设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1862|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 : k7 c* D7 M' l( I+ N( l
    ) O$ u# h/ U; e% ^$ F# l1 C/ U4 V( }
    解释的不错/ V. w& c2 q5 V' a

    6 [* c2 |$ y3 [  f+ k1 K递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。% ?% N, i8 u9 l* ]
    " d: P1 ]" d* o( Y5 |. y
    关键要素" T8 D) e1 \  G. [; C* N
    1. **基线条件(Base Case)**; J4 ^+ O* h& j# L; U+ _
       - 递归终止的条件,防止无限循环
    4 r- ~. |4 w. A2 p% j0 ]  ^8 v   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    7 c. ~) Y/ b  d$ d4 D6 W4 U. b
    # ]$ `9 r' I) s0 @! [: S# g8 a$ e2. **递归条件(Recursive Case)**4 _. V: k+ W! H  }, w: g9 N
       - 将原问题分解为更小的子问题
    9 s* u" j+ h) F: ?8 {( ~0 [) W& P   - 例如:n! = n × (n-1)!
    0 i- V0 U& [4 }, S$ U* S2 d( G" }+ y8 Z& A, y* G: w
    经典示例:计算阶乘! m' q$ L$ m5 C  C
    python
    ! [9 X# S2 K. C# _5 Y& Tdef factorial(n):
    ' r  p, h7 z# o    if n == 0:        # 基线条件
    ) H# R8 G: {7 J' i        return 1+ ^3 y5 ~2 M1 n% F
        else:             # 递归条件+ M& ^  W! w+ M& D$ M
            return n * factorial(n-1)- y( j: A' }% E5 n$ i* g) w
    执行过程(以计算 3! 为例):
    - n$ ]  g1 l) A% f4 Mfactorial(3), ]# h% V: e* C5 E
    3 * factorial(2)" w) N4 N6 F" O9 `
    3 * (2 * factorial(1))
    , ?' `! r' F3 o( H; c3 * (2 * (1 * factorial(0))), O$ W' _1 ?; M! X5 h
    3 * (2 * (1 * 1)) = 6
    7 z$ o% h( O4 y" e. n
    5 M( _- M' k1 G# h3 T; A 递归思维要点
    ( o! O0 D6 N+ S5 G: Y1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    5 a+ t6 u8 H, Y9 P4 j+ Y2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    7 t* w# b% j- Z' H. r3. **递推过程**:不断向下分解问题(递)8 C8 I" h0 \) x4 ^( n3 ?$ I  d
    4. **回溯过程**:组合子问题结果返回(归)
    # h8 j1 k  x3 a& W7 M9 `
    1 }. l% R" z" }2 i9 a 注意事项; }% Y6 W6 l! v; C
    必须要有终止条件
    ' X) ^2 i; a! w7 f2 V* E6 v递归深度过大可能导致栈溢出(Python默认递归深度约1000层). r5 ^  J1 R2 U
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    6 z: {4 O! D+ k% p4 O. r" S& r4 }尾递归优化可以提升效率(但Python不支持)/ S4 ]; l0 d/ p4 x
    ( \) S5 J* a- s* L2 m6 T
    递归 vs 迭代1 Q1 u% p* I8 U4 A7 ]
    |          | 递归                          | 迭代               |/ Z, {0 N7 V+ t; _
    |----------|-----------------------------|------------------|
    8 V, l7 f! S) o/ t4 u7 D| 实现方式    | 函数自调用                        | 循环结构            |
    : r" I( o9 M4 k% @, c0 t| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |) ~) ~+ u: p5 [3 \
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
      K& W- \# P5 f, A  G| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    9 D* J; X; |' k* W
    " F% G  }, q! i8 `; z 经典递归应用场景* @, {1 x. r0 e5 J# p$ e( ]
    1. 文件系统遍历(目录树结构)9 r( m8 X/ b' L9 F/ t5 ]
    2. 快速排序/归并排序算法+ V/ S# Y4 k. [1 k+ j
    3. 汉诺塔问题
    / g1 Z( x9 ]( i' ?' P4. 二叉树遍历(前序/中序/后序)% O, |0 \1 @$ S
    5. 生成所有可能的组合(回溯算法)
    ' y# P( s+ c; N. V  H- O  x) B  o, W6 }# z) U
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    3 天前
  • 签到天数: 3146 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,7 u! P9 Q+ z1 h, C- c$ ^
    我推理机的核心算法应该是二叉树遍历的变种。& g" {+ S: T% U" g
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:8 F" t6 i, b8 B5 _
    Key Idea of Recursion
      o9 Z6 v/ q- h5 u6 V1 _2 Y2 s5 B6 V2 {& V
    A recursive function solves a problem by:5 c% G/ B* y6 w+ D3 t5 {

