设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1956|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 : ?6 s* _" o' _1 `1 f7 g2 \# A% Q
    ) w5 s+ T: i" n  R) {, ~
    解释的不错
    4 e# ~( d" Z( `0 P
    7 _" G+ u( M, p0 c0 O* |递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。' x0 Z8 r! X/ J8 K6 A
    ! O/ E4 c( [, r% }$ W8 e' O% ]# @+ X
    关键要素
    2 z+ F/ V9 L! u5 U5 {. Z1. **基线条件(Base Case)**
    # G4 V+ a- p7 v/ n7 G: g8 Y   - 递归终止的条件,防止无限循环
    6 B7 K+ j  o- b, V0 t   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    & ^1 v8 \3 Y) s5 c1 r: Q% w& ~1 L# w5 ?% v8 @4 u, |, z( a
    2. **递归条件(Recursive Case)**, [- R- j) D6 S% B# J% d
       - 将原问题分解为更小的子问题" I; g! X6 s2 l" d
       - 例如:n! = n × (n-1)!
    ; f$ R! O8 `* S# {) T1 b
    7 X% ]/ F0 E/ o5 F  x3 @% W 经典示例:计算阶乘5 f# I3 I9 h8 a+ X% Y+ q/ q, J
    python, r3 `. Y5 y  e: V) W+ e9 C: A
    def factorial(n):
    ) Q  y) I& N5 y8 o    if n == 0:        # 基线条件
    / ]+ A: B7 E- H! l4 Q        return 1! X6 T. f* \0 t8 l
        else:             # 递归条件0 V3 ^" O7 z3 N  f% p% G' a
            return n * factorial(n-1)
    9 ^8 b! J# a- |执行过程(以计算 3! 为例):
    5 C# S+ ]3 l* X. v: mfactorial(3)
    & F4 i2 V0 X" V" _$ X* p3 * factorial(2)
    / K# o. y7 d- x3 v( x3 * (2 * factorial(1))& v0 [: N% o+ K8 L- G+ X  S
    3 * (2 * (1 * factorial(0)))2 z7 u+ _9 d) t) ^
    3 * (2 * (1 * 1)) = 6+ }7 q, T" T" O! ]: S
    - W' U5 D1 D9 D- w5 l9 A
    递归思维要点
    5 i; D. x5 y$ R4 S1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    / v% f. q- b. K) a' v' V/ K8 p! i9 x2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    ( f; g0 N4 Q) }# e. b1 F3. **递推过程**:不断向下分解问题(递)4 b& y9 K9 _/ n1 }5 g2 S  ?& l6 J1 d
    4. **回溯过程**:组合子问题结果返回(归)) j9 y3 c) B$ b

    . R6 F8 ]& e5 B; C0 T4 h 注意事项
    ) s8 U, [( U: n3 y! I5 I必须要有终止条件
    8 p1 l; ?& \$ E" b  I* E" J& O递归深度过大可能导致栈溢出(Python默认递归深度约1000层)' I, E- V6 X2 A3 R
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    4 j* R8 g6 R& Y: \9 a/ [5 a* Q7 Z尾递归优化可以提升效率(但Python不支持)0 d" ?8 B) |; Q. \# w% q1 e+ t

    " S) q/ f5 v7 m8 v( v 递归 vs 迭代  r) X  c  u  y2 ~2 S. q
    |          | 递归                          | 迭代               |
    " K; A6 }5 `) X! u  Y) P|----------|-----------------------------|------------------|  L4 T' j( c9 _, T/ i
    | 实现方式    | 函数自调用                        | 循环结构            |
    - ^# c1 Y( ?' t6 d2 l| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |7 ]7 [- g# V, m# `
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |) S; T% H( X* k) Z, \7 m" |
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    ( f* _5 c* j, m. A" x7 [( b; v9 C& u5 l9 A8 [, H
    经典递归应用场景9 l, `4 d. I; w$ p+ U
    1. 文件系统遍历(目录树结构)* J, p( X! [1 Q
    2. 快速排序/归并排序算法) a9 \2 A0 C' x3 v
    3. 汉诺塔问题2 g- }1 v) B* \
    4. 二叉树遍历(前序/中序/后序)6 k) l6 u' [4 U  S; F; l/ }
    5. 生成所有可能的组合(回溯算法)( n+ \" M( S1 s. `
    % P0 V% I% U- F/ Z: i$ T
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    前天 07:22
  • 签到天数: 3154 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,8 a9 C* g7 z  Q0 Z( L
    我推理机的核心算法应该是二叉树遍历的变种。
    * T9 G- u6 G* @8 p另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:2 c# I& E. l8 r" F' r% c
    Key Idea of Recursion
    5 M$ p' ?. ^2 X& `1 p" N# ~0 s' m
    A recursive function solves a problem by:
    ' \* F1 [$ b3 N! L% ~* j* i9 l, L3 V8 K: H
        Breaking the problem into smaller instances of the same problem." c# O0 H, V# w. N8 b

