设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1427|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    ' H7 n4 u) K! {8 E+ g( N% p
    ; t/ f% @( j! l# x/ q解释的不错  `3 z$ \  F$ D7 N( O/ M6 Y4 v
    + t) ]% W) e) u5 Z' |
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。$ X5 G& l- _9 Q0 G
    6 o% v( y. w" j+ j: a0 z, G
    关键要素1 a- J, D1 L' D1 P
    1. **基线条件(Base Case)**
    : M3 ?$ [7 M5 @& N   - 递归终止的条件,防止无限循环
      ^" }) b- ~4 ]( c* Z3 `   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    # B6 ]  J) j! }+ ~' [4 K, ?. ^4 M, K1 v' k0 X$ r* A  {8 V
    2. **递归条件(Recursive Case)**
    " S. z; X8 k! z% o  A   - 将原问题分解为更小的子问题; x: x9 Y3 l2 `# ~
       - 例如:n! = n × (n-1)!
    / v6 H  b  K+ D  R( f7 @
    8 w9 q% y6 }5 B$ { 经典示例:计算阶乘
    ! B/ C9 ~7 W' H8 B* Ipython1 `) G. {1 O, [6 \, [, ^
    def factorial(n):
    5 Y0 {9 A' z, Y    if n == 0:        # 基线条件2 T* Y, r+ }3 S- v) N. w; N+ c
            return 1
    5 Z( g% f, Z8 v: G' t1 _    else:             # 递归条件
    9 H) F0 ]4 t" f1 x1 |        return n * factorial(n-1)( y: n/ g3 R* ^! M" i, u* g
    执行过程(以计算 3! 为例):6 a* \: u; j! A: _! g0 E
    factorial(3)) S/ p/ [6 ~, C
    3 * factorial(2)
      N6 H  c' ]9 \3 R; {7 [) N9 L3 * (2 * factorial(1))5 t, @' k) u; Y, ]1 \4 X# v
    3 * (2 * (1 * factorial(0)))( H* @1 [+ r; _3 j
    3 * (2 * (1 * 1)) = 6. V2 y0 K- @7 e; n" q

      G" b. ~" z2 F9 k0 z  |7 r# ^, r( B 递归思维要点; m4 z2 B& M- n, l. p
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑5 U6 s9 r( z- D( P+ Z6 V
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)* b- W; ]7 n/ J6 `; p
    3. **递推过程**:不断向下分解问题(递)5 r7 [0 @9 S  \; N
    4. **回溯过程**:组合子问题结果返回(归)% m! |0 _7 E% J* d# {

    + I) `* v- k7 B- f& [' Y) a 注意事项4 G$ T: ^+ D& {- K6 q
    必须要有终止条件% k0 u( V9 d& t* X% R; C7 j
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    2 e# H: W6 G- B* S8 L某些问题用递归更直观(如树遍历),但效率可能不如迭代) C) S5 {2 a3 S6 ~% h) J% g
    尾递归优化可以提升效率(但Python不支持)' G! o+ R2 j7 E, z

    ' {5 @8 k9 s% o! I 递归 vs 迭代5 y1 |* d% v( H& ~- m! J4 a/ K
    |          | 递归                          | 迭代               |
    # Y( ?$ N1 {/ y) z|----------|-----------------------------|------------------|; r( b7 Y, c& f2 j
    | 实现方式    | 函数自调用                        | 循环结构            |8 i0 ?8 P+ D, }/ ?" Q  @/ l- g% e
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    5 B% C* N: T+ H( H% E' ?| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    ' z/ s4 v% b0 o! h# N5 m6 {| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    . u5 k1 S: T& u2 B+ T- u! p6 I+ R. \& ^! z
    经典递归应用场景  o, T7 A. r, T9 I5 [. x! L7 N8 k
    1. 文件系统遍历(目录树结构)! v8 @  ^4 }8 V) s
    2. 快速排序/归并排序算法8 w7 n8 J5 ~# N& T; K0 J2 t
    3. 汉诺塔问题
    4 b) m  F* i/ e1 |1 F* V! g# O4. 二叉树遍历(前序/中序/后序). l9 H7 j' z3 b' L7 m, l
    5. 生成所有可能的组合(回溯算法)3 M; `8 \1 h' O- x6 z

