设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1040|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    8 e0 H8 p  Y5 r, q( ^
    * a5 e/ l5 P& V0 g解释的不错3 C5 F/ p1 a' V' j1 x) j
    2 B2 P0 u) p" o! J' h" R! T% s1 E, L
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。7 c* X, T: v5 ~

    ; W+ m% H7 ?3 j3 W6 F 关键要素+ J; f3 Y5 y  s  r& x) I0 P
    1. **基线条件(Base Case)**
    3 f6 |1 u. b  J1 Z) {) C   - 递归终止的条件,防止无限循环
    5 B% i6 i% _% T9 O   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 19 u9 b, u; S3 B" D

    7 O8 P8 R7 Z& `/ ]5 }2. **递归条件(Recursive Case)**
    ( f" W* q; M: l  l   - 将原问题分解为更小的子问题
    % Z5 \2 }9 x1 T$ K0 b   - 例如:n! = n × (n-1)!
    1 a- q& n+ \% Z% @. k" I6 F
    ) ^) K8 u" N; C" V 经典示例:计算阶乘
    2 }; a5 Z$ k' V. A9 `. o& `python& p9 y, m. ]) q5 S
    def factorial(n):# v# g6 w  u& C, ^1 h8 c9 V
        if n == 0:        # 基线条件5 q3 p! \% z( ?0 W$ [) x8 c2 m
            return 1, D& Y1 U( B' \! S% H. d$ l: o
        else:             # 递归条件
    7 m4 G0 @: A, t' _  F/ K        return n * factorial(n-1)
    7 T$ V) v, d* Y6 G5 D" T0 d. n: V执行过程(以计算 3! 为例):
    " a/ |, ~6 x& U/ |6 mfactorial(3)4 k; ~$ j+ J" [( h( g1 x* B- L* e
    3 * factorial(2)
    + P9 s, z2 M( H8 @* N3 * (2 * factorial(1)); P& h  [7 M  I) E! ?+ _3 C2 r
    3 * (2 * (1 * factorial(0)))
    $ @1 u- E5 \+ b7 l" U2 y3 * (2 * (1 * 1)) = 6
    ' a* u  x: k; s3 a) z) J: D; \1 M. X
    6 v3 @9 i- {( h! Z% P 递归思维要点& G: d8 Z  n+ _7 z6 O
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑9 p. T1 d; m# C' v
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)" e% X: x+ Q  M" j2 R0 b
    3. **递推过程**:不断向下分解问题(递)
    $ W$ L; r& l& S. F  I. I* J2 u4. **回溯过程**:组合子问题结果返回(归)& ^- C8 S. }; L1 x4 M3 N
    " D9 A5 f. u5 a8 D: C9 M
    注意事项9 V5 {6 T7 _9 @% T" l
    必须要有终止条件
    / O5 z! a9 M2 s& ]2 Z% q* Y( B递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    / B% u+ ?- }' T某些问题用递归更直观(如树遍历),但效率可能不如迭代/ X2 l) Q  a! ^
    尾递归优化可以提升效率(但Python不支持)" t) Q+ b, r  r

    & S4 {0 p' ^; a 递归 vs 迭代. B+ H1 b+ N0 N3 V
    |          | 递归                          | 迭代               |4 X. ?- D6 o! p) ?! V, U. k
    |----------|-----------------------------|------------------|3 O& X8 c8 y: W. P# o: o
    | 实现方式    | 函数自调用                        | 循环结构            |
    0 T* N% p( A0 o) N* R| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |3 a3 `+ f: [8 T
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    , d( V3 o7 T3 p7 W| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    : {& i0 D. \1 J4 j- e% b* p+ m0 \1 z3 A( \
    经典递归应用场景
    4 s$ J: Q2 [; n8 }6 W6 X1. 文件系统遍历(目录树结构)
    3 T. y; x6 L# Q3 V  t8 Y& B2. 快速排序/归并排序算法  ]6 `) ?8 ]- a- {' s9 @' K# Z/ S' b
    3. 汉诺塔问题
    3 o$ z* v0 S7 h+ c4. 二叉树遍历(前序/中序/后序)5 O4 K, ~. x7 X
    5. 生成所有可能的组合(回溯算法)
    0 ~( Y# J+ K! f: @7 C
    6 `; G# Q$ o+ t试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    开心
    昨天 07:10
  • 签到天数: 3082 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    + i7 j0 \, z& d. g我推理机的核心算法应该是二叉树遍历的变种。
    2 R& V1 @# A1 o! E  R% s% I0 O: d另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    1 `2 O6 E  m; V5 m8 V2 VKey Idea of Recursion) F; _' k- ]0 q) t8 B* G. I5 z

