设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1576|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    7 _: J7 Q$ ]7 r8 H* h* p  L
    ( ~0 [$ `, p; n/ N解释的不错
    ; D3 ?9 d1 h1 g  D2 V' L% T
    ) u' q+ ^4 s; k' P6 @6 s递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    . V3 [! D! w+ y* ?6 o+ k' o) L
    ' [% }# z' {' a. a# Q7 z 关键要素
    , v0 \/ Q) }3 d2 l; ~; }4 v1. **基线条件(Base Case)**
    1 s7 L$ p1 b  g) a- r   - 递归终止的条件,防止无限循环
    4 _6 E* l3 j; @0 P! {3 x   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    2 |2 |) t% K6 O& r
    4 |) O* N$ A6 k/ z2 Y2. **递归条件(Recursive Case)**
    - L0 M. I( H5 B5 N9 @: h   - 将原问题分解为更小的子问题
    + H' U! O: V, ]7 F   - 例如:n! = n × (n-1)!: E2 S/ X# F* q$ N# X8 y. c
    " h7 Q' o" u; w% r, M4 l6 V( Q
    经典示例:计算阶乘
    ; E8 f% k8 G1 t: Qpython$ O( O: Q( C& e+ t0 G( h
    def factorial(n):$ `+ z* Z- ?7 v- A
        if n == 0:        # 基线条件
    " c  P& l. `7 {3 z- U0 [        return 1
    6 S8 e; ]2 y8 a0 c* M    else:             # 递归条件
    ) l( X0 Z9 i) s6 I        return n * factorial(n-1)
    * Z  b9 `$ ?4 P' ?% j执行过程(以计算 3! 为例):
    & G3 h/ r. ?5 g5 y( y2 h, ifactorial(3)
    6 K/ U  `& i- q- r% J3 * factorial(2)
    % d4 L6 n3 m. X. T4 F# {3 * (2 * factorial(1))' N; u* A2 }+ P7 S2 y7 C9 Q
    3 * (2 * (1 * factorial(0)))
      [! ^5 N8 @# u$ j* {( p3 * (2 * (1 * 1)) = 6* a$ @/ d5 C; ~6 V' u  N( D4 k& ?
    8 n9 D8 X! ~* ?" D
    递归思维要点
    , K4 s2 O6 v; f1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    ' B. i% a7 M  t- H3 y* M; l2. **栈结构**:每次调用都会创建新的栈帧(内存空间)+ U* I7 ]* c5 r8 Z/ d
    3. **递推过程**:不断向下分解问题(递)
    " f* _. v4 F+ v$ Q- X: @; A4. **回溯过程**:组合子问题结果返回(归)
    : `6 Y: x7 a# ~* n
    ) B( H9 N3 E- K" w 注意事项: u" o/ U  i1 i5 L' ~$ P
    必须要有终止条件
    , ?# |' R. y0 f6 z, o  S递归深度过大可能导致栈溢出(Python默认递归深度约1000层)) m( V* w! \, D
    某些问题用递归更直观(如树遍历),但效率可能不如迭代7 O4 h" X. `5 S3 _: i& g
    尾递归优化可以提升效率(但Python不支持)
    7 B- c4 ~3 V# z& z1 h& a2 h8 P/ E5 f  _& n/ ?9 p
    递归 vs 迭代
    % r1 d2 z- V) |: F( _0 C4 g|          | 递归                          | 迭代               |
    * h) ~+ R  D& \1 F: u0 r|----------|-----------------------------|------------------|
    # k4 i$ r/ j' g" v2 w| 实现方式    | 函数自调用                        | 循环结构            |
    ; c" R+ _4 w. a2 ?- C| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |7 P, m; ?. P' E# Q/ L+ J9 |& B
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    $ T- m% X! a+ l% P+ [| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |4 k  X  Z3 E9 K, s+ `
      I* U6 W4 A% A6 H' ]
    经典递归应用场景! i! G+ z- t4 I' J; e" m( n! N
    1. 文件系统遍历(目录树结构)$ t8 G8 m, ?" t% A
    2. 快速排序/归并排序算法" e8 X/ m6 s/ k6 N7 Y5 [6 K
    3. 汉诺塔问题
    / w, J4 ~+ s. L4. 二叉树遍历(前序/中序/后序)) @3 m% P, s' {6 h
    5. 生成所有可能的组合(回溯算法)
    , X6 |& A7 O$ N% @) Y( S5 T* m- N  P$ {
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    2 小时前
  • 签到天数: 3123 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,$ X- j7 M: i( Y0 C; B  K* L
    我推理机的核心算法应该是二叉树遍历的变种。
    4 E; _8 f1 \( ~8 W6 e7 {2 F. u另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    1 E: p( N" c2 f: k* V1 ~Key Idea of Recursion
    * s1 H6 p% p9 z, r) X  Q
    - P" Q* E; \9 U9 oA recursive function solves a problem by:
    / s0 \, O2 X, f: C0 m
    8 ^* i+ @3 \- {5 [5 f5 @# M: z    Breaking the problem into smaller instances of the same problem., F- }& b* y3 [+ O: E4 b6 f$ ?
    ) b& I3 w9 H; Q) y
        Solving the smallest instance directly (base case).
    ( c2 N+ l) U) S* R# E' P* U
    & ^% T9 x3 ]: b6 e* p; ^1 h    Combining the results of smaller instances to solve the larger problem.
    ' ^/ K3 N$ x. C6 p9 t' \& C" _5 `  S1 u; ~1 S! Y; A8 p
    Components of a Recursive Function
      V! i8 ^( x0 J
    ; L$ r/ T" x' g6 q    Base Case:
    % @- q7 v  L# S# }  J) g
    $ @9 z" ]# a3 Z: @( _        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.7 o* C) ^. ~9 b5 r

