设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1672|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 9 W6 U5 s7 ^% Z0 J' u) |! G$ M

    , u* r% S: n% j5 s& H, j# Y9 |解释的不错& P* R0 m9 w6 \! V; l: c& ~9 A
    . h; ?6 P  [) }9 u& N, ^
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。3 V  {8 Y1 e, O
    1 i6 Z1 j6 m0 i. m  |
    关键要素1 l' Z7 u+ `4 X. V3 b
    1. **基线条件(Base Case)**' W5 H) W1 u+ u, K9 f' |
       - 递归终止的条件,防止无限循环
    , R1 L0 T- B% I   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1. n2 x0 N( Z/ L. t$ [

    $ D6 j1 ]% f, x1 f7 J% h  |2. **递归条件(Recursive Case)**
    + R# A$ Q- T7 }) u7 P; G/ Y   - 将原问题分解为更小的子问题+ s$ N- M  h$ q( m
       - 例如:n! = n × (n-1)!+ k+ E! `# K5 l/ {/ [
    $ d, N9 w1 j8 D2 G1 ]
    经典示例:计算阶乘- a* I5 k# o6 k, ^* m4 E0 S
    python
    3 p2 Z9 R" C3 D9 xdef factorial(n):5 b. A+ H- v  h4 S  A7 p5 r4 A  [
        if n == 0:        # 基线条件
    % S. I5 }% \4 q, N$ {        return 18 q# n0 u5 P( P* q* W
        else:             # 递归条件" Y8 ~- V1 u- ^0 j8 L! U
            return n * factorial(n-1)0 o8 Y6 C/ E# H3 f8 u! n5 |
    执行过程(以计算 3! 为例):
    9 K, r) F& k4 j4 |; m/ d/ qfactorial(3). U3 v% n  q3 q$ J. B
    3 * factorial(2), D( D5 G; _+ a, b' Z
    3 * (2 * factorial(1))
    , e% r0 f# F4 J: o/ N5 R+ Y, ?3 * (2 * (1 * factorial(0)))
    + Q/ o/ a6 b* c9 t3 * (2 * (1 * 1)) = 6* L5 E' o- R( v3 p; c: R! z
    7 T! ], _: \& r3 V
    递归思维要点
    % Y% L- k! ?6 ?6 G' q# o  ]( {( g1. **信任递归**:假设子问题已经解决,专注当前层逻辑8 p4 M+ R0 l( ]" }: K( h+ x
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)3 E; g9 j% @2 ^! I
    3. **递推过程**:不断向下分解问题(递)/ H: A; K( D4 m/ N2 k. n% \
    4. **回溯过程**:组合子问题结果返回(归)
    . ]7 l, j# ?: Z* }, G4 {. I( x
    6 {# Y" J* r# `! V, b 注意事项
    ) _9 O" T% S  M8 X, Y; l必须要有终止条件) ^+ c4 e  B2 C7 t! Z* |8 M
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)% g% O3 `; Z/ i+ I
    某些问题用递归更直观(如树遍历),但效率可能不如迭代, H- ]  k4 j7 q6 y7 T
    尾递归优化可以提升效率(但Python不支持)3 f+ k  c% P% b2 Z
    8 f) v) O% }8 c- A7 D2 x
    递归 vs 迭代
    5 K1 ], j4 w# _. e& ~|          | 递归                          | 迭代               |' X* O- k/ y" W' ?; M
    |----------|-----------------------------|------------------|# O6 w" |. I' f1 O! S
    | 实现方式    | 函数自调用                        | 循环结构            |
    - P1 {8 ?3 P0 W' e# o1 S4 i8 |4 C| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    + l+ `/ ]+ U/ \* A, @4 o| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |! l7 V  w9 m( ?1 s5 T
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    + n0 j& f  ]1 z4 _  g" z/ |) y5 M. a7 R9 n* q5 X) y% y1 Q; U2 B
    经典递归应用场景0 O0 _/ j: g4 D
    1. 文件系统遍历(目录树结构)1 K" ?8 _* z2 o
    2. 快速排序/归并排序算法
      E3 u/ m" x; \4 b# `( T3. 汉诺塔问题
    5 C  r+ v( [7 S- b7 G4. 二叉树遍历(前序/中序/后序)
    ) i' b+ |, T/ W1 F5. 生成所有可能的组合(回溯算法). L7 N1 @  K3 U8 L% V

