设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1651|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    ' R: W1 d  }5 U
    2 U9 P3 q4 m: Q解释的不错
    # i( ~" D! c+ v' A
    6 K7 V- `3 _- d9 V递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    ) {3 q) s) i: Q# v# U
    ) e' |" Z/ ]& w8 y- e; W; F 关键要素
    , \4 j1 z! d4 [' R! X8 v- n& u1. **基线条件(Base Case)**
    ! {0 e& p, W, g% ~+ O   - 递归终止的条件,防止无限循环
    8 O* ~/ q) Z: \5 u! s   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 17 j" Q! a* b7 {$ v

    4 r  d: v+ j  Y* L  X4 e) L2. **递归条件(Recursive Case)**
    ( e% r, O% e# X0 G8 A   - 将原问题分解为更小的子问题& H% J, v$ u! N; |4 b. Z- s
       - 例如:n! = n × (n-1)!
    ( V1 @* s* |# B% \3 E2 B% b1 G" T$ @1 q/ _: P( y  @
    经典示例:计算阶乘
    0 T7 M& l( _. T% ^: ~! r: T3 \python
    3 O+ G3 L+ s( A# s/ V0 sdef factorial(n):1 f, B8 H9 M5 a) X7 C4 s& ]
        if n == 0:        # 基线条件, x5 h  j0 e& v* l+ B
            return 1, h9 r/ Q0 \9 \- `- ?$ D% A
        else:             # 递归条件& g) _- u% U8 {7 V5 |, n
            return n * factorial(n-1)
    7 W; H7 I' n3 k8 b执行过程(以计算 3! 为例):
    7 G; E1 Q& X0 I' Ufactorial(3)3 d4 \* t* V+ p9 r- j. q/ I. Z
    3 * factorial(2): |) T! V; o8 {9 N0 A: F; H9 R
    3 * (2 * factorial(1))+ `" F. i9 P! d
    3 * (2 * (1 * factorial(0)))9 y' \0 o& G' ]# r1 B6 R+ B
    3 * (2 * (1 * 1)) = 68 H9 v% K2 ~* x, T8 r# G

    # `% g  v6 I0 _) y& U2 k1 ?$ Q 递归思维要点
    ' H1 Y( g8 e- h$ e1. **信任递归**:假设子问题已经解决,专注当前层逻辑3 i- G* {# j% D/ b# s
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    9 m' l0 D& a$ x3 B9 Q1 Z" @3. **递推过程**:不断向下分解问题(递)2 y9 \3 H7 N2 l/ ?) E
    4. **回溯过程**:组合子问题结果返回(归), u! b6 X. Z% f: G" k8 G6 P: y
    7 d# Z. D8 ^6 ^4 E* l6 x6 z  m
    注意事项/ v  ^2 x. K5 j; C$ ~
    必须要有终止条件& q$ S* S, W. s! J$ m, q
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    1 b1 x0 S- b+ a) h某些问题用递归更直观(如树遍历),但效率可能不如迭代. J2 r& S* q1 l8 m' {! g7 [* ^
    尾递归优化可以提升效率(但Python不支持)( c' i# ^: b6 {2 q% G. c6 M1 e+ N0 T5 L
    " |/ c; ]0 o/ o4 d+ ~1 e
    递归 vs 迭代8 I3 @+ K6 N% V# y
    |          | 递归                          | 迭代               |
    6 s$ e: t: L) J|----------|-----------------------------|------------------|
    - l3 K( f8 t1 R* [6 E! C| 实现方式    | 函数自调用                        | 循环结构            |
    7 q  [: n* k/ Y$ W2 g) V| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |- c9 {& z5 m; }# ?
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    * Y, ?  d( ]+ k: Y# t2 x( x2 O. V| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |! T+ M2 X! _- o  `
    - y  Y6 D( H) Z% C7 {& ^' G
    经典递归应用场景
    * V- j8 y* U2 K, }1. 文件系统遍历(目录树结构)
    4 v+ S. |9 h$ H: j8 N5 G% O& B2. 快速排序/归并排序算法% q/ B) L$ l( o7 U
    3. 汉诺塔问题. \. X, ]: C5 j3 |: H  `3 V
    4. 二叉树遍历(前序/中序/后序)1 ?4 X+ q8 m) W8 z2 @6 Z
    5. 生成所有可能的组合(回溯算法)
    + C1 ^$ k# r" E# K6 Z$ F6 e
    ! K: w% s8 P9 c. a试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    11 小时前
  • 签到天数: 3128 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,. F2 T9 [5 W" Q/ e# j
    我推理机的核心算法应该是二叉树遍历的变种。8 I% l; P9 K6 x( h9 M! W1 X
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:8 {$ s/ s" c  ?) P) j4 a9 r3 v/ g
    Key Idea of Recursion
    0 Z! `& N! `6 S: z' l  g4 t; l
    % ?8 f' T6 M) DA recursive function solves a problem by:
    6 z4 F6 b/ W( _& y3 _# v5 M7 y+ N  A" W6 C" C" i# Z2 o
        Breaking the problem into smaller instances of the same problem.
    & l! I# Q! B' Z: g- Z/ T
      |1 g% Y+ u* ^7 G    Solving the smallest instance directly (base case).- T( V# S5 Q1 Q. Y7 `9 F