    " z" I! j/ B+ I+ l    Breaking the problem into smaller instances of the same problem.
    5 ?$ O6 P! n/ C% m( u0 P! n* F# \, [& q% {% ?6 Y# I2 ^: ~& Z, L
        Solving the smallest instance directly (base case).
    " q6 E( g7 q" v" L+ Z- T3 s
    9 h, F  c0 U8 A8 T* L6 p    Combining the results of smaller instances to solve the larger problem.2 p( Z: m! j2 I0 L. D6 Z+ i

    * {6 Q1 O; G) W4 u) ^! y' zComponents of a Recursive Function
    ; e; h, R7 N# b% W* q5 P1 G% @9 j9 r! o! g/ x# `  I8 @# _
        Base Case:' m( L6 E3 W/ a5 y: O

    * u: S: I0 N; _/ y7 Q        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.  N7 u( ]1 L, x+ e  l' `2 x
    , u6 r1 h# r$ N- `4 U  B
            It acts as the stopping condition to prevent infinite recursion.
    4 p' Z9 _- `8 |6 E
    * L8 |; A5 c9 o% [1 |: F2 J- T        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.7 b2 j6 N) u/ o, i: b; O, `
    3 d4 s! K# D! u8 v" U
        Recursive Case:0 W) S- E1 j9 Z. A

    5 q1 H- Z- H* c- M1 ~' P3 F& r        This is where the function calls itself with a smaller or simpler version of the problem.! e" I+ z5 S+ a. e

    % q, t6 g# B4 c6 P3 [; y3 ]6 O        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    7 _3 [2 b5 G0 A$ R
    ; l$ f; U+ L: A% c# _! V) _6 JExample: Factorial Calculation: n, A# y# ]3 [- A9 K  }- x

    : {6 \' B8 _- v  AThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:  B0 Y$ d2 H5 j7 ~# q& d/ L
    1 R% \3 Z2 M7 h
        Base case: 0! = 1' H# P: Z6 K) j3 G

    2 {9 A; @5 g9 Z( H    Recursive case: n! = n * (n-1)!) Q: f- g9 w9 ~. C8 F' r
    # |7 j# y4 J; F( U! c: s* E
    Here’s how it looks in code (Python):
    # Y: @2 B/ Y- \* G' O( K, Cpython
    / W9 W4 t, V( M6 k* o' Q9 P$ l& d  j! y$ M( c  q- h) i

    $ P. f1 [5 u6 `3 jdef factorial(n):
    $ o. [* J$ r9 e& J5 t  [. _; b    # Base case' g% O" }& p: w$ t8 c3 U" z
        if n == 0:
    7 [$ |! C2 ~" l7 s        return 10 u5 K  z9 c  C- `( L
        # Recursive case& f- r9 a" n% r7 p
        else:
    # G6 c3 k& C& j& z) J) {& H7 T& ~+ k5 O8 I        return n * factorial(n - 1)
    , E- i, Q& ~; Y- X! h7 j
    - |: n6 ~2 H  K. Y2 q# Example usage& j- T% e" a9 U, D  Z
    print(factorial(5))  # Output: 120
    2 J" C2 P# c9 [8 W" C2 V; K/ ~5 Y
    - J. g+ o0 f9 K. y2 THow Recursion Works! k  i& \' `; \0 ?) z  b$ C
    $ p' l1 O2 {1 j6 c  t6 l- F
        The function keeps calling itself with smaller inputs until it reaches the base case.
    3 j  k* @, Q7 |2 B* \
    - r- t3 L- l, x9 C    Once the base case is reached, the function starts returning values back up the call stack.. {, c; c+ F2 e. i9 x
    # `+ Q$ V. z5 x, b
        These returned values are combined to produce the final result.3 q1 H* w& T" a9 e" y- a

