设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1868|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    0 f/ I6 J; a& ^$ K0 o; ?3 E  J- {8 ~+ |  [  e3 @" P- H! ]
    解释的不错
    ) J9 G- j7 O1 i# e9 I" Q8 H* d6 G4 T% t# I: H6 B
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    : s- f: n: H8 T4 u0 ~9 F
    7 g3 q4 g$ @& X' j 关键要素& d; D. M6 R( c0 X3 ~. }9 l
    1. **基线条件(Base Case)**
    : p+ Q, i: {7 n& ~7 q1 C5 Z   - 递归终止的条件,防止无限循环7 }4 B2 C% d2 \( T
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    , |* W: Q! \2 k8 I- p4 `2 n% U7 H. s9 l
    2. **递归条件(Recursive Case)**+ L$ d3 L; b, o* Q  `5 _; m" S3 |
       - 将原问题分解为更小的子问题7 D  m- H  v: U5 T' x6 R8 ?
       - 例如:n! = n × (n-1)!
    8 S9 }  Z) O2 C, ^2 f6 V- I! L; R0 Z& k! b1 X' w8 j
    经典示例:计算阶乘. f4 p& C: d7 O* N* ]- E3 i  g, P
    python4 V# O8 l4 q* g; Q6 H
    def factorial(n):5 }- h0 \% W+ G
        if n == 0:        # 基线条件7 F5 f; ~9 [- v! M# a
            return 1  W9 }: _) S. `( R6 f! Z
        else:             # 递归条件
    # m' g# P( S2 f! J/ @. v5 N, M        return n * factorial(n-1)
    2 }% C, l1 _: H/ X4 ~执行过程(以计算 3! 为例):' r; N+ G+ M$ f8 p$ M7 ?
    factorial(3)
    6 j  \! O6 k5 O, ]3 * factorial(2)
    3 D8 f7 I5 }0 i) m3 * (2 * factorial(1))
    6 J1 ?2 l& Q$ n, I6 G+ l3 * (2 * (1 * factorial(0)))
      n. X8 f" N1 A- N3 * (2 * (1 * 1)) = 6: i" O) i7 L0 |
    ( i% e1 W. E$ L0 v
    递归思维要点% [$ ^6 m% o9 d% j, G
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑9 i) c& l6 e' C9 d: E: [
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    9 A9 ~9 B5 `0 A8 T7 N1 ]9 W1 H6 s& n- f3. **递推过程**:不断向下分解问题(递)
    2 ~, k, M) X4 t" x2 d) ^4. **回溯过程**:组合子问题结果返回(归)$ X5 f8 I4 D) q/ c4 j

    * q+ l  a' d6 i; I7 ], d 注意事项
    ) U" ~: j: o5 g! X& @必须要有终止条件
    , u4 ?9 R$ s- }9 U5 V7 a递归深度过大可能导致栈溢出(Python默认递归深度约1000层)) m& k, c" g1 C: [
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    - t- k  s7 j% d+ F' t. |尾递归优化可以提升效率(但Python不支持)5 V/ k* _( U$ f8 m6 [) Z! e

    / @( \4 ]( H" j/ }6 i- o- c& ? 递归 vs 迭代
    ) K5 S) a9 b2 M+ o! y|          | 递归                          | 迭代               |' s! V  U! W) x4 F9 d7 s2 c
    |----------|-----------------------------|------------------|+ q$ {4 t  S6 l& G; L: N3 F
    | 实现方式    | 函数自调用                        | 循环结构            |
    : A7 p3 b& _( ], i0 ~| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    - e0 F/ y: v( E8 y% {& r| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |+ M% u3 j3 V. b3 }5 M
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |" Y) h) Q: G. _5 X2 c* ~# X

