设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1635|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    6 i; w8 J7 i0 k0 C
    5 |8 U& {6 f' s5 C7 z$ z& M解释的不错) G" y* j# L/ U% w7 O: g

    ( p5 ~* c$ m2 N) w8 n7 {递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。% }! D+ E( M2 }" k. ?2 H
    " S( C1 H; H' z
    关键要素
    + V' M  _( T7 d& @8 [' T) Q- _1. **基线条件(Base Case)**, b) d0 ~3 Q7 K9 y& d- _! t
       - 递归终止的条件,防止无限循环
    ; }4 w; B8 y7 j, b1 o7 X# M( J   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 13 b  r( N7 g, `6 p& ?, @) g( E& s
    . l2 @& y% Z" \/ m. T; _- Q' g. R7 \3 s# d
    2. **递归条件(Recursive Case)**
    9 F* }0 @* N4 [2 X/ W   - 将原问题分解为更小的子问题
    3 N4 z( }0 G) p- S* o! s/ k   - 例如:n! = n × (n-1)!
    6 I# d1 a& g& p+ a/ }8 o8 W: \* i4 {& D0 x5 v0 i
    经典示例:计算阶乘
    1 U* g; O8 q& h& |- kpython6 N  A8 C# C* _; {, C. U( f
    def factorial(n):
    + y0 R. a, E. ^6 h5 }! x; N* t    if n == 0:        # 基线条件
    # R1 N; A( Q7 R8 |        return 1
    6 _  I, v* e& ?. f    else:             # 递归条件
    . p2 o7 Y0 X" U- U, z        return n * factorial(n-1)
    6 ]( J& [6 J* `+ `- j5 R执行过程(以计算 3! 为例):3 z7 q3 L; W5 @# l& f4 Q+ X
    factorial(3)
    7 K  y% I) Z/ a( ~0 x( ^3 * factorial(2)
    8 G2 K7 I; v7 }3 * (2 * factorial(1))
    ; E: o8 V3 L) h) h3 {& Q6 }3 * (2 * (1 * factorial(0)))! `# V1 y% X0 o# V
    3 * (2 * (1 * 1)) = 6
    ( W* X1 n6 Z2 r% l5 X5 r/ v- v- K8 O; i5 @3 j8 j$ ^
    递归思维要点# k! h% F6 `8 [4 i- N+ h" ?
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    4 V! O+ H6 x* X0 m* o2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    ) g7 H: f, l6 ^+ v( f5 |1 t  R/ w3. **递推过程**:不断向下分解问题(递)
    6 s9 ?. N$ `: j/ A5 S. k4. **回溯过程**:组合子问题结果返回(归)1 ~5 v! i% ^  u2 O+ U- c% u4 t

    + u9 f6 _  k+ s* x/ s  U- w* g& e: M 注意事项
    4 U  U7 J7 q' O" g4 m0 ?必须要有终止条件5 V- X, v; q) N$ n+ _) P' N+ O
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    7 v) J+ P9 _1 z: t某些问题用递归更直观(如树遍历),但效率可能不如迭代
    - C; W2 Y4 J6 k7 U尾递归优化可以提升效率(但Python不支持)3 e7 _* ^% }7 x
    " ~4 f% ]1 Z8 w1 k& y' i& U# z9 e
    递归 vs 迭代
    . E8 K9 X  ~- P$ N2 K2 E|          | 递归                          | 迭代               |- q5 v1 k/ Q, X
    |----------|-----------------------------|------------------|
    9 [/ Q, F& f/ Z' }. Q3 d| 实现方式    | 函数自调用                        | 循环结构            |
    + ?& Z7 j* m5 C# f# j7 _( v6 C| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |4 U6 R. j8 A% g
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |# H; N( Z0 C; B& I
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |/ f: g2 s# m$ z* ^/ A4 D; j( \
    2 p# y) R' g4 c0 S# P% |: B7 E
    经典递归应用场景% V8 n" K3 d- R; M
    1. 文件系统遍历(目录树结构)
    - {8 u% k+ B$ P7 a$ d+ b6 H# C2. 快速排序/归并排序算法
    8 x: s0 w& Y, l& W% ~1 v, k3. 汉诺塔问题
    . j3 x: K- Q' P; u6 e4. 二叉树遍历(前序/中序/后序)- {4 k6 z. W! K0 d
    5. 生成所有可能的组合(回溯算法)
    - e; E4 O$ X" y& y7 t; H) Z
    + w+ L* q. j% q& H+ c: Y" Y试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    昨天 08:02
  • 签到天数: 3126 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    1 m0 D0 ~. y" E: z( Y7 [& I( C我推理机的核心算法应该是二叉树遍历的变种。
    " L+ D0 \' Z3 S2 X( u另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    7 U! N0 i( F. uKey Idea of Recursion
    % X! [2 V- X8 F. C+ ]. y: ~+ Q" \5 F: r0 K' l8 @* R
    A recursive function solves a problem by:
    3 j+ d+ W% k6 A' W/ y9 L
    1 n. J! L4 H' \+ Y0 T% G    Breaking the problem into smaller instances of the same problem.
    6 S! n2 N! M0 B& A: Y4 r- L4 G0 l- T% ^" j9 Y1 g. D
        Solving the smallest instance directly (base case).6 g. B6 c3 @4 D

