设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1722|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 & H; J1 e$ L5 [* u6 c' }
    $ I8 ^! z4 e9 X* l% L8 E6 o
    解释的不错4 Y5 A0 p1 ]: @" X" s, j

    " U- B- s, X, P2 Q- e递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    ' f# p, p4 |* a3 a9 [
    ( o! i. M/ M4 ?, R, p- S% H 关键要素5 _* _3 D1 J( C: ]8 c$ f
    1. **基线条件(Base Case)**
    8 ]7 w' q: R; V2 F1 o2 ?% K   - 递归终止的条件,防止无限循环
    6 X! X8 x9 \' ~. g; W6 I+ E1 b   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
      K$ F: X, A5 O) e! A7 H
    " C  N) C* @" R  a3 B2 Y2. **递归条件(Recursive Case)**( y" T$ n1 c* L, S% @0 }3 Z% X
       - 将原问题分解为更小的子问题
    0 b5 @, R' \# K  M   - 例如:n! = n × (n-1)!' k$ @* k) l, d& P7 {
    - o  V0 z+ i2 d" M/ [
    经典示例:计算阶乘* w/ j4 l7 B2 X8 n9 |; H4 _
    python  @; V$ t( ~8 O) K5 V1 r
    def factorial(n):+ N' @' `9 {3 k8 T
        if n == 0:        # 基线条件4 d4 y# z# s/ H, i" w5 C6 w
            return 1
    6 Z$ d8 z1 t) ~+ c/ q    else:             # 递归条件* j% |1 w8 t6 y) s) {" D1 D
            return n * factorial(n-1)
    * a$ O8 \/ R) P; T  L- Z# l执行过程(以计算 3! 为例):
    , r* |0 o+ ?8 a; I/ C! jfactorial(3)
    9 ^3 W, h6 E4 e+ O# W4 A% c- H" J3 * factorial(2)
    1 q1 S4 a: `( |1 @6 h% ]3 * (2 * factorial(1))
    + R& w4 \& I4 o: b  T3 * (2 * (1 * factorial(0)))
    : v+ l$ ]; d4 ?4 `& `. {3 * (2 * (1 * 1)) = 6, C; A3 u* o; S  \% u1 E
    7 a8 ^& j6 X# ?" k
    递归思维要点- B! L% a; J% Q3 i
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑( i! }4 D% t' m1 L' s9 q+ f- h
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    * s! L/ @+ L5 }& o0 ]6 Q7 B3. **递推过程**:不断向下分解问题(递)! ^6 t: k! G) J$ l) z3 T" {! n
    4. **回溯过程**:组合子问题结果返回(归)
    9 a; G# H+ ~; n9 L# D% m$ d9 u' c. H7 I; e1 P! k' W, X- X
    注意事项3 F# D/ c/ G2 _6 O, X
    必须要有终止条件6 |7 b1 \( Y0 ^5 q& {; k- p
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)  f7 U  ~9 d# H7 E
    某些问题用递归更直观(如树遍历),但效率可能不如迭代$ P2 {1 f8 u8 o& }
    尾递归优化可以提升效率(但Python不支持)
    , X  `' Q& Z* m( O& P6 Q" A( n: B
    $ M- p! w+ }! o' j 递归 vs 迭代5 T" n3 q# q# N. N
    |          | 递归                          | 迭代               |
    % a' c/ ?% T0 V0 q# D9 L. ^|----------|-----------------------------|------------------|
    - [6 i- r1 ^- r! D# ]; x$ {7 g7 |/ B| 实现方式    | 函数自调用                        | 循环结构            |$ H7 y, e  s7 j) t+ F
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    7 J; _4 }3 F# t& `1 r# T| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    8 S0 t) t/ g: Y0 a( [| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    * y& T% B% _9 ~7 Z8 f+ G
    & y5 r+ y* P% x" ]* U+ o 经典递归应用场景! j' g. N+ p$ l+ Y
    1. 文件系统遍历(目录树结构)# f$ V9 q4 ]. _8 V) k5 G
    2. 快速排序/归并排序算法! O5 h* C. b" D( J6 U% u7 r
    3. 汉诺塔问题% h5 @9 F8 d- l8 X7 W1 H  z
    4. 二叉树遍历(前序/中序/后序)2 W% ^/ ?, j, P# [+ [/ [
    5. 生成所有可能的组合(回溯算法)* E: y4 ~# j2 w  R

    ' b0 A: h6 w  Z" N+ r  c试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    开心
    昨天 15:11
  • 签到天数: 3133 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    # F' v3 g) f, `+ q我推理机的核心算法应该是二叉树遍历的变种。& E5 o+ p6 b! g4 \" w
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:" N( Y4 p( P3 C
    Key Idea of Recursion8 K) k+ h# A  j; Y0 z4 a1 m
    $ B4 H9 Z/ a/ }, {9 J5 u* `
    A recursive function solves a problem by:
    & E. F* p: A8 D4 f# ]6 }! S  Z0 k, G: [, l$ ?
        Breaking the problem into smaller instances of the same problem.
    : T& F$ J7 G$ d4 m5 P8 d9 R$ ~  V: n8 V, S. R+ d
        Solving the smallest instance directly (base case).
    ( \, A, c+ ?% b
    " U2 C+ H) G: S1 M    Combining the results of smaller instances to solve the larger problem.8 [& S( W9 P" K$ v, B