    * }/ R% c, U  i+ ^+ B    Combining the results of smaller instances to solve the larger problem.' c" r- u, ?* a$ D, p

    $ `( ~; a5 X* K9 e/ f* aComponents of a Recursive Function
    - C" z8 @& j" q+ b" z5 H
    ; C% O9 k) Y9 I, k) z    Base Case:
    9 F: t. }* X: q' e+ o* U5 J2 {' u% H9 I
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    ; r3 q( }* q' w( s. h8 U  P. d0 r' e6 `
            It acts as the stopping condition to prevent infinite recursion.
    ) V: w2 m: f$ J' L) Z" F$ o2 Q% i
    & y" P) ~) L" S/ j9 q7 c: l        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    $ H% f0 X. p  `# H# }8 n& x: M6 H
        Recursive Case:
    + g: U% R8 j9 z, v1 V) P) q1 p+ f# Z. R  o' Y1 q
            This is where the function calls itself with a smaller or simpler version of the problem.
    6 k3 S1 z& s9 [; ^7 K, [; m! p0 W( R
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1)./ j* _* x: d+ v* j8 ^$ n) A0 ?

    2 I9 E/ d- K" ~' q; hExample: Factorial Calculation
    7 h! O  |$ p. F' L/ h: A0 y& A- T
    ' O- E5 p: l- Q: n$ N8 uThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    , K( M+ y4 f' E+ `  l
    " G  v# k0 X7 y7 x    Base case: 0! = 12 c' u& Z; f) f: [
    ) A1 w- h' N* v4 @7 {9 X' i9 p
        Recursive case: n! = n * (n-1)!' W$ V8 s; G  b/ ]% {
    $ @$ ]2 n- h- j/ t# A3 T) d) V
    Here’s how it looks in code (Python):
    9 {. w# L, y! ?python; ^/ X7 s. L; I/ u
    - I1 y7 i& Z5 G) B, x7 {
    ' ?: k1 R2 ?+ H/ k) U7 Q
    def factorial(n):
    6 |( K1 j) S" o3 T1 c/ H% p    # Base case/ H: R7 _) c! `  J" i
        if n == 0:
    / h! \: l: w( o0 f/ H% v        return 1
      _* v! N# R9 D5 x; t' K2 Y+ G    # Recursive case5 c' y8 y( Z# t" y1 u. [
        else:
      I+ o* v2 q% P* \' s9 `1 t4 E! ?9 m        return n * factorial(n - 1)
    , s! h$ i/ Y/ I! J- o; |
    * q5 c9 B/ i) a, P+ u: k9 p# Example usage
    6 Y+ i4 O7 U0 Fprint(factorial(5))  # Output: 1208 x# \% ~" g# v

    * e! ~4 ^* e; `How Recursion Works
    2 a+ c+ J& r: ~7 P0 S8 H6 b
    - y  e, L# a  b- U    The function keeps calling itself with smaller inputs until it reaches the base case.3 Y/ ]: K8 A0 p' k% M

    + V' ^6 x6 {$ e+ `& O    Once the base case is reached, the function starts returning values back up the call stack.1 k7 }, h$ G' q0 Z5 O  Y

    7 n( r8 `2 f9 C3 Y' C5 [# i    These returned values are combined to produce the final result.5 u# H! E8 W& c( \: N