    1 [$ B* d; k: f# r8 N5 a! P% v 经典递归应用场景, d% R* q" o4 r: H: S$ O" O8 e1 {" W
    1. 文件系统遍历(目录树结构)+ d, N5 {4 B3 [7 e
    2. 快速排序/归并排序算法
    2 ?4 i! y" i  J' n  T8 D+ M3. 汉诺塔问题2 U4 t% Y  i! U2 W0 b5 s
    4. 二叉树遍历(前序/中序/后序)
    0 O1 y+ Y+ }6 X) x+ K5. 生成所有可能的组合(回溯算法)! @: E' {7 d1 d6 V' \6 V' U
    / O  A, e8 D; o9 P) B# z6 l; l
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    3 小时前
  • 签到天数: 3147 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    , ~% D: D) p: ~) K* T我推理机的核心算法应该是二叉树遍历的变种。
    / J; }5 y; i5 s- R) w( n4 w) ?& y另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:8 K' @2 J% }8 c* D
    Key Idea of Recursion
    / G4 n1 _8 l* ~5 d5 H$ k8 B# K% ]  O8 Y8 I
    A recursive function solves a problem by:
    8 L) G' t" r* P3 L: j, D. Q- Q/ T6 C( J  J, U9 J
        Breaking the problem into smaller instances of the same problem.
    0 s' Y8 r/ N3 Q2 I3 }7 W" S% Z, T; s5 Q& u
        Solving the smallest instance directly (base case).
    . c% m# p8 S0 E- c8 ]: U" b$ J% l' a; x# Y( }
        Combining the results of smaller instances to solve the larger problem.
    6 h) r- k; T9 u: D$ O* k* `
      e* ]- `1 [! @7 B" ^- cComponents of a Recursive Function
    6 T; o  o4 u' h5 Z* N5 A6 B) ]
    & v! F' w" q% E# n    Base Case:
    , R+ Y3 f8 D& C/ o* N) p1 O
      Q& |7 Q4 o7 W  K0 Q        This is the simplest, smallest instance of the problem that can be solved directly without further recursion./ s. S! c# X; K5 ^# ~7 G) S

    3 x; g1 }0 N0 z+ Y        It acts as the stopping condition to prevent infinite recursion.
    / q5 a' O6 y, H" _; D# a* J; X+ ^7 B" H
    4 z0 }* A% T7 u        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    , L# U2 D- w( z9 |" `7 D
    " J* s  {  ?& n! @% \) p; M    Recursive Case:; V; i. k0 u$ G* l1 H0 G! o3 ?  C
    8 M# r1 Q; x) @- \5 i/ `
            This is where the function calls itself with a smaller or simpler version of the problem.
    8 t, c3 T7 z, R
    ) A8 N+ b9 Q4 X5 C' f  s        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
      `6 t+ h2 ^# \1 p. a2 U$ s- D, E+ l, e  T
    Example: Factorial Calculation
    ' a6 q& u% z) c' o1 @9 y& u9 N4 i0 W
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    6 w5 ^7 w& w9 j- w8 d) j7 ]7 ]; g$ [, k% m
        Base case: 0! = 1. y; V5 ?  n6 b( N! B9 a$ ]0 ]+ O

    7 a$ e7 c! V0 P& C5 J  _* B" `% }    Recursive case: n! = n * (n-1)!4 K7 a) T! \) O
    ! l# }: _- u& o% z9 A
    Here’s how it looks in code (Python):- W- V2 u4 ?( ~. T; F
    python( G% e* @' B; w3 J9 i
    ; }" m5 q9 `" ]

    6 H) o9 \- e" M: idef factorial(n):
    3 R8 C8 `7 s7 J5 x# o  A    # Base case6 A# h* l! A2 I1 L" w6 G
        if n == 0:/ E( {8 t* m( S1 c! X! r# t
            return 11 s5 j* G: ^# u. [8 r
        # Recursive case' y. A$ R) p& Q: T: H6 I
        else:- F  d! k  V! v% J) S, b' ?
            return n * factorial(n - 1)
    & v  F3 T* j8 Y3 G1 r( p6 w
    1 p# F$ ~% }' G8 ?/ n# Example usage2 A/ E7 x5 E- x* E+ A9 a
    print(factorial(5))  # Output: 120
    ' w7 u( `! c' p
    / L) E* T) V& @- r6 M( h4 AHow Recursion Works
    * [- Z$ e, J3 F8 ]( @$ H
    ( Q& x( g9 [, }" O  U    The function keeps calling itself with smaller inputs until it reaches the base case.
    " ^) n# P7 |% {& D: y6 l
    # h' N2 r! q4 |3 c, _! Z6 b4 k: O; G    Once the base case is reached, the function starts returning values back up the call stack.5 h6 p" P& J8 r, X

      F4 j; z; \' k    These returned values are combined to produce the final result.  M* d, K0 Y: I& s3 T7 M2 K! I1 S

    % t' k/ c: `) v4 ^1 e3 QFor factorial(5):
    3 v+ Z8 B4 y7 p9 r& [! s! d5 c" }) V/ G3 ^" @+ H  W% u