    3 R+ w% y2 ~$ [- pFor factorial(5):) n* O$ M# t+ w7 m- f( @
    / Z; h9 e- D' V' ]% d

    : d5 u6 b: N2 h* L& H$ Ofactorial(5) = 5 * factorial(4); g7 Z2 a- ~5 o: K3 U' f/ T
    factorial(4) = 4 * factorial(3)# ~; y# M1 Q: f% Q6 X
    factorial(3) = 3 * factorial(2)
    ' K- i/ H6 M0 g5 Ifactorial(2) = 2 * factorial(1)
    . {( a6 {( ]! \8 ^factorial(1) = 1 * factorial(0)( ^& A2 k* |+ j! ~
    factorial(0) = 1  # Base case
    " a! B+ b% M5 p
    3 ~# l8 @: I" U9 o6 [+ N+ ^9 `Then, the results are combined:
    ' K8 T9 j/ ^4 W# f  x5 x, s6 o0 Y. l

    + a/ h$ D' l; y0 c1 w+ Gfactorial(1) = 1 * 1 = 1
    * _. _- c" N, m. x' Dfactorial(2) = 2 * 1 = 2$ A( T. W0 g& ?2 y: F; |& D
    factorial(3) = 3 * 2 = 6
    3 N8 A9 R8 Z$ s0 Q5 Yfactorial(4) = 4 * 6 = 247 B) N% B# N' f1 E3 |' a) V
    factorial(5) = 5 * 24 = 1207 P8 z) ?2 r$ ]

      x0 V0 l( d4 q! Z& l5 F& S9 c! pAdvantages of Recursion5 d: l4 `: x/ C+ Q
    " `! f. h# F- k" ~
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    & O" b- a; R6 t7 C
    1 X; u0 f" C5 o& A2 [9 i    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    3 m" \4 h9 \! X7 y, |1 `, r) ^4 D- A! i' F; t
    Disadvantages of Recursion
    $ _& C# l/ e/ }  O! W& B, Y* H+ q+ S: K! Q7 d1 ^
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    ; V9 T6 U4 v# W; ~
    ! S# U' |5 F- _7 P) {/ L+ `) L    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).' M$ ^1 o1 o. b+ w6 p
    / D* ?* Y$ [1 x+ i7 ~5 y2 F, ]& M
    When to Use Recursion
    + k6 n( ~/ [) R$ p, M4 }0 Z' n5 K& `5 G4 B- c5 w0 [" ]6 P
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ; q. G1 l! @. M- l! L  t1 ~9 f$ k/ w: r8 A- D9 I1 ]
        Problems with a clear base case and recursive case.4 S, u8 ]+ \. q& m7 U9 i

    ) D5 ^# r& W' W( c# ?Example: Fibonacci Sequence
    % j, Y: f5 q" Z& H( Q: n5 S
    7 K$ h: M' R' U0 S# \" uThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
      T& h5 p1 I+ @$ K
    - T, z) h$ f9 d+ G  d    Base case: fib(0) = 0, fib(1) = 1  g" B$ v! @2 S3 Z; W6 J) c% p

    - Y, O  m+ I/ Q7 k5 X: ]2 y. Y8 |    Recursive case: fib(n) = fib(n-1) + fib(n-2)$ b3 r8 \* `' Z- _! K. G
    0 V& m- Y* H' n, ^! t) a8 U0 D
    python
    + X& g" n8 X9 y" S* A
      l' C; I* Q" ^6 G' L5 Q& Z
    6 a( g9 k# v- i: a8 idef fibonacci(n):
      z8 K; ]' f7 ?: w/ t    # Base cases
    2 e4 Q' F( H9 b: E- o# Z. G    if n == 0:$ u, B; l$ ^7 Y
            return 0
    % X6 c! J6 j" @4 i4 N5 S; Y    elif n == 1:
    ( [. `) l& M+ p  c        return 1
    7 y' q  d, n/ ?, C2 |0 Y    # Recursive case4 [6 @& O8 A2 g2 u6 p- n, l
        else:
    2 O- j8 G$ h7 G        return fibonacci(n - 1) + fibonacci(n - 2)" W) u; r  V8 W3 b
    + F1 [8 `: U" P6 f2 y
    # Example usage
    . V) z$ H# F5 ~! n7 H! M, Zprint(fibonacci(6))  # Output: 8' ]; y* T- `; D* o( V9 V6 C# N

    ; _7 I7 I8 k$ Z" sTail Recursion. i+ O% M! D: F
    * x+ D8 ?. m" e
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
      h% }! M( _: d" c9 Q4 A1 p3 I# m/ X* M8 K
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-17 03:56 , Processed in 0.028758 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表