    : R& g+ L* q+ \    Combining the results of smaller instances to solve the larger problem.! p* U# Z% B& y

    ' {: s+ \6 L2 H! EComponents of a Recursive Function
    3 ]: [5 \3 x/ K: F
    / V2 |! }1 N! j) N+ p& t/ O; H7 k    Base Case:( e" Q8 o2 n2 t+ v4 Q2 p

    9 A3 }0 |3 d* ^9 Z        This is the simplest, smallest instance of the problem that can be solved directly without further recursion./ L) E7 z, ?% P) H9 b8 Z. w0 ~

      c( n1 Z: g$ ?% J( \- n        It acts as the stopping condition to prevent infinite recursion.
    % g+ R& z+ s/ W% e7 B# e) @4 y* H2 e% ]+ ]( H1 Y8 z
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    2 f6 K4 O& ?% ^3 Y0 P& ~# {. p4 s  X4 F6 f
        Recursive Case:: f4 Z' X; h% a( @$ M! O2 s7 |: S

    7 t( b  r* ~) I  _2 C, ]        This is where the function calls itself with a smaller or simpler version of the problem.  v1 A! _0 D, ]& p
    ' B3 y# s( \/ D$ U& U. v
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).) p3 ?9 s/ Z, ^
    2 ^; o/ T1 `  L9 X, d: Z
    Example: Factorial Calculation0 A& o( P% _$ K, o" J  K, Y
    0 n4 q8 I$ N. {$ `
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    - i# V3 h! ~, D9 \. p* R2 U) K
    ; w7 v* Z  J( Y    Base case: 0! = 1% i* W% ~# x: B3 N9 W/ @$ b2 B

    1 C% d9 u* I1 h% ?: H    Recursive case: n! = n * (n-1)!
    / G. J: |! n1 l6 |* I) F2 m. ]0 u8 Y+ C" s( a
    Here’s how it looks in code (Python):
    ; B7 i& ^. _' ~  f# M- \python
    + g' a- J( k$ e; k
    4 c7 `3 c/ g6 u- K
    1 p/ v7 r' G/ D1 c* |: X2 b7 ?, tdef factorial(n):
    # h$ s" p) k6 P5 S+ D    # Base case: e' x$ H" e6 G6 F- i
        if n == 0:
    " h: `$ J8 ?- c; n7 L4 @4 E% j        return 13 @" C& E# a9 v. F
        # Recursive case
    % E& u. q# ]. p$ y4 M    else:6 r3 x( q( ~5 U+ `" j1 Y7 B5 m3 d  `
            return n * factorial(n - 1)
    4 D$ [' |$ s. K* r+ n/ ?% @8 j3 I9 m( t
    # Example usage6 S2 I9 d0 _- @( k$ d
    print(factorial(5))  # Output: 120
    9 c, z1 K& F+ v: g: U3 V0 @' v" o/ h! c) U$ [2 [+ y$ z+ ?
    How Recursion Works
    5 O' u; \+ \. p. Z4 V3 P: i/ c, X  e7 i5 ^7 _
        The function keeps calling itself with smaller inputs until it reaches the base case.
    + C: y: n2 a+ L4 g! I* m( R
    , d) ^- Q3 m9 \: w' ~% p4 m% y+ r    Once the base case is reached, the function starts returning values back up the call stack.' X, g6 D' U- `! f