    ! e: C) J2 k! w试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    7 小时前
  • 签到天数: 3113 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    % Z1 f. n: {, G) N' E, _3 A我推理机的核心算法应该是二叉树遍历的变种。
    9 \( H# U: k. |' y, I6 \% _- G3 b另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    0 X% G1 e. q: o2 H9 o4 g, P  gKey Idea of Recursion' e0 i1 n. ]* Z9 U9 Q% V
    4 F8 e" {9 m4 _& [7 l
    A recursive function solves a problem by:
      ?* r6 ~1 b" B8 V) k1 ]6 z. B. a0 l: y% \9 |' k! W" W
        Breaking the problem into smaller instances of the same problem.
    . R: k" F0 l0 @' l3 C% n2 w4 A
    ) _$ f$ I& t) b8 i( |! x8 C; k6 V; v4 a0 Q; M    Solving the smallest instance directly (base case).
    4 J' e" c# f# J+ T4 z  Z. q1 `* Q6 r% c( R
        Combining the results of smaller instances to solve the larger problem.
    $ a% x" b* Q0 Y) ^9 j9 d* i
    # b& ?1 B: z% o* [8 m% D, ^Components of a Recursive Function3 Z8 U. P( d6 W6 `( }" ]" m* e7 C

    7 ?2 B0 X, U+ G    Base Case:5 E2 k) g8 @* I
    ( E5 r- e2 `6 g
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion./ l% \+ n8 q7 b' f! x% p
    . l% T; U# c' U7 `4 p' {' G1 C* D
            It acts as the stopping condition to prevent infinite recursion.
    7 m# o" C' J8 n' ^, s: s4 m# {
    / v2 V! L* I- h: ~1 k. o" t        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.$ P6 c' R% [6 ~6 T  K/ F
    8 Q9 ~5 g2 Y% C
        Recursive Case:
    % M# N. X. w8 u' m; [, B! ~0 o# o& ]% B
            This is where the function calls itself with a smaller or simpler version of the problem.0 h" ?/ F2 D3 ?
    & Y* D# o1 Z% d) I. }6 Y
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).9 U* i2 C% ]6 Q, ^" r

    ; m1 b$ \# S  v$ z# P) p9 `Example: Factorial Calculation9 R9 \5 p; w9 l. v
    , f8 j% G5 L+ d& r- `
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:4 m9 r. A4 F- k" ^6 i
    % j# \3 A% |# x8 ~
        Base case: 0! = 1
    . N' E# A; B* K% L8 n6 J; I# e! }/ G2 s7 }
        Recursive case: n! = n * (n-1)!
    0 K0 l& L7 g" I8 n; @( r3 _( c) c
    0 |9 T" m* {& o9 }7 K% BHere’s how it looks in code (Python):
    * [* X, a8 ^' l4 ?0 K0 ^python
    1 V3 r/ b3 m$ T7 H. [& L( g" M
    5 i( y1 t% V" e7 X1 U' d6 q9 A0 i1 W+ n# M# ]# u
    def factorial(n):
    ! j+ g; ?2 M% I* S+ _7 O    # Base case
    7 n; Y0 ^( u9 Z  S. l2 p    if n == 0:
    # `6 X: f7 @0 T- n. I        return 18 k; _( B" o5 C2 M- X, Y
        # Recursive case: y: Y/ y# b& ^5 D) v
        else:4 v: H- p* G3 V, j7 k$ q7 R8 H, k
            return n * factorial(n - 1)
    9 H1 C3 Y! W0 n2 H' f0 p6 \
    . q" K5 ]4 x/ C9 k, n$ E# Example usage
    # w! T8 v; p, W9 vprint(factorial(5))  # Output: 120& X/ M: e# v. A7 P4 W

    : {" s9 s# g" ~# nHow Recursion Works
    # v! p% F8 {4 U' V/ t6 e0 s0 P5 {/ a. `2 t4 O; ]. U
        The function keeps calling itself with smaller inputs until it reaches the base case.6 n# O4 o5 @* ^
    / q( a5 Y* g  S6 o) k3 Q" [
        Once the base case is reached, the function starts returning values back up the call stack.7 \7 j7 o0 J) x. z+ r9 L3 i
    $ n* B+ D: _1 g1 a) E- a
        These returned values are combined to produce the final result.6 e. k  y1 |0 I- m7 C: m
    ' [" \& A2 P) j8 R, `7 h$ J0 F7 Q
    For factorial(5):
    1 _# M9 R8 S7 }& A! y8 t. n- ?' X* x9 u& g
    ; V; \! u+ H# e6 }7 I! S
    factorial(5) = 5 * factorial(4)
    ) L2 ~6 ^$ }$ r% J. [* }factorial(4) = 4 * factorial(3)
    2 S" R) ], X8 P0 n) @5 Bfactorial(3) = 3 * factorial(2)
    + O& S2 q' `& W  q/ h) {+ afactorial(2) = 2 * factorial(1)
    8 Q  J+ f2 @% p+ ~8 a" ufactorial(1) = 1 * factorial(0)1 h1 n7 S& x3 K( m
    factorial(0) = 1  # Base case/ D! D9 J; J% G5 F8 s
    / n: Y: P4 L5 ]  q
    Then, the results are combined:, R0 V5 s9 J  s1 ]8 @