    , I# A5 K3 L5 G! e& G2 p1 B3 zfactorial(5) = 5 * factorial(4)
    / f! k. @$ o' b- O; w% Gfactorial(4) = 4 * factorial(3)
    1 i0 y8 o4 |+ Ifactorial(3) = 3 * factorial(2)
    $ H! J4 E  n+ A, jfactorial(2) = 2 * factorial(1)
    3 r* o( |; n* l) B. Z& ]: J" zfactorial(1) = 1 * factorial(0)2 ~: u! R# A7 c/ p
    factorial(0) = 1  # Base case) [/ G# c- I, i. G8 D

    2 U' S$ D- Y8 uThen, the results are combined:
    3 ]' u* D) v7 k9 _, K4 L/ Q/ n4 j$ J+ o5 T" R: }3 c

    9 B6 E! L; g* U2 P+ Qfactorial(1) = 1 * 1 = 1+ J- E! j1 N, V2 ]3 @* L
    factorial(2) = 2 * 1 = 2
    , T/ @4 P. y* V' q. yfactorial(3) = 3 * 2 = 65 [4 b( X% a9 e$ J! D' p: B
    factorial(4) = 4 * 6 = 24
    4 R8 T8 w4 g! S+ p, Gfactorial(5) = 5 * 24 = 120- n" Z& y, C! S  x% r
    ! g1 h. a' H; ]; ^
    Advantages of Recursion
    % T7 g3 A9 h. N2 l
    ' k, {$ r$ X8 i    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).9 H- i) t8 v! T0 S9 {

    ( v0 R+ U* S2 u5 A6 n# @% \5 f    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    ) n0 u0 U' U  G+ e6 `! f; e$ M5 L7 E3 _( K% W" i8 w( S
    Disadvantages of Recursion
    + `; r. R5 p2 K/ I, z3 ~+ H/ F0 \! M5 l# x& X* o
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion./ {: ^" s& G7 a8 _' v

    & x% c9 v4 x5 u; ]/ P* Y    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).7 U. E2 z1 k0 e9 y& b/ U
    0 ?: ]$ S$ _. A6 c2 q5 _
    When to Use Recursion  L  w( m1 W7 C5 A; a7 W+ w
    ( D, y0 U- l+ Y( L1 A
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort)." t/ B$ Z) @+ f7 l) B+ I
    ; V/ f2 a) |: i9 F
        Problems with a clear base case and recursive case." U- v) k4 N/ x! ^" O

    : q  Z/ [3 K9 F( Y0 nExample: Fibonacci Sequence0 R$ l2 b9 d/ }3 W2 C3 m) s4 d

    # a! |* ^% g: {2 D! x7 RThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    ) j, X# J! R2 \0 ~8 R, A7 ?- s% s" m% Y/ b/ _0 J' d6 B
        Base case: fib(0) = 0, fib(1) = 1
    6 M& M6 m& R9 o, J* z, w7 W$ t0 d% c3 L6 E( ]
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
      A- z% U! E& u$ c  b# ?' t' J; U
    ( p6 ^" z) [; |! Lpython
    2 j9 p5 i  w8 J7 R5 w0 e( t: d, r% X5 W
    . z% K# x9 N6 u0 B
    def fibonacci(n):/ M/ b7 J  ~7 X. D, N  @
        # Base cases
    ) B/ D( }' `" e/ u    if n == 0:
    - s; K3 i" D/ `& |# Q        return 0
    & i: A! D% a! L  E; @) o6 F    elif n == 1:
    ! Q' Z- o6 A0 o  q- P# C, D. j        return 1: r9 V- p+ R; s0 v3 f3 r$ p
        # Recursive case
    ! Q% ?: U) S, ~9 i  ~4 ~# F; z0 ~/ Q! O    else:
    % E: [* C1 A" z2 B- _1 e; T# k        return fibonacci(n - 1) + fibonacci(n - 2)2 o. _; ~, n, W8 d. \" g
    & m$ i0 Y/ s! L) z
    # Example usage( [" @0 L) b" x( W1 W
    print(fibonacci(6))  # Output: 8
    9 Y$ S' W, F' a1 i9 F6 C4 J* o2 ?- D: p5 y
    + c3 x# C* V: l3 P' p- O$ QTail Recursion( V$ i+ j8 g5 z. K$ t! Y
      ?% N% U3 Z# C# Y" E7 z
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).. @9 U! Z% N  [: }2 q9 a
    $ P( y, K; l" `& ^! w5 r
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-17 10:23 , Processed in 0.031195 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表