8 M/ q9 B& [+ d
        Solving the smallest instance directly (base case).
    3 a) X' s0 m# `/ h5 b9 m$ q3 [
    + ~* W4 o" v; M9 |6 x/ o    Combining the results of smaller instances to solve the larger problem.) }& T1 X4 T- d

    4 a, J; B4 E  t7 j5 bComponents of a Recursive Function
    ; Y. r+ J1 s5 r# L6 b% S1 c
    : Q$ O- n4 F/ D8 [/ G    Base Case:
    , d$ a# ]: o5 [4 S/ W: \+ p- y, e) ]" }* S9 a. a  ], [0 Y
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.' C# s$ V' M( z1 r

    6 H' n3 o' m2 S& y& ^0 Q, ?+ @        It acts as the stopping condition to prevent infinite recursion.' U8 o1 w* I7 N) d( n
      k, Z. v# }* c2 ~8 a' @
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.; X0 s+ ~$ _  F  a6 b0 D: p
    / a* n7 r/ ~( I! J; ^
        Recursive Case:# w; Y0 |* s4 m" k, @$ I

    2 X1 ?6 y0 d6 j) W! g        This is where the function calls itself with a smaller or simpler version of the problem.
    ' ~* L# u+ K' X6 Q& m+ ~# N  }
    * M: e' y3 H( X7 j2 U, F        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    # ~3 S9 N, e9 b0 j6 ~2 e8 ?1 r% S# [0 N' k! Y
    Example: Factorial Calculation( z6 |) I, ~) U1 e

    7 ?) q, u1 j. i% R8 K# ?The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
      C" R7 r( ~  s* x4 I) L& B% P1 i2 m
        Base case: 0! = 1
    ( k! D9 P3 S; j, p# u- J. a' s" `  a  |  N4 o
        Recursive case: n! = n * (n-1)!  y4 A- w& ~/ Z9 @# p

    ; \6 J% m* l1 a% V4 [# SHere’s how it looks in code (Python):
    5 \! O7 {, x9 g" n+ ]# Vpython* L9 _( N) q6 [7 ~: I7 N

    0 \: @4 R  L/ Y/ ]  }# I. C7 R
    % P) m9 o% ~# v5 ~3 ?$ Bdef factorial(n):0 _  h1 X9 \: R- T
        # Base case: C! Y' F5 e+ H2 R0 ?. f
        if n == 0:
    ) o" W% @. V7 m2 D% X0 |& {% H9 m        return 1
    ; i5 L2 g3 [- {( ^    # Recursive case  D$ j1 W: K  ~$ ~$ F+ B
        else:
    " l9 r. D; T" B) S5 }2 m; M        return n * factorial(n - 1)
    7 {2 h6 m3 m/ e1 ]. b
    ! W4 L, @3 ^! M& I9 P# Example usage6 N5 @  _: m" \4 t
    print(factorial(5))  # Output: 120
    9 x' C. @2 a9 Q, R# W
    ' U) P: \2 i8 ^% e( _  j) PHow Recursion Works9 E+ r+ ~/ q9 w, J  A' q+ W# b

    2 z7 ^5 l4 I7 b8 {. g( O# r    The function keeps calling itself with smaller inputs until it reaches the base case." I: r2 o* S3 V0 [

    7 O! V2 I' M6 q; O: B7 W    Once the base case is reached, the function starts returning values back up the call stack.
    6 |1 A3 K4 \' d: q' o* y4 A
    2 q7 X6 h* T& V2 a% O    These returned values are combined to produce the final result.) Q/ x! k0 \+ F' i9 s8 m* q$ s- }

    ; b7 d4 ^" G9 u" K/ MFor factorial(5):  H+ ^% w. y6 ]3 {6 x4 I% A. M
    # E+ Q: K+ N1 o7 M

    5 |! w3 s- b1 `" w# M. x6 _factorial(5) = 5 * factorial(4)- W4 L2 [' u  i  n! `/ \$ M
    factorial(4) = 4 * factorial(3)
    : L, V+ N: u7 ~6 J% W; ^! ^% \factorial(3) = 3 * factorial(2)' S& Y* W& L% q, ^. J( s
    factorial(2) = 2 * factorial(1)4 |  n7 T; H3 w! l6 v( `. G6 D( H
    factorial(1) = 1 * factorial(0)
    ( F2 S5 P) V% v8 L7 u1 E" ffactorial(0) = 1  # Base case. i& S# m& a: f% y

