设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1882|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 / p% w* {! k- @4 d( y8 P0 s
    1 n6 E6 h" K3 U; {* g: k2 L$ h
    解释的不错
    & G* \0 E' R* j3 x; O3 p1 [  N- B2 p( q5 t3 K' ]' x
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    7 m" Y1 `# b  L- n# }. T  x' H/ @. _" ]( F% R, S# u
    关键要素
    7 H9 I, i' {- e0 ?, z+ o; p0 v1 t1. **基线条件(Base Case)**3 W( J4 R# q- s, w- ^% S
       - 递归终止的条件,防止无限循环
    4 Z7 Z0 Q5 ~% B. a# f. `   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    6 w6 `  g! p" Y# i" g% k' X/ y7 q1 ^2 f0 F  j3 D4 x
    2. **递归条件(Recursive Case)**2 |1 k' ^: f1 @+ {% m1 b- _6 a
       - 将原问题分解为更小的子问题
    - p1 s% Z+ l4 D2 D) }6 S1 L  r   - 例如:n! = n × (n-1)!: U  p( y& u, J! d8 A5 x

    . h5 \& A+ X+ F$ j 经典示例:计算阶乘) U" I! j8 e: u' k
    python
    . N; ]" A% U  U2 Qdef factorial(n):
    . _. F" P$ M  @3 J    if n == 0:        # 基线条件
    ( ~8 O5 b% y' O" G; F: U7 ~+ v3 H0 {        return 1: R7 ^  r2 m% X5 p( }0 v% W
        else:             # 递归条件- d: h' h) G* E5 ]
            return n * factorial(n-1)) e8 U7 B" u; d6 l' U# w  C
    执行过程(以计算 3! 为例):
      `7 D, c" J, n& A% M0 T( r% Afactorial(3)
    ) _& e  k; @; |* j! T; q3 * factorial(2)! H+ B8 }6 U/ T4 s# V- C& D# Q2 m
    3 * (2 * factorial(1))
    - j# l3 T  _. P1 F3 * (2 * (1 * factorial(0)))
    % K: u  v6 `+ j; I) L9 q3 * (2 * (1 * 1)) = 6
    * G5 n4 S- j: j
    2 y4 U( U: W5 F" d$ M 递归思维要点
    ' u# d1 r' x# f' {: B8 }  }1. **信任递归**:假设子问题已经解决,专注当前层逻辑2 j- O" l. O/ i
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    1 Q, j9 r: r2 g8 N, k3. **递推过程**:不断向下分解问题(递)/ \! f$ F% c6 v/ g  U- q* L  J  p
    4. **回溯过程**:组合子问题结果返回(归)
    ( @  Q$ Y# e1 \1 t1 g
    . t0 S& u  T6 b6 X2 q 注意事项( G8 ~& }) C9 _" B. V3 r4 O
    必须要有终止条件
    & R8 n- F7 m* u) V$ c0 `递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    + n+ C+ L8 J4 C+ e& o2 }+ j某些问题用递归更直观(如树遍历),但效率可能不如迭代
    0 X2 ^$ _4 c9 ]8 y" h9 ]( k, o- n2 s尾递归优化可以提升效率(但Python不支持)- o8 ?6 F7 g9 s& _7 I& x. h4 O1 o