    7 c8 c4 h# d! ~" s' F8 K) O& P    Solving the smallest instance directly (base case).
    : ?# G7 D' l! H
    6 j3 v" o4 E' F4 b6 h2 h2 \    Combining the results of smaller instances to solve the larger problem.) A  f$ Z* X* p

    : c5 j: e  a. z; B( U& ]1 PComponents of a Recursive Function
    ) p' O" X" C. }6 R
    . q5 N* k& s7 b    Base Case:
    ) F0 L! p% m: e# I1 ~3 L6 J, l
    3 ]+ B; `; o+ }1 j4 M7 V        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    2 B% t9 j/ {  B" u* {5 s, N: W) ~) i9 q% }, O
            It acts as the stopping condition to prevent infinite recursion.
    - o  ]! v9 n) x6 R; Q+ M+ `6 O! P
    6 ]0 x- a* G2 ]        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.) g, @( K: {6 \. G  {

    , A5 d4 y% ?( O: W4 `    Recursive Case:) E6 y& t5 q6 F+ Q8 e5 P9 C

    " v2 i7 d" {+ z6 B7 [" t2 _        This is where the function calls itself with a smaller or simpler version of the problem.) \- {  u& q9 E
    ) x( [! n! f* `, I9 M
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).- |. e6 \$ B8 H# I5 O* A  i3 _

      j9 v/ @4 d, q5 n+ c. G$ L) \( z/ {Example: Factorial Calculation9 n$ X6 u8 p' U( H6 z0 H. l5 i8 w

    " v- O% |- D! XThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    * S- B1 M! ^+ F' b/ Z' l
    . d  d  G6 F$ L0 ?* a    Base case: 0! = 1
    ; b. G3 D3 o" S, f2 L4 n; u5 A1 r5 S: }
        Recursive case: n! = n * (n-1)!* n* T' F. K7 \% u8 ?

    + o3 X! E8 A. c2 Q2 a% c; lHere’s how it looks in code (Python):3 M3 e# X4 q2 r8 q: F; u; {* p% p
    python
      w' b0 q* U" e3 W
    : u4 D5 S2 T8 k5 O: b  B- a. b, w' j, c! V9 M( H
    def factorial(n):4 F, d' c' u( a4 f( s' ]+ q6 [
        # Base case! M  C3 p) o  D
        if n == 0:% e3 U: f+ c$ x- T7 L% ?' B4 @
            return 18 j1 Z- |: \# W+ u
        # Recursive case  O: W! B) L2 ^9 q% q) q6 `# P
        else:0 A% W0 {) s1 S) E
            return n * factorial(n - 1)8 O/ f* i' I' l3 e  C
    % H/ s0 Y$ Q" L
    # Example usage9 d, F+ I' p, S% z- R( m
    print(factorial(5))  # Output: 120) \8 _; I" ^: z- ^  a  }