    % B6 ~3 U2 w7 C) {For factorial(5):) w( |  I! R$ S5 B2 l1 R- J3 _  l

    & t; W) n# W. h8 j6 q" r
    , M4 x- c; l" C) ffactorial(5) = 5 * factorial(4): @" a1 v; w, _, W% `: ^& q
    factorial(4) = 4 * factorial(3)5 W! ~& \8 h- S6 r3 W8 H
    factorial(3) = 3 * factorial(2)8 R! u( @7 ]7 z3 O- A5 P
    factorial(2) = 2 * factorial(1)
    ; D3 X- U: W2 d6 s' g0 X8 n8 ofactorial(1) = 1 * factorial(0)" p( G# r8 U3 M  C" s+ W5 C
    factorial(0) = 1  # Base case
    # J2 n7 K2 n$ k2 H& j
    " R4 g1 Z+ U% N1 S, S/ }* o$ v/ `Then, the results are combined:# N! I+ W9 H9 C! [
    ) q) c; C! L1 T

    " m# t( z+ v3 a& j' Hfactorial(1) = 1 * 1 = 1( ]) Y, y/ Z: O) d4 n
    factorial(2) = 2 * 1 = 2
    % u0 l% n& j! l  L$ L8 lfactorial(3) = 3 * 2 = 6
    0 g, a. A$ L! |factorial(4) = 4 * 6 = 24
    ( d# D3 u( x  M$ u8 tfactorial(5) = 5 * 24 = 120
    , B: b" Q. X) K
    1 I  o5 V0 U" B( X* f) s3 NAdvantages of Recursion) U3 @% ^, b9 A: P4 j8 w& q3 ?1 s
    & ?" V+ m$ F7 @% _( o8 }- d' O
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    * ^  V5 Q; {; L3 g3 \" u  A& L* M/ i9 F$ u! p, G4 H1 Y
        Readability: Recursive code can be more readable and concise compared to iterative solutions.8 M9 d3 A- z7 C$ m: l
    7 W- E0 }( a9 o! c
    Disadvantages of Recursion
    - |. |1 _: [% z# j) s9 b5 c- G$ c* }' _2 |5 `& W" k( O
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    8 u& ~' j/ l! x" C5 i' t& E0 p6 `8 ?$ s9 j+ H4 y
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    8 Q' d2 O8 U2 x' O6 T
    * ^  j' }  w+ {/ LWhen to Use Recursion3 i! k. L4 Z% j' R

    " K6 O$ U3 Q& r; a, j; Y    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).) v- Q  T1 D2 ?- f% f, e  o; I3 }
    ; b/ m6 o& U5 d6 B# u
        Problems with a clear base case and recursive case.& S5 d8 {" ~3 X/ N* l2 f5 W( F

    % s5 q, a: u" v& F1 P0 W7 p, VExample: Fibonacci Sequence. c) T: I' l7 s
    9 j  M8 d4 H' k) m6 t* H: ~/ K
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:* B% g' ~5 s8 K1 n& I  D) z. h
    + b; r8 O6 k5 ]9 J  V2 O
        Base case: fib(0) = 0, fib(1) = 1
    9 w% k  V( v; Z6 @
    0 x- C2 X2 S: Z5 {    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    ( l9 ?# h( I7 m4 [! t6 ^$ K: ]
    + Z, S9 `/ ]7 Z4 B; A! spython) I. V$ v8 h9 w  D# I* |5 ?

    % }( I$ j9 P1 O
    0 s( O1 I0 y# b0 Kdef fibonacci(n):; E8 L5 N9 `$ x, V- v
        # Base cases- J2 x7 Q+ X2 q2 y. J3 H6 l9 O( Z* ^6 E
        if n == 0:
    # w0 t/ J$ t/ F2 r; |/ y        return 04 G% {/ Y: s. X
        elif n == 1:9 }9 j2 @+ E# a: h7 j5 [4 }
            return 1! T7 A6 w5 j# p" t* E0 ^4 S
        # Recursive case
    4 `: H" l9 q1 @    else:
    . R% N7 Z4 P, U2 Z7 D8 w        return fibonacci(n - 1) + fibonacci(n - 2)7 Y2 d* X  _1 h* F

    4 O; n1 }) d, k6 k: i6 }# Example usage. S  e# A0 n* L+ y, a# w
    print(fibonacci(6))  # Output: 8$ E: m% j1 r2 k$ B
    1 A6 \; x* K6 k, a& |8 S7 c! Q/ l
    Tail Recursion  Y8 z8 O6 p6 r0 R5 ^: R

    & l6 R" q9 W  z9 l1 ?% R" I, |Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    6 m2 X  D" \  v% n4 e# k! Q: R
    ' L; f$ A) q' ?In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-26 18:52 , Processed in 0.030872 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表