    + R5 Q. F3 k- u( B4 R 递归 vs 迭代. H4 r/ ~( @1 J
    |          | 递归                          | 迭代               |
    6 t$ f- o. g; k/ ]! o|----------|-----------------------------|------------------|/ W. t1 T4 a$ L) I
    | 实现方式    | 函数自调用                        | 循环结构            |
    / A! }) r' n' W3 T8 G% q. @  m| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    2 \% A. B. P# R  C8 D2 f2 d, z| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    0 z1 Q$ h) f5 R| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    3 R! n( ?8 `( C: N0 y. d/ c: E% C+ Z9 f# C# C& l- E3 S9 P7 a: j: l
    经典递归应用场景
    # s1 O/ P- L6 ^1 K, W( x1. 文件系统遍历(目录树结构)
    & V  _8 e: i' }: g4 g2. 快速排序/归并排序算法
    9 C- x( R2 ?; K: X3. 汉诺塔问题0 O3 Z! a8 K: O9 J4 p) i0 g! Y' _1 g0 H
    4. 二叉树遍历(前序/中序/后序)8 d! m; q" f$ `: j0 n0 Y
    5. 生成所有可能的组合(回溯算法)( ~  g0 x, p: S/ j( t
    . _$ o4 e8 k: {# s0 r
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    慵懒
    昨天 09:58
  • 签到天数: 3148 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,& O6 ~. g. ~0 t6 I: x
    我推理机的核心算法应该是二叉树遍历的变种。
    ( @& n; [0 @, \6 ~" {另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    + n4 E3 V+ k( H5 u$ `9 j7 O: Y3 fKey Idea of Recursion
    3 ~% N) \% f( x- h6 i, b, u" N7 F( {. @; _! U' a0 q
    A recursive function solves a problem by:: Q' g* O2 j# b1 [+ w' O6 a2 B
    ( i6 W0 f  s" H* ?6 `- D
        Breaking the problem into smaller instances of the same problem.
      V- Z" P6 B/ _# K9 F& ]7 I  S1 ]6 L: l3 S. J9 V/ H9 A
        Solving the smallest instance directly (base case).
      l. F. d8 V4 ]
    , F- Y; t  v' w, M! {* O    Combining the results of smaller instances to solve the larger problem.
    & J, O% V& D7 j/ m3 H( F) n$ c( C6 y# \, S+ M
    Components of a Recursive Function+ L1 v+ v7 E2 p  w# k8 b6 w. _
    + t. H' H4 t" Y6 R' H
        Base Case:
    5 M0 x+ I9 z, d+ \* Z' ]' s8 p: o, B9 g( B/ P  ^* t" p% v
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.) L: {, u% W  {5 H8 i- u: N9 P: R

    ( f' X  Z' P/ O) `! k& }        It acts as the stopping condition to prevent infinite recursion.1 d% Q, @. L: O4 z; v( R
    ( W6 d7 ^0 d8 O) d
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.- l6 |9 V0 P0 r$ R2 [. i

    6 W$ l2 R- w. V% G0 j2 X; [    Recursive Case:7 a; |# j' U7 {/ k

      F5 J. z) M* q* j6 ~        This is where the function calls itself with a smaller or simpler version of the problem.
    - n. F* Y- [, M+ ]
    , N6 {' E& G. C% o6 E+ Z        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
      ~& s) o5 R! s. C; \0 {5 f5 }' D0 I8 }, ]; j% \% w
    Example: Factorial Calculation+ R: W$ Y) ~& o# m& {. S- R) p
    0 A  J) f: n: v9 a9 P( g
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:' ~. A) N; L  v- g$ z6 Z3 ~* j

    6 D2 R1 a) H1 H0 C1 E" o; ?    Base case: 0! = 1
    ) l4 E; C- S7 ~
    ) V8 P# }* q0 F2 r1 F, M) ?    Recursive case: n! = n * (n-1)!  t' x/ e8 b9 T. t, a! D- {7 ~

    6 s# p" y& R" E5 K1 G  m' i& ^/ iHere’s how it looks in code (Python):
    # i4 r. k; Z1 R) N! N: }2 ipython& V( c% `6 h$ y& Z( p  v
    6 |* g6 _+ s! E. o& \- @; m

      S4 ~+ H  T* m- z8 G" l* v4 n% v# edef factorial(n):
    ) j' y5 X3 V* A/ H    # Base case
    7 X4 O+ i( V9 O6 Z( f6 c( x    if n == 0:* z5 l9 `7 @  G! s4 p
            return 1, {% x3 V" z! F5 B$ f- R! i
        # Recursive case" w- F3 u& S' Z/ W  K
        else:6 u$ q/ [' h' P( k, W( _2 j
            return n * factorial(n - 1). E5 P5 m) T9 {/ k9 E
    4 _' Q9 _/ Z. p, U. h
    # Example usage
    : y$ J$ }6 ?! c+ q4 Fprint(factorial(5))  # Output: 120
    ; L+ K, ]4 s4 j- r
    1 X# q# n3 [3 r* \  oHow Recursion Works
    / x5 s: F: T, y: F* j6 g% n  l$ W5 h& ?
        The function keeps calling itself with smaller inputs until it reaches the base case.5 \" N0 S7 F# N$ z
    8 m. }+ a  L6 S  o
        Once the base case is reached, the function starts returning values back up the call stack.
    ; [' C. G# ?0 @1 W8 D/ u, C; F& [+ v; ]: c5 j: ~7 @$ ?$ b6 A: }& J3 A) m
        These returned values are combined to produce the final result.2 o# i' \% I" \

