设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1828|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 ; q2 c; X8 W; }/ Q4 j- O8 X) q
    ( \  e. ~# `% U: ^; A2 Q: H
    解释的不错
    7 [+ E- Y* Y; [2 j/ S& Y& i. c- W7 N' T+ e
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。3 R4 E( H8 m# p  D" n- H3 N3 k

    * U/ ^" Z# ?! e- ]' \/ G3 @0 k9 r 关键要素
    7 `8 Q( U3 ^4 v/ ~& b" h1. **基线条件(Base Case)**
    5 S6 d4 y$ N5 c5 E   - 递归终止的条件,防止无限循环
    1 j5 O9 R" C/ `4 z, h" [   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    - }4 x7 b, T# `3 U$ V" E% F5 A9 J0 ]4 [9 d3 t1 o9 g# t% i1 [
    2. **递归条件(Recursive Case)**
    % G) [4 L) I  r( h   - 将原问题分解为更小的子问题3 d6 f/ h( n1 d3 j
       - 例如:n! = n × (n-1)!$ q% v5 ?7 H5 h1 B& g

    ! j3 [* h+ r+ g; T, f 经典示例:计算阶乘/ Z% J4 o4 ~. b9 T) p# f  r3 G
    python/ e9 j2 z  J$ o4 A7 h; m
    def factorial(n):" G" U+ j3 ]0 s) x+ ~
        if n == 0:        # 基线条件
    8 J8 ?; J, f8 l        return 1
    " E7 J# `, Q! N1 c3 P; Y4 K# C# ^    else:             # 递归条件* z# _1 b0 C7 g1 v
            return n * factorial(n-1)
    $ B' S; }# s" i2 j4 Z& D执行过程(以计算 3! 为例):' X3 V/ i/ C! j2 p( }
    factorial(3)! i+ z' i& R0 ~! ?( K
    3 * factorial(2)7 v2 N9 e- e6 X7 s% h* }; y
    3 * (2 * factorial(1))' x# W7 A& L* M0 X: W
    3 * (2 * (1 * factorial(0)))5 \/ F8 c1 T, F
    3 * (2 * (1 * 1)) = 6
    + N# H/ _( v5 g7 l  r" G& c; T& Q; K9 H3 v. N$ F: V8 r
    递归思维要点
    2 v. r7 H7 o1 s& y) C1. **信任递归**:假设子问题已经解决,专注当前层逻辑" k# T" l6 f4 V0 K& N. T5 O/ i
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)& N3 j3 ^; \, c1 b
    3. **递推过程**:不断向下分解问题(递)5 \) b9 v/ i! ^% ^& u
    4. **回溯过程**:组合子问题结果返回(归)! v! Q' f* z8 I# W
    $ Y' q6 H- h; @# T; P( w0 m1 w
    注意事项/ l; d6 P3 R% a
    必须要有终止条件; H9 s8 K! W3 q; t$ i
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)' C( ]4 E/ l5 |3 g) \. I8 k; Q! U. A
    某些问题用递归更直观(如树遍历),但效率可能不如迭代0 F6 v: P7 b8 S8 {2 Q* d; u
    尾递归优化可以提升效率(但Python不支持), O) Q' B3 q/ z& C' }; v. B
      Q, v% V" H' h
    递归 vs 迭代3 C) ^; X: \4 V1 o" D! u- p- s" I
    |          | 递归                          | 迭代               |
    ) x$ _4 ^) _% T|----------|-----------------------------|------------------|- h. \. p3 t3 c. f3 X1 A
    | 实现方式    | 函数自调用                        | 循环结构            |3 B+ _) D: w/ v$ k8 I
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    7 t) n  P4 `3 c- H0 _  o" T| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |. d5 _6 V# D5 C7 I1 m' ^2 h
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    8 B; p& ~5 n/ w  m* {% B9 A0 m: w0 I/ c6 V: y
    经典递归应用场景8 L: n, @' m& {( H) ]5 ?
    1. 文件系统遍历(目录树结构)
    + v  _" s5 P" @4 F  H5 @2 Y; R2. 快速排序/归并排序算法
    0 N7 @5 [2 c% f) b& n3. 汉诺塔问题
    , |" R' O$ s' ?% J$ N  D* o* J/ J4. 二叉树遍历(前序/中序/后序)
    - f! c* l& A1 I9 Y' R2 S5. 生成所有可能的组合(回溯算法), e, y/ x8 j$ s2 k5 ~- \& p
    ) `# t0 A0 Z& I% q8 u* z; d& p
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    4 小时前
  • 签到天数: 3146 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,/ b+ P' H3 ^$ i3 u$ T- U
    我推理机的核心算法应该是二叉树遍历的变种。
    3 X  f% s. D7 X5 g# n另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:: R4 l: A0 l6 B, n9 j0 e; B  a
    Key Idea of Recursion$ f; P# u* \: p) S