    * ~2 u" @8 I5 T" u- a1 |    These returned values are combined to produce the final result.
    $ I5 d* K& q) T" x* n5 k1 U9 `! P, J# Y' z5 ~
    For factorial(5):
    ( Z, e4 f* H, s  F* ^, L
    , F) G' F/ e0 Q- d- W% V) \  A, M8 a2 o9 a1 J, q4 [
    factorial(5) = 5 * factorial(4)
    , m6 Y9 a1 J4 g/ @: m8 H4 f( Efactorial(4) = 4 * factorial(3)- j* b( A6 x( K7 Z# Z
    factorial(3) = 3 * factorial(2)* a3 F9 q' e' E. ~" U2 Y
    factorial(2) = 2 * factorial(1)
    7 y4 P  K: F! \: i( M: Y% d; }factorial(1) = 1 * factorial(0): O8 V* \; }6 @9 O, L) z  f' K0 H
    factorial(0) = 1  # Base case
    - V( ~- ]1 N: a7 J$ R1 |! }& t
    Then, the results are combined:
    ) S: X9 P" S3 I5 _
    2 K% V- B& _9 ]' q8 b# G/ Q
    / U! X  W+ d$ Hfactorial(1) = 1 * 1 = 1
    % }* O" N7 p( a- nfactorial(2) = 2 * 1 = 24 {9 ?( i2 V: ~# M# Y
    factorial(3) = 3 * 2 = 6. h: I4 v% t. Z, W% _8 @
    factorial(4) = 4 * 6 = 24' R% s- u& J- T% P
    factorial(5) = 5 * 24 = 1205 s7 F, k# R# L! b$ e1 P

    , S3 Z! O- k1 [3 s% n2 YAdvantages of Recursion( E. f6 V# P( y, g

    5 x2 J9 J3 O5 O2 }    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    ; H! e- L. ]: ]7 W0 L. i" [5 K) [2 ?/ \: T! B+ H; F* ~1 ~
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    ' z7 `9 ?6 M& l# W) m
      m5 v1 j, N% M$ J& ]/ S) ]7 WDisadvantages of Recursion
    - D* m# j) f: N4 U1 u" M- a7 D' Y- ~: ?6 ]( f
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion./ O- o9 S, A6 x- _8 B

    4 C! Z4 r4 Y8 v    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    * c' l0 ~" t# I- U6 p2 x
    - w: z7 |4 q9 f/ x6 \When to Use Recursion
    - p. y8 s8 ~) L$ |- f7 ^( q& \7 O1 f8 u  E  m" l
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    5 w- L7 o" ^3 j4 K$ d* z% i8 S6 E4 s# k( _! E+ r% u( i
        Problems with a clear base case and recursive case.
    * W) C0 [- \( j/ c# U4 b  J/ \! x& h. |, D; m* |. _# {
    Example: Fibonacci Sequence
    4 Z/ @: p$ h3 Z, H3 h& H8 b
    4 k- r& M7 i% R' j! uThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:8 [( Y& [$ [: F7 Y6 h6 n; L9 D: D( m
    % D2 p( S7 I) K! I: ?! K4 ~, R
        Base case: fib(0) = 0, fib(1) = 10 n% k3 o! }0 x; I- B* @3 O$ t
    ; }2 h+ {! P+ a' r
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    - U1 c! Z( E# o1 e7 h# F9 P& T
    1 {1 L' A6 q5 G2 {0 t1 A4 l: [python
    & J; u: v# S1 P. D8 C+ R$ T% J3 f, U

    . F; t5 q# o" a; ^5 r7 q  Ndef fibonacci(n):
    ( v' O1 `' I$ U2 u    # Base cases
    2 a8 m2 N  g) w: x/ p* A% f$ y6 w; X. n    if n == 0:
    , a% p# p& w+ D: `! L        return 0" d, D) m2 D; z3 s: @3 g
        elif n == 1:& a* `! D% W+ ~, e
            return 1
    / a$ ^+ Q8 l  T' n8 W; e8 O    # Recursive case
    % W1 n2 ?1 k0 s- P& H! F- m0 C& k    else:9 x" M/ X$ L$ l# G! }# u; B$ _
            return fibonacci(n - 1) + fibonacci(n - 2)7 R2 \+ W, L) z) y7 q" ^$ c+ |% N

    ! C0 n. W: {1 I# Example usage$ S( q9 J) c7 k! v7 b0 a2 e
    print(fibonacci(6))  # Output: 8
    / h1 |7 E% l4 ^5 V$ V* |: R% y% f" c6 H9 @
    Tail Recursion
    : n* r" R  G% ~$ h( }. t8 i) _5 M; H( c) i  r4 I/ n; k+ a8 n
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    # m" @& B- x' ^: c  f
    $ B( P' T- x' ^. eIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-25 10:10 , Processed in 0.029690 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表