      W0 ^0 Q" y8 @2 TFor factorial(5):2 W6 J8 I! ]: j5 N( j. x

    & Q: ~5 c' U0 x$ l) {# Y/ T
    . [1 M! i' H  V) O3 Jfactorial(5) = 5 * factorial(4)
    8 t) ]9 a4 E+ Tfactorial(4) = 4 * factorial(3)  V0 l/ m/ W8 R$ E/ Z4 X
    factorial(3) = 3 * factorial(2)* B9 j" [- Z" N& U
    factorial(2) = 2 * factorial(1)( u: Q3 d8 E7 u* m9 F4 S
    factorial(1) = 1 * factorial(0)# w3 l  z: F4 |8 t  M/ e1 P
    factorial(0) = 1  # Base case
    5 t6 s  E5 G0 K5 W! k4 g% W, u7 e* _- P3 W1 m6 U
    Then, the results are combined:8 X8 X( i/ S3 u+ R$ Q( `- [
    7 v% G; P0 f. d

    1 `9 s  b4 e' U, M; }factorial(1) = 1 * 1 = 1
    , t( p' T1 O( {  r$ B- v5 ofactorial(2) = 2 * 1 = 22 \" X0 w" ^0 f7 A2 O! ~
    factorial(3) = 3 * 2 = 6, ~. w( a- N& X; a
    factorial(4) = 4 * 6 = 24  C, N* }! ^* n& f; [0 N8 R
    factorial(5) = 5 * 24 = 1209 s- G) z( e. m+ ^2 I. G0 g: P4 n
    + j4 M" x  q, {: H; F# K7 R# a6 X
    Advantages of Recursion4 W% r' f$ c& ~$ O

    ) Z6 J& ~8 M* s! j" j! ^    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).$ Q. n+ s3 N, X0 L2 |# t: p
    ) }4 X4 {% n, V9 Q  D
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    - G3 N+ F4 r  P0 _. k# h; i) ~) j+ U# K3 ?: l# x* _' A5 P7 V* |' z
    Disadvantages of Recursion
    + Z$ O; ?# L. N% L4 @' N( l! I! q% E% f$ I8 p
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.: t/ w& ?8 c/ x9 c
    4 G3 K3 Q$ E) W& t* \
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    2 W; u/ `7 V5 m6 v  I+ K% ?# K9 a
    When to Use Recursion
    $ Y$ {7 h3 {4 m( R
    & O3 R: _5 z1 O- T    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).) P$ {- V, R1 f8 E+ V- h

    ) k* u& {+ J* v( h    Problems with a clear base case and recursive case.
    6 m' |  }3 `5 E) N, s0 W1 y$ \7 A
    Example: Fibonacci Sequence* r; V+ S/ I, [$ h/ m4 t
    - a1 u# a" ]  R- d# a, f
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    6 E0 u* |8 r3 N' z3 D& r: n$ v9 m3 `* @/ H0 ?6 w
        Base case: fib(0) = 0, fib(1) = 15 l+ H$ O+ V8 V! u& P: p9 l0 S' e

    7 @: V% J6 O' a, m    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    7 d) o% P# Y' Z& @/ p' N3 o2 Y2 \  @2 e/ Y
    python: Q1 [* K, Q, G. ]6 k! X& E
    ! t' `% S9 Z$ d( ]' C+ D( S

    3 L# f! t2 I! Z9 F8 mdef fibonacci(n):9 g0 B5 ?8 F) I7 S4 {' B9 B
        # Base cases7 _5 q+ J' p6 [+ F
        if n == 0:. ~- n2 f2 e0 k2 N
            return 0
    0 s+ G: L8 v2 j) @( P4 ~& X" o4 j    elif n == 1:
    0 g! q  O5 I. @! |/ M        return 1: O. d9 u+ E0 u
        # Recursive case
    9 W% n" t9 V9 A4 J    else:! e# n6 T& A  w3 F
            return fibonacci(n - 1) + fibonacci(n - 2)
    " O$ S0 @$ `; a5 s' h
    * P, y" N0 D, H  I0 P# Example usage& j' N* ~8 D, r
    print(fibonacci(6))  # Output: 8
    + E0 d; N9 Y, v2 v
    1 e2 o* B  I9 }Tail Recursion
    ( @3 ]3 Y; {5 |) F8 O! y/ [0 K, c& h9 u
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    3 b/ H$ J/ V6 T9 P4 B+ N% ]7 Y% p+ p2 I' M8 q
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-19 04:30 , Processed in 0.076085 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表