      n) ?4 p) ~0 ]0 m, a6 i! G) GA recursive function solves a problem by:" _* d% L, F$ L7 q& K
    ) Z% U/ `7 ^3 v. e
        Breaking the problem into smaller instances of the same problem.3 D! W# n' U; V) ~
    - N5 s5 {$ j: n4 _6 O: S, z
        Solving the smallest instance directly (base case).) S: q* Q  o$ P+ C& j* H

    8 [4 B8 R9 V* N    Combining the results of smaller instances to solve the larger problem.
    + C6 o# ^* h0 ?2 T8 n0 I1 B+ B  ]% E% r
    Components of a Recursive Function
    - Z( x. y) p3 h. d8 c5 `0 Y2 a4 w& I5 g8 m6 M, ]
        Base Case:
    * y7 v+ P# a% Q% o$ m" b# x9 b1 H$ N) \1 B2 N3 I6 a2 ^8 m! E
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    1 L- Y0 H+ l3 F* |, q
    $ r2 J  A8 I) I1 j9 B- D- O3 d        It acts as the stopping condition to prevent infinite recursion." `! g' z# ]6 J) _; O

    & {; W6 ~% K& |8 C1 y  K        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.: F+ c/ p. L. X: z( m6 C/ Q

    ) |) J3 s' f; B/ k+ z( D" ~" C4 e    Recursive Case:1 n5 [- j* `8 B% R% ?
    , n8 C; Y0 Q$ F) }9 q  N
            This is where the function calls itself with a smaller or simpler version of the problem.- r! z9 O) C6 ]: r8 J

    6 P) \0 A) Z& S( N4 g        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).+ U4 t1 s& g. _# o* H; k4 u

    * z: {" E% Z" E  A+ W. AExample: Factorial Calculation$ v; k# X( x7 X0 H
    0 E, [2 i, O6 h  Z( c- ?. @1 Y
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    6 a3 u) Z6 }: K
    % f# r" s2 W/ q" u    Base case: 0! = 1
    2 \3 V6 m% s3 Z
    - @; ]0 a& V0 Y) U7 Z& i    Recursive case: n! = n * (n-1)!
    , ~3 {  N% Q4 {. ^4 e% ^7 G6 j, g
    Here’s how it looks in code (Python):) P% N. d- A& D! L+ v/ g+ M% N- s
    python
    . j1 V$ D+ P3 p
    1 T# T) I% s/ M+ b* s
    7 h! z$ c) K* k( adef factorial(n):
    ) p6 _% H/ D) L: h7 O1 N+ F    # Base case& t' C3 h/ _6 c8 [6 J' S
        if n == 0:
    9 [. F3 x/ ]8 @4 e* k* w        return 1
    9 {% B+ W5 b; R; P0 J    # Recursive case
    / D. Z: }6 t& M" q: h( J6 u    else:
    7 A' T- h$ Y* y2 e% W! }8 A2 x8 [# \        return n * factorial(n - 1); K& N8 M8 I' ^4 t

    ) V. j. M" q8 D( c# Example usage2 S- n8 E0 n# _: }3 [* R
    print(factorial(5))  # Output: 1201 M! S4 @9 n! H% b" R, w3 _/ V

    * x1 @' A4 g+ `8 g3 Y8 P+ ^How Recursion Works3 s0 c0 T" ^( y
    " h9 w" ~% D6 x+ J% D3 s
        The function keeps calling itself with smaller inputs until it reaches the base case./ O1 ^  v( s2 z6 x
    6 n" }9 _; l* J, S
        Once the base case is reached, the function starts returning values back up the call stack.5 ^9 @7 {! f$ ?* M
    / f, K! G6 u3 x1 w0 x' E6 M
        These returned values are combined to produce the final result.: P5 R! \. \8 o/ N