    ) d+ u: ~# D" ^9 X( E" c2 w2 K        It acts as the stopping condition to prevent infinite recursion.1 W* A" T1 s3 A7 j' }& q  x: T

    * b- S  g" m3 c' |6 f" }        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.8 O, K) ^3 T- c! T

    1 z" K" _0 ]+ A% K/ d    Recursive Case:7 D% U. s% Q* a' m. H
    : h" m" |! B2 X+ n" t  A
            This is where the function calls itself with a smaller or simpler version of the problem.
    3 ]' C) C9 t6 D, s" |; s7 `# y( W  f& N6 q4 m) n$ v
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).# f" X0 X- k$ g& P( |9 y, q

    / \& K6 p% m. Q4 QExample: Factorial Calculation% ^  ~) s( e9 N! `
    " M# F4 E: \4 n1 H) G
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:- w; ^/ |6 l8 n! f. _* j& f+ v
    ) ^' ?/ x/ |. a( P" J
        Base case: 0! = 1
    & D4 k2 j, l$ N! B! f" @( P! f3 O# a$ _, s/ \
        Recursive case: n! = n * (n-1)!# f; k6 F; _7 q( v$ w

    ; ?/ b/ M$ m: i( }/ h/ LHere’s how it looks in code (Python):2 w, @/ f6 @) B. X8 O
    python
    0 i8 ~+ T5 i2 Z  {: ^7 {6 k- f& D& d5 K! y( n& K! H1 z

    $ N; l$ v; S1 Zdef factorial(n):
    ; G/ U5 s' A: g! Y+ k$ g" u% d    # Base case
    & U+ U. K1 [# B# w/ e! W# {6 \9 T    if n == 0:
    % p# E4 r1 b# e6 U        return 1
      c& t5 H; o6 N/ P0 C& K    # Recursive case9 L: z1 o( k5 w( ^
        else:
    ' p6 R& c4 s- S5 s        return n * factorial(n - 1)
      X5 N: |- `& {+ I& Y7 n/ }+ {
    7 f  h+ W  T* o# Z2 d. l. I# Example usage! F. ]6 {7 l- A, x
    print(factorial(5))  # Output: 120
    ) V  `+ y7 @/ O( {! R
    . ]5 z2 {7 z" I5 D; i# O  [: cHow Recursion Works# L9 Q% P, t# v: C! h9 ]9 ~. V
    / M# i  ^- }) R# g0 c/ A. q
        The function keeps calling itself with smaller inputs until it reaches the base case.
    % m& J- N" P/ R8 p: ^( t' l
    1 A2 y8 ^: f7 P, U, T: y# m    Once the base case is reached, the function starts returning values back up the call stack.
    & u  m8 d1 r* b1 ]" ^/ \" w
    / B8 x" G9 [5 ^# m  Z8 r& w" |0 s' w    These returned values are combined to produce the final result.  k% w, u, @. f/ q. D

    . E4 p3 X3 y& X. e/ {For factorial(5):% ^/ m2 h2 G. o# ?* e3 s) P
    3 _$ T9 {0 b  |8 h