    $ l# W% ^! \: H; L, nA recursive function solves a problem by:
    / m# `. s+ u3 g4 E" l* N' I0 h7 w5 m
    # J% n% z( @4 K) E* h5 `$ I  o    Breaking the problem into smaller instances of the same problem.
    ( t; X- o9 z6 N3 S1 |' n. \
    ( K7 h7 ?" F7 v( z! J    Solving the smallest instance directly (base case).- c. q7 ~$ L+ B0 i9 U/ G- y
      Q- F, D2 p8 E0 E1 P
        Combining the results of smaller instances to solve the larger problem.( \1 {% v$ E0 }; k0 \. I

    3 D" u. x' `- _+ oComponents of a Recursive Function
    7 J2 T* A% I$ o+ m. G- U' C9 p6 G3 e3 \1 w
        Base Case:
    1 F7 ^( h. U  J# S" @1 p3 x" s, R. u6 G( Z, {3 K: I8 N
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    ( k1 J- c; O" C
    - W9 W# F0 ]5 [* r2 X! J6 t        It acts as the stopping condition to prevent infinite recursion.5 s3 ~# F4 `8 ]$ H" D% I
    2 S3 E+ f6 W5 U- t' J! C4 ^
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    : S0 C' R+ l+ t5 [. l7 E
    4 u2 f. Y5 V9 s: E0 \8 Y1 |' g    Recursive Case:. n8 O4 U% [4 d' R7 [: S$ X
    6 z: Q, I# z" n" Q& c
            This is where the function calls itself with a smaller or simpler version of the problem.
    6 D& g; h* s- |2 [- H8 |3 e' z# x% t; g5 p+ F
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1)." w3 @1 q/ r* T6 E! f+ j2 P
    : t5 `% c5 H+ v" z1 E) K% k3 S2 G
    Example: Factorial Calculation* f, g+ D& m( O7 [
    2 R3 ~) H8 p9 L: ^7 h9 [
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    2 E& w* ]; B# f! b+ {& I) _& h
    ! q) ~* e2 y. h& t3 g    Base case: 0! = 1
    + l$ Q" }- V( N% S) X, |, ?9 m* j& m
        Recursive case: n! = n * (n-1)!
    " O& P* B' X8 V5 k) T- Y) ~+ m8 u; {! L3 m4 _/ D* S; }
    Here’s how it looks in code (Python):
    8 S& G1 H7 k% y4 Z0 B5 }python
    ' Z" F( m( u7 `
    # D+ k7 D# d0 ^' y! Q6 A4 z+ y& E( ^! _+ p5 L( r4 Y2 j* g. K! r6 G
    def factorial(n):
    * C. j8 e& N3 r+ B+ g7 E    # Base case
    6 f) ]6 i  x( C0 q. u) B    if n == 0:
    : x3 s$ c& n+ {- F2 ^/ r- J# d        return 1% S% _6 x  D7 x" u
        # Recursive case
    + Z1 q8 P# J) K, @    else:- L) R) q3 s, s2 S) Y, E0 C
            return n * factorial(n - 1)( p+ k  H/ W* G% h' [; F  M6 Z

    - {+ l; T% o8 i6 B( y# s: }# Example usage1 M/ N0 @) e( U+ ~' u4 T2 z8 z
    print(factorial(5))  # Output: 120' u  G- e" W1 o6 C; A5 o7 n, [! O
    " u4 M* i9 }$ L7 H8 b6 K! U
    How Recursion Works: j( N0 \6 W% v2 d

    4 v: W0 c4 W. ^    The function keeps calling itself with smaller inputs until it reaches the base case.
    4 x. O8 L3 z6 C& Z% y$ t5 r  f- y& u/ \' P8 `8 i
        Once the base case is reached, the function starts returning values back up the call stack.* ^* o$ f) k, ~4 e' h* M
    ' S: ~+ g- s" U
        These returned values are combined to produce the final result.) G% Y( g' L7 c, N# ^' E
    0 [; D' Z2 @" d' m3 u: ~
    For factorial(5):- x1 v# x4 ?8 }