    # f+ J$ \& X$ t5 w! h试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    慵懒
    昨天 10:05
  • 签到天数: 3130 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    9 g0 `- J/ R3 g4 d" {" i; F我推理机的核心算法应该是二叉树遍历的变种。
    ; Q: k/ G- r( ?# m) L% N0 ~另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    - N$ r* v+ Q# I, D: A, S" u$ v  N: c! ]Key Idea of Recursion4 `/ a, W  U  }
    2 x# _! K! b* r6 F
    A recursive function solves a problem by:( O6 b  S" M, N7 N
    8 ~- Y5 W! N- Y; H* V. k
        Breaking the problem into smaller instances of the same problem.% w/ B! u, l$ r: H* o

    0 F- [: m. M) n' V. N+ I7 {    Solving the smallest instance directly (base case).7 O. p; K' Z: G3 [5 X

    & v, k7 L6 ~* \, {    Combining the results of smaller instances to solve the larger problem.# \6 B+ G7 |9 D6 F

    0 |3 h, V. e8 H" H; p0 tComponents of a Recursive Function+ H! [2 U2 X( x# M8 g# T2 B4 j

    ! O8 w1 _/ \- K; b/ K& {, I/ W    Base Case:( o% X6 B+ o& J+ Z
    1 m2 M0 E3 B' m& g: r, y
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.+ H! G# a! l' W& |& g
    . ~$ \2 a  T7 x( y
            It acts as the stopping condition to prevent infinite recursion.
    0 i# }0 l$ f; I: w$ g+ w$ M6 s8 b8 o2 v+ g6 S
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.+ b5 c' n  q' U; `2 s( g* D

    5 ^+ `6 p6 u# }8 u3 a: g    Recursive Case:
    , \  Y$ `; `" R. L0 {. ^3 z) A, p5 Q5 j" M
            This is where the function calls itself with a smaller or simpler version of the problem.8 C; X! d' b( i9 [3 @5 b
    ! {5 p! z) f/ z5 `% F. p3 b
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).$ P$ Z9 _. q! |5 H3 A! \* m& j

    ' G8 y* ]1 i  B  IExample: Factorial Calculation
    9 A- o4 f/ |1 p4 J' |' [
      k7 s* T" w% ^  Q: X% R% S6 sThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:$ D) J2 T( l  r$ ]. y
    ! H6 N& f) Z/ ?0 r  U+ ]
        Base case: 0! = 1
    $ N' d: [+ {1 L% D8 A9 q$ f) D4 c! ^3 U% C; c3 G2 U3 J: y
        Recursive case: n! = n * (n-1)!
    9 q- s! L# K( l6 v5 l
    8 e6 W$ `8 y) A) k( r% m# [5 g( QHere’s how it looks in code (Python):1 J/ \  J: R) l
    python
    $ I2 i( D: X4 V+ h7 s. C, c! }: B1 g4 _4 e" b

    , O. w: f" K3 B+ Z1 f+ Xdef factorial(n):
    7 [" S5 E2 o. l, P: T3 ?$ Z    # Base case  J/ Z1 I1 q; k% C- B
        if n == 0:
    9 R( k* V3 W3 i) x8 d- d1 r# Y# _        return 1+ c1 V! F5 z. n  y
        # Recursive case
    - _/ @! _4 c  S# I+ C    else:+ V$ _+ g$ I  A7 M( Z5 W4 j
            return n * factorial(n - 1)2 y$ ]$ D& B3 {# c3 M; P$ @( ?3 D2 N6 }
    4 x9 o- M3 ^8 Q+ S2 y
    # Example usage
    " ~; N/ q" k2 l" ]9 gprint(factorial(5))  # Output: 120
    # k: D( _/ h7 _' b- A& I$ c, X
    ' K. b/ f, s  B. R6 IHow Recursion Works
    ; e+ D8 Z3 M% R4 _
    ; }* P- H# n4 @; G( V3 P1 k    The function keeps calling itself with smaller inputs until it reaches the base case.
    3 N6 q  {( j% M% p2 [9 L- V0 _: q: o/ B0 W& B" M. {# Y9 L
        Once the base case is reached, the function starts returning values back up the call stack.
    & m# u. T- ~9 _: }) {  @1 o. M  r1 W
        These returned values are combined to produce the final result.
    9 t3 B' P; F# G  U0 p
    - D8 k  C6 }( Z# dFor factorial(5):
    , P+ A, ~* M  D+ u( i5 u6 L$ d
    0 U$ ?5 l- `; G
    . C, a3 E1 [7 k% ~" M! \/ Z1 efactorial(5) = 5 * factorial(4)
    * |4 t4 o! m2 [5 ufactorial(4) = 4 * factorial(3)
    9 n* g4 q$ a, p( Qfactorial(3) = 3 * factorial(2)
    / t" [! t3 x4 r9 l8 S& nfactorial(2) = 2 * factorial(1)$ d- r  O! P+ \! S
    factorial(1) = 1 * factorial(0)
    $ K4 i0 ?5 c9 a2 h- k8 Qfactorial(0) = 1  # Base case
    % T: r/ V6 [7 r1 s) i+ G0 f* k+ `* I9 w% P
    Then, the results are combined:
    ' K; G- |& p* r3 X/ M) S, j1 r- I+ p  S