    $ f0 u; q$ q. E4 |' Z4 j# @Then, the results are combined:
    % K( r; R, Y. J1 L- x3 Z2 r7 S
    : n( d9 v' v1 y% _$ |4 r: V, D  o# P7 }2 R( D( ?- S  ^4 W0 ^
    factorial(1) = 1 * 1 = 1- `+ m# b, w9 T3 c
    factorial(2) = 2 * 1 = 2) A( y) Q- J1 F1 Y) [2 F' c
    factorial(3) = 3 * 2 = 6% N- r4 C! j2 p: L6 `4 T& Y
    factorial(4) = 4 * 6 = 243 S2 [7 \9 r- G
    factorial(5) = 5 * 24 = 120
    . G7 v; U3 j' X, j' h/ w5 s
    * p* x8 Z: H( i  i' a" `7 V0 NAdvantages of Recursion: x8 M+ B4 F7 [" M5 T
    ) p* \  J8 X/ N% o
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    ( o* L& r- h$ z) a& F1 S
    / X  r5 N' I3 g    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    6 }2 t% h- i7 c6 p2 F. d( f  Z. {8 g8 o) _) k
    Disadvantages of Recursion
    ! ]2 Q; ]* v  G  W3 |
    : i' j! G  X9 r7 }7 P' Q+ b    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    % S' D3 U4 N0 k/ M: t
    ( j, \  N  [( u% D- M8 {! u3 s    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    : x3 R) Q; z8 e/ N# f3 O% D& a/ V$ C) u  C  G4 A2 P
    When to Use Recursion; i' S2 z" B* l' Q2 @
    8 h5 B% y' {$ ~6 E3 [
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).: S7 t& p* ?; m- u" y. }

    1 Z$ x' e0 e- J! [    Problems with a clear base case and recursive case.* P8 J* A/ }' H4 ~
    : t, @2 V' Z, ]# j
    Example: Fibonacci Sequence
    " `3 U  }8 S: F3 V1 P; Z9 q/ A
    , e& h. w1 L% M/ t8 R1 H& rThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    * {. L3 Q7 R- \% i, X5 X3 ~0 f& F
        Base case: fib(0) = 0, fib(1) = 13 i: S2 S& y' p  e/ `  w& U

    3 n$ P8 H1 j+ I    Recursive case: fib(n) = fib(n-1) + fib(n-2)+ A* ?/ q$ r  ]/ {

    ; P6 b) z8 Z8 c4 A7 opython
    " F! C, R+ q3 r- b. S2 o0 a4 {, a+ g; U4 z; c& u

    * @  @$ k4 S4 i6 D( Xdef fibonacci(n):& a$ A) N; b7 d* B
        # Base cases
    ( n$ L+ j9 Y$ y# c+ j& ~2 r    if n == 0:3 {- K/ k' h- o- p
            return 0# B, Q+ ^5 C3 ]/ V" r
        elif n == 1:5 p+ F6 d. E: N2 a# m
            return 1
    + \1 C) f+ Y& m- i; `# B. C/ S    # Recursive case
    $ Z% E: g" b+ ^. U    else:
    ' P" r4 L! [1 p1 r# z2 U5 b4 S        return fibonacci(n - 1) + fibonacci(n - 2)
    3 G- ^# Q# y& _& z& m
    7 q% |" C7 e# T+ z6 ?# Example usage
    + s& I- h8 D" j8 L0 dprint(fibonacci(6))  # Output: 8/ S2 w7 L' t# U1 J/ V+ A
    7 @: v2 R% V# w- V8 H
    Tail Recursion. e, K' c' l( y
    , I, r, n( L, b/ Q
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).& O$ G2 o/ J2 E& S$ `: u
    ; w3 e* V: C! h' Q
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-19 10:52 , Processed in 0.031515 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表