    * L. F  u/ S+ X1 \5 ?3 y, tfactorial(5) = 5 * factorial(4)3 O1 i# L) n! N2 u3 P4 b- b
    factorial(4) = 4 * factorial(3)+ i8 w( j8 T4 x# k
    factorial(3) = 3 * factorial(2)
    ( L0 _# K  M2 V6 \factorial(2) = 2 * factorial(1)3 s  e- P1 M# U6 q5 r( `
    factorial(1) = 1 * factorial(0)
    7 k% ^1 Z& K8 ifactorial(0) = 1  # Base case
      f# y4 m9 w, J' f
    9 c) I% ^0 M! l  X2 i7 FThen, the results are combined:; b7 J. ~2 \& B/ _9 V

    0 v' [5 _4 ?4 ^; B) K" x+ `
    , {& M7 {1 V' o1 Y( W6 ]% u- Vfactorial(1) = 1 * 1 = 1) L% ?2 a% R, S
    factorial(2) = 2 * 1 = 2% [1 H) v- R) B! H/ p( x
    factorial(3) = 3 * 2 = 6
    7 {, ?/ l# @, c" Bfactorial(4) = 4 * 6 = 24( g/ i# Q! E! o$ \! N5 l8 b
    factorial(5) = 5 * 24 = 120
    1 c8 t8 z0 O/ D( `6 f# B& N# B, M2 ^- X' b" K  j& }" x( U
    Advantages of Recursion
    ) Y- h% M/ q2 C/ [, q" J7 A, C* g9 Q! M9 K) O% s# m
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).  s& w' I! Z" L
    4 e. d" j5 s+ b/ o, S' ~
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    - B* k1 K* _$ B" c  Z7 `9 ^* H' J/ D: u+ \1 c
    Disadvantages of Recursion6 Y" J+ S% g8 x- _
    " q! G4 c9 `0 [1 l5 k# o5 w$ c
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    3 f. n& q* m  S% y
    8 l+ d+ C) z: H" k0 u) x5 l" e# |    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    - ]- d- |( P9 v$ Z7 @- L
    6 `5 u& c7 ]0 ~0 {7 d# q+ G4 hWhen to Use Recursion
    $ l% E$ F6 |" z# m7 U9 `; A, N0 z: H& D* R& f% A
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    % C+ k0 u% E) q; M4 m9 h( ^- B& X. o
    ; p/ ~% J! K4 i% `  K: C+ d! h8 O  r    Problems with a clear base case and recursive case.  |: T7 d# c. \3 K+ ?+ k

    ' U: q0 l- U" nExample: Fibonacci Sequence
    7 @3 n' w1 Y' h" ?" t2 N! v8 C+ N$ c4 q  O* u! f
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    0 h5 V# m0 ~- u( _9 v; \) h3 }* \4 H: U
        Base case: fib(0) = 0, fib(1) = 1# f4 ]/ e" y7 b$ l& c( o0 {

    0 y: T0 P8 \- h5 {1 I    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    * ^3 U2 y7 w3 B/ z9 r8 p" l" ?9 @+ |1 B7 K
    python  z0 u' S# ^- A, _
    8 H( {) C, f; v( h
    6 V; S" r" [6 S* l; r# @5 k
    def fibonacci(n):- K( [% a* u9 j' r8 ^
        # Base cases0 {( q3 K2 f- y) K' _5 R1 K
        if n == 0:
    : _$ n+ a' U2 y! b( l- N8 V: k        return 0# W( a, S/ b5 e7 P+ \7 g1 R
        elif n == 1:; Z, Z: _7 ?' Z) X, }
            return 1
    , k# t, p( T5 Y# f1 r- ]2 \    # Recursive case' {2 D2 v' a: N; v4 ~2 F
        else:
    3 c/ L- n4 D  n# G+ t6 r$ h, ]        return fibonacci(n - 1) + fibonacci(n - 2)) J" V" Z  S# B# y* q9 Y* t4 Q  ]' x
    3 F, Y' {% L. h2 |) E
    # Example usage1 ]/ ?/ A2 N! T$ m  E6 y" |% o
    print(fibonacci(6))  # Output: 8
    ! \& O6 Q4 T% I+ l4 O  `! }  s) }! q8 L
    Tail Recursion0 A4 z$ u" c3 s' F* A

    6 i7 {& S' ^0 HTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion)./ ?  j2 d+ S/ y4 d( c
    6 h  ?+ G' P5 z$ k5 D; g) ?1 v
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-20 10:29 , Processed in 0.029097 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表