    5 I6 \+ d+ L) A# Q& k4 h" Kfactorial(1) = 1 * 1 = 1) j" m  b# h( z( @3 q8 @, c
    factorial(2) = 2 * 1 = 2( z' H7 j* r7 L' b/ P. D
    factorial(3) = 3 * 2 = 6
    $ Q/ Z1 @/ ~3 Kfactorial(4) = 4 * 6 = 24
    6 z0 o/ O, a7 f0 ]2 ?- vfactorial(5) = 5 * 24 = 120, r# q+ I- m" a, c7 y
    ' R/ O! b' G) n8 s' ~- O
    Advantages of Recursion
    6 V# Q; y, B- C( S  s7 L" z9 Z
    ! O+ H) Y. R( C9 c' E) t    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).7 @' [/ W1 k3 L
    ; J% z( K1 _  X# e+ z5 r% ^
        Readability: Recursive code can be more readable and concise compared to iterative solutions.) ?( q& i. {0 Z* S9 ]* F

    2 X2 ?' C5 ^% E) hDisadvantages of Recursion) b7 i+ O' m$ H- r, x" T0 e9 J

    : o! u3 o, q6 h0 f2 z    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.' q  T4 R- E! Q/ m
    3 `8 q$ Z! r/ g
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).; L3 N5 {" k4 v% d

    ! X1 V& I: _8 Y* KWhen to Use Recursion
      W2 i' e1 |. B4 X' z1 b; B  U/ f- @( O1 J9 A, G* x4 j
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).2 ^  v! n5 U8 c& L6 g6 S, l

    % G- k' ~& }, ?; A, n. G    Problems with a clear base case and recursive case.
    / x$ r, O! L5 l' f
    6 a+ L- h9 p& i* Y: IExample: Fibonacci Sequence; Z& G9 j7 u" Q8 f
    4 f; Q4 e! J! z9 h1 A8 s" U
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    5 n4 u, ]# h) _4 ^! u3 d. b  j- x; y& A- a: m
        Base case: fib(0) = 0, fib(1) = 1
    + m' H8 d" @) m
    / U: @6 e  U% b    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    5 Z! X4 M8 D  q- ^" J* j4 I
    : s0 K0 J+ x4 e# _python
    ( [- U/ a' T' ?' ~$ V! K  p4 H
    9 G/ Z  ]/ l$ q7 Q, [5 b9 c8 W( t; D8 p2 y: ]4 a! _: B& a
    def fibonacci(n):
    7 Q2 l3 t. w  v5 T, m    # Base cases
    # i8 M, z+ `/ M# u% T    if n == 0:
    ' z: j: k1 [) x* U        return 0) {8 T- T1 w: ^, H
        elif n == 1:
    ; E/ x0 L0 T! q# G        return 11 `4 u* q$ [, c" p: x( R4 g/ P
        # Recursive case, M% f( T; x+ A+ W6 v9 }( O, {
        else:) b5 s$ D, o& K" _* F' k
            return fibonacci(n - 1) + fibonacci(n - 2)
    2 Y! a, r7 H. T
    5 Q# _1 }5 n! `$ Q. O# \3 K# Example usage
    7 P8 R$ G& S/ h0 Eprint(fibonacci(6))  # Output: 8
    5 h/ ~+ |& M2 e, E5 {* `, `/ L9 t8 ]; k% c) H7 h8 F
    Tail Recursion9 \' {( v2 u8 x# B  N5 _: v  @

    * d2 q: z7 C, K3 vTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    ' t; q" R1 x5 \
    - p: ~/ f5 w9 YIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-29 14:40 , Processed in 0.030731 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表