    ' Z5 A% C' k6 T: p  @For factorial(5):* m5 v8 Q! ?8 x" a# _
    ) S8 Y6 p) j* |* C, R) N! m4 @
    0 c$ U+ M0 {, u
    factorial(5) = 5 * factorial(4)# }% o6 d5 ~- T8 c; l" |
    factorial(4) = 4 * factorial(3)- G, s3 }4 S" L% M- U* Z- N
    factorial(3) = 3 * factorial(2)
    $ V$ `# B0 L  _- _, Z0 F  Tfactorial(2) = 2 * factorial(1)9 R% [3 m+ E3 f8 \1 L
    factorial(1) = 1 * factorial(0)
    + T, [( d; z0 ^  C5 Efactorial(0) = 1  # Base case1 t2 u1 n- Y- Q7 C4 Q

    ) R& C( c. q! Q' D0 J; u, Y) m* g: BThen, the results are combined:
    " o' _* g" }  n
    9 v' f9 n) n3 q) v+ }% B, U
    5 Q8 `' p' |/ Y+ u  h. S$ gfactorial(1) = 1 * 1 = 1, F# F3 `- }' U: P" ~
    factorial(2) = 2 * 1 = 2
    # Q) m/ G4 ^/ a$ N" r' g3 Kfactorial(3) = 3 * 2 = 6
    + k; {) y& [! u! _factorial(4) = 4 * 6 = 249 \% D* v5 |# F: e
    factorial(5) = 5 * 24 = 120
    9 p9 p) P7 u, W) _& K: N7 e) x5 d, N: C' x- \' @
    Advantages of Recursion- j, [* b! Q) A$ L& y3 o% H
    . s- g& W1 b- h2 k; [7 D; a; a
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).# L) n" v4 H- C  c

    $ x' f+ ]3 C' f* J    Readability: Recursive code can be more readable and concise compared to iterative solutions.3 t+ |) b4 C* |6 A1 s
      f5 |: o1 E/ R8 W, E1 s9 S4 i
    Disadvantages of Recursion  R' L" S; v0 j  R$ y* _- R; T* l
    & D4 M. M% E; o/ R/ r1 q
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    ! G8 M) y; A6 C: ^) p7 g, ]
    / K4 S- G, Q/ b    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    3 ?3 ~! h: M# Z) B* ?
    5 r4 u2 W& C7 x  _" S$ nWhen to Use Recursion
    5 B2 Y9 i" {& o  p: }4 _; o0 ~! Z$ G8 J9 a0 |2 o4 ?' G
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    / j' Q7 H* N8 r8 L8 E
    * z: c+ _9 |1 t& G    Problems with a clear base case and recursive case.
    ' ?: q0 \% d7 D" `( X
    9 r& ?# O4 @8 P8 p% |Example: Fibonacci Sequence4 p- ]7 G7 [  q  H/ T4 C5 Z
    $ J+ n1 t$ n3 a5 j7 K( B
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:( n8 Z9 Q( Y( ~' x: A/ K8 R- n

    : d( R$ H9 d+ B* ]2 e) u! T) G    Base case: fib(0) = 0, fib(1) = 1" ~5 F8 v) I& |/ L+ a: T9 M) ^" e1 P
    * Z# s% p* J' O, M
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    4 t# T# Y. O* l( R& `2 V& v' p6 ?; {1 _4 g& c
    python' Q& g9 i( Z0 W5 W* Z( @3 o" \- [* r/ y

    0 O  p5 B0 z$ R' t" z" q, J' F2 C0 p' I: T! L/ C
    def fibonacci(n):
    2 C5 A! b! N' a    # Base cases
    0 w, ]4 |4 I0 N1 x2 ?0 z5 d- }    if n == 0:& m' b: ~4 `: b! Q6 P9 h3 ?
            return 0% |7 X2 {! n3 u! g- s6 c
        elif n == 1:
    + p2 O" V8 G" h9 `- x% _        return 1/ @/ B/ v5 F/ n/ a5 E
        # Recursive case7 B" I2 P! i: u. d: y
        else:; K* K$ b9 B) d, ?" u6 m
            return fibonacci(n - 1) + fibonacci(n - 2)
    6 j  u' s8 j2 [
    - }) B# M  Q0 H0 g8 u* e5 _# Example usage
    ) b3 U3 _: x) @: {print(fibonacci(6))  # Output: 8( m3 C. Y" C% k5 k! ?
    ; w. t8 v6 K: H2 @
    Tail Recursion2 C# l8 s/ E9 T; @6 S* J( n( |* I
    5 y# j+ R, \5 L1 \  H4 b
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).. Y+ ]% L) q/ G- @  E' A+ G  ~
    1 \/ i& Y& i% p$ Z! `" Q
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-2 11:13 , Processed in 0.038275 second(s), 21 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表