    ! g5 O0 ]" p: h) [- O5 ]! M% r# @How Recursion Works" q; M' `( w; r* b
    , Y7 I, i. J4 c3 S2 D# Q
        The function keeps calling itself with smaller inputs until it reaches the base case.* t  o# R4 Y; S8 u6 O0 h, H& g
    6 y8 d2 ?! h0 m) }& C
        Once the base case is reached, the function starts returning values back up the call stack.
    ( O- k& H/ f8 z! z- V" k$ a8 n
    " V& A$ t7 J; O) e    These returned values are combined to produce the final result.& ~2 O& ?' u9 ~, ^/ ~0 L
    2 r" v# ^" ]* F6 i: N9 a6 J; s
    For factorial(5):
    / @# G6 R: I5 e, P
    2 H; Q1 u! f! _6 \* I' i
    6 s1 f$ ~5 r; j7 Mfactorial(5) = 5 * factorial(4)" F' o3 _) ?% N1 l
    factorial(4) = 4 * factorial(3)$ V8 [. A0 c" V1 s
    factorial(3) = 3 * factorial(2)# w# X' k: i! U& Z$ ~
    factorial(2) = 2 * factorial(1)
    2 e0 b) ]# N* T2 \: jfactorial(1) = 1 * factorial(0)
    2 @# O, \- P! L2 g0 t' L# Cfactorial(0) = 1  # Base case
    3 q0 Q: ~1 e. L4 y: n
    7 r2 c- ?, x; _1 zThen, the results are combined:
    0 w, B. T/ i( n* q+ Y3 b% H# B
    # a8 p/ t! R8 Y) J0 k) S( r
    / o3 |" F. F/ i; A3 C1 X3 jfactorial(1) = 1 * 1 = 1
    $ E/ j& \. [/ C: _factorial(2) = 2 * 1 = 2% \, y$ [$ ~7 K0 ]5 }7 j
    factorial(3) = 3 * 2 = 6# A6 O( V" g% q$ [# x- @
    factorial(4) = 4 * 6 = 24/ t$ {" m5 N4 K1 C: e# T
    factorial(5) = 5 * 24 = 120
    , l: u7 o" I. e( R
    9 H6 i" q) C, ?- D" ?$ t  YAdvantages of Recursion
    2 Y: b% ], Y: Y$ |0 K: m: j1 \+ p% V$ @3 k
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    $ m& `1 v4 M) J6 k6 q3 p
    . |* |9 S* G1 }0 }- L; L/ T    Readability: Recursive code can be more readable and concise compared to iterative solutions.% Q& C; q, f/ ?4 j% m

    / S, j: n3 c* E9 KDisadvantages of Recursion
    3 j+ l8 J4 _1 ~/ H1 a$ ~
    % c: g& h" ?: |. K7 \    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
      E$ V, L) P$ T) B
    ! Y+ g! g- {5 _# C2 N7 l    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).0 F7 Y! `3 J4 A2 |8 P) D# g

    + V9 }, k- L* B% CWhen to Use Recursion
    7 q* w7 o/ o% Z2 V
    4 g- V2 R! P0 }    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).1 a* B, h' I9 b2 S! \* W" ?

    4 h2 G1 `  g. y+ A    Problems with a clear base case and recursive case.' z' r' U4 a$ D  r7 U7 o
    ( _4 J8 F5 c: W. Z/ _' r7 X' ^6 E  I& ?! h
    Example: Fibonacci Sequence" ^. [7 ?1 y0 }; e

    " R& w1 [0 t9 W; H) q) Y; jThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:5 k8 Q* g9 c+ K$ z
    9 s5 ]" T3 v) M
        Base case: fib(0) = 0, fib(1) = 13 |5 n0 l- E  u9 r1 R. M
    : I5 d: w  s+ \
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    2 B( @- _. V4 Z3 C+ E  R, W, n. v2 w2 W8 A+ _+ N. I0 g
    python/ [$ b2 ?6 o! ^, ^; s* j2 T

    ; T: I2 g: H& e* Z$ ~
    + {4 ]: u3 H6 o9 x; Cdef fibonacci(n):
    % M0 M" `7 J' Q+ |1 y, u    # Base cases
    9 ?% S* _! _* e- b) j    if n == 0:: F( b. e; {  f( _) l0 A
            return 0
    " l- l" x5 M- @    elif n == 1:
    ! W/ n7 X: B2 e8 E* M) M8 ~- l        return 1
    & V2 \- [- j9 F, V; K    # Recursive case1 {6 u$ S/ l/ g" X0 l6 h1 P" S
        else:
    4 ?3 e) B5 ~  n        return fibonacci(n - 1) + fibonacci(n - 2)
      ?3 U6 O3 A* s* m8 W
    1 h! b7 w. K3 S( x9 I* N" k# Example usage: Q; v1 T9 f/ j7 D. i: f* ^5 G7 g
    print(fibonacci(6))  # Output: 8
    1 S4 T: V! E  l& T3 ^. ]* H5 \9 L% X: F+ v; `7 b3 P) l
    Tail Recursion7 u+ i/ Q" P: x4 C: s

    & i' {4 Z8 ]1 e& W" @' `Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion)." i) s5 z: d9 X0 D7 H1 K

    - |. k% u+ v7 ]In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-27 01:54 , Processed in 0.057959 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表