    ! d7 x. N& x! w1 v; }
    : l% [2 K6 D! H! N/ Mfactorial(5) = 5 * factorial(4)) [: @1 p' D+ D
    factorial(4) = 4 * factorial(3)
    : b+ J1 N- w0 p: Rfactorial(3) = 3 * factorial(2)
    . u) v! Z  h( ?% o; J5 rfactorial(2) = 2 * factorial(1)
    & q. V: y0 ~7 dfactorial(1) = 1 * factorial(0)0 q; _- m* I/ x; U8 a
    factorial(0) = 1  # Base case
    + P7 L5 V' b9 L2 a% O0 H$ `
    2 a3 H* ?$ c2 p3 m( qThen, the results are combined:
    3 `. e2 D/ d+ }" J8 H! g% u# R# k" I' p; o& z
    * x) f" B4 y8 r& g
    factorial(1) = 1 * 1 = 1
    % n6 D2 o1 ^8 z, Y' lfactorial(2) = 2 * 1 = 2
    * i# [% E" O9 D: C4 Gfactorial(3) = 3 * 2 = 6$ ^$ B- s  E( q9 v: a
    factorial(4) = 4 * 6 = 240 M2 o  y4 W9 B" c4 [0 R* y$ d
    factorial(5) = 5 * 24 = 1209 ~# |) o1 z0 Y8 n$ {$ @( c
    ) {* a" G4 w0 `8 S1 j
    Advantages of Recursion
    9 U5 i  s% Z, A* [( D0 G  u9 C& m  I+ v- o
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    - X4 i) U1 h1 r0 O" u& g# H9 N
    / F. [& }3 Y; h2 ^; [    Readability: Recursive code can be more readable and concise compared to iterative solutions.1 K9 B0 I/ F1 x$ ~$ P8 i) v5 w

    ' P4 k( ?* Q& _3 F% G) o+ L: qDisadvantages of Recursion+ m. Y; @+ y2 Y

    4 [6 e) k2 D! Q) w. A/ _    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.' F0 J0 g8 _2 Q5 Y) L* ?

      }, \8 H; d% B, ~# A    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).- r8 Y8 d& u8 F, e) B5 t$ u

      Q# k- s. y+ S. X& k! W  G1 z8 ^4 E- fWhen to Use Recursion$ ?$ j; e" V# ~6 s1 |

    9 d: V5 Z" @# Q  }) F$ e    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).% y* _1 o( j; \0 e

    $ J$ @5 J0 U* r6 ?, y    Problems with a clear base case and recursive case.  \: j$ t- G" @3 e* s

    1 u9 I- |3 K# SExample: Fibonacci Sequence
    ' u# m1 j9 a7 F; S6 u5 j! N5 f# k: @; ?' U# ]
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    0 f) J2 \5 U5 d5 I4 m+ ], K1 S
    ' Z( Q5 H; u9 a# E. k' h# `    Base case: fib(0) = 0, fib(1) = 1
    7 K+ \3 X: C9 {. D7 g3 }$ h& V6 `
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    ; T; x+ D" ~, s) z; r8 j: B4 M: s- w, Y
    python
    2 W/ X- K& _0 W/ h( I$ p- Q7 w# D" I/ K. w
    # e  e' J: P% e' [/ t
    def fibonacci(n):8 Q% C- ]3 t6 f5 i/ K( _
        # Base cases3 u; q3 ]6 |7 W# K
        if n == 0:
    ' a3 K& Y/ p( }( I% l( j        return 0& b# F$ l" u7 u* D# c
        elif n == 1:
    ' w& r; ^$ Q4 k, ]: Y        return 1
    ! u- w6 \5 Z! |3 ]% v    # Recursive case
    % ?( l3 r6 ?/ e8 \$ M    else:6 _7 E2 S9 a7 j5 X) D. t& i
            return fibonacci(n - 1) + fibonacci(n - 2). F; u, b3 i/ h1 |( e

    ; w" t" w2 O/ ?# Example usage/ z6 s, l  j/ s' Y: Y
    print(fibonacci(6))  # Output: 8
    9 o8 w! [. p5 @( c
    * o! u% n1 \: J/ \Tail Recursion3 P6 s1 ~0 H2 x
    ' G* \6 U: E! p( i* W8 }
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).) R9 U% h1 S+ F. H' g5 Y/ Y& m/ T

    4 g) N0 z/ U# Y# Y8 c$ bIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-14 11:10 , Processed in 0.030141 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表