    : o' c6 k; j; A' _" H& B1 m' y# V8 F/ r* w3 ?9 s
    factorial(1) = 1 * 1 = 1& y$ O, [  ^# @, I( G0 E
    factorial(2) = 2 * 1 = 2
    + e* M; S6 i3 B9 W! dfactorial(3) = 3 * 2 = 6: @' n9 v. ?6 F5 \7 L2 |
    factorial(4) = 4 * 6 = 24; o; Z$ m0 j3 U: ?! Q2 {1 q" U
    factorial(5) = 5 * 24 = 120
    - P1 M& l9 G- e
    , ~3 `  O8 I, KAdvantages of Recursion5 T1 a$ J% M2 F4 `. W
    8 `$ [1 l* s6 K* p* d, b: W% A: d
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    7 e% m5 O/ \$ u7 ^1 N& J0 E* {$ u, M* v( C( M6 ~
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    ! s. c" Z1 d  b- x7 \% p  \
    3 w0 H( s1 M! v9 N6 L2 |. T2 `& hDisadvantages of Recursion
    ) E6 t2 R/ _! h1 A( a. N0 \
    ) [" D7 H7 p3 z5 H9 }3 e! i    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    " w( ?2 c3 F, v% r; R: ?- R2 [% D; R6 P; Z
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    * f$ l4 Q* w+ M' l3 S) @; w, `3 ?( B" N
    ' f5 W% P" f& J% C# y, ?4 }( q5 sWhen to Use Recursion
    ( s, f, e% O" ^/ f! Q2 [5 @
    + Y4 V! n4 z1 q    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    9 t  a4 M5 n1 d
    ) i' w5 G8 x; F: b* e% k5 c0 f    Problems with a clear base case and recursive case.
    * J. m" B( x- c! i% }
    ( l  S% a9 ^# Q/ j0 SExample: Fibonacci Sequence
    . a% W7 Y8 {+ ?8 u) N1 T$ [/ _# K
    ) ~$ h( g, W. tThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    % {% J0 P2 C- k; D
    ( ~8 l$ ^0 E9 L    Base case: fib(0) = 0, fib(1) = 1
    " q. A# _5 ?9 b) n+ H$ b4 Z3 [3 G$ ], g! {& A
        Recursive case: fib(n) = fib(n-1) + fib(n-2), `  {6 K% a# z3 M# N
    0 r  O" `2 W- |- n- `- M" a
    python
    2 M) h6 ^5 w" E' l0 u
    7 @, Q6 P; j3 R2 m7 K- P. K; B7 k( T( ~! ]0 k5 S; c
    def fibonacci(n):
    $ n8 j) ]! `! c& H    # Base cases# i7 h5 l& ?1 j6 y6 j5 H
        if n == 0:
    1 `! M! t; \% `1 E. v& y        return 0( G2 Y- y8 B! Y! v
        elif n == 1:
    ! f9 R0 X0 l' x" p& |- R        return 1
    ( L  _2 r- B/ q% K. K    # Recursive case
    , b  I# _- [5 P  Y2 C    else:
    ; L6 b+ I( S/ Z7 ~' S; z        return fibonacci(n - 1) + fibonacci(n - 2)/ U  `1 Z2 I* w4 F) }
    : G( ~- x( c5 h6 L/ L" y
    # Example usage8 |5 u; F( k7 Y( X- Y; r
    print(fibonacci(6))  # Output: 8
    4 m8 W+ k+ Q5 L. d. {9 j+ w  h4 [' f1 g2 o9 {% @; ~
    Tail Recursion# @0 O" Z0 m1 K9 j

    1 {" e- ?" a) v  t6 R) l- f) \/ \Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).6 _- l& \. L( o9 x& s
    & B6 ]+ Y0 Z1 {8 l0 O
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-9 15:03 , Processed in 0.033864 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表