      L5 R8 _$ B  p; ]Components of a Recursive Function
    8 p1 d: s7 c# r$ l  U. W
    3 n+ |2 @1 y: Z    Base Case:
    * \# E5 I  _  f- v& `$ p" D7 w* l5 J4 s) I& A
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    , E* @# P; H4 v
    3 K2 ?' _  e- V4 x8 H. I5 P( Z* m        It acts as the stopping condition to prevent infinite recursion.
    6 p' |: C* L. {% s
    4 x" @8 I. h# d        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    8 I+ ?) @" G: }) c$ u/ H2 i# V/ v* W7 U
        Recursive Case:7 N! T: P8 y8 ^4 m7 P1 c6 V6 p# Z4 T8 o
    . e9 C( H2 I3 z
            This is where the function calls itself with a smaller or simpler version of the problem.
    4 e& B/ L- y5 K1 J0 i+ `* M7 p8 C$ Y3 A' k. ]
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).2 A' L8 Z  Y/ g

    4 }1 {/ \$ T: A4 ]" ZExample: Factorial Calculation
    & a+ u* j  L5 S* f! G4 {3 v: o. ]1 c# v+ V- ]
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    + w& R1 }/ ~; M. D3 b! _0 n& @; z* g/ m: Q- V: c
        Base case: 0! = 1
    # l# q, q  L; @) W( w* c3 J4 D" Y9 J! U
        Recursive case: n! = n * (n-1)!
    0 E6 |  h% \/ R- R' v' W8 w, a- i. \: Z
    Here’s how it looks in code (Python):
    4 Z1 J" W6 u) Z! i, U* u* ]8 Wpython2 B7 h) @9 j5 q8 w

    , J3 I! R6 l0 O1 U2 [1 g& M/ Q: x; S7 Z$ r
    def factorial(n):
    3 Q1 j' \$ p9 }; I: V$ Y    # Base case6 f2 Z* O$ _" o2 x
        if n == 0:
    9 D! q* c* i  U8 P% g        return 1
    # Y/ X) `: R: }7 h& n# G    # Recursive case2 c( k6 _7 x% ]3 j
        else:( o! E2 p) m* u6 j& P# o! N
            return n * factorial(n - 1)
    8 c; X1 u2 q1 P5 d/ w$ _
    8 g- N( |( L0 L3 ]9 f# Example usage
    , N& z$ [! h/ d- [7 Y3 d2 S' aprint(factorial(5))  # Output: 120
    - u# d2 b: y$ P4 z
    " w6 Z" n; _/ f' r  FHow Recursion Works2 ^6 f7 y, g: ?0 f6 ]8 b) }

    * j# P8 H0 S5 d& O# C    The function keeps calling itself with smaller inputs until it reaches the base case.
    1 \' D2 x9 H& L, C2 K! x, d3 X5 D; `
        Once the base case is reached, the function starts returning values back up the call stack.0 T. X) k5 u% ?2 z- `6 w3 K- O

    1 [5 B# ?7 l5 A2 d0 \    These returned values are combined to produce the final result.
    . X8 o6 d. _1 B/ K5 F
    , x' B- W; l- z$ uFor factorial(5):
    6 x: H" E( O2 w$ p6 y9 j* Y2 d
    % _9 {; S" I" o1 {% M9 L0 L$ H* f2 i; s8 x( W
    factorial(5) = 5 * factorial(4)
    * G, C$ }" l* a) i; e; Kfactorial(4) = 4 * factorial(3)
    8 F; h* j% h& ^: d9 kfactorial(3) = 3 * factorial(2)& X9 \: K& W+ d% g; O2 n
    factorial(2) = 2 * factorial(1)
    # H$ f6 X% ]- t7 Tfactorial(1) = 1 * factorial(0)
    * Y# Y5 N: f5 L1 b' ^1 i8 h5 afactorial(0) = 1  # Base case
    : Z& C  X4 A1 t# h" m* B  V; m- H5 L* t8 |! m) n2 M; S  G7 Q3 t
    Then, the results are combined:
    ' j8 R7 l7 C" {3 L! {* B* v4 Q& ~& I& s8 s: P) s2 `8 ~  w
    0 _- j% g8 i8 ?6 w) D$ Y# K, y
    factorial(1) = 1 * 1 = 1
    : N! s3 Y* f' z; `2 Yfactorial(2) = 2 * 1 = 2" `6 ]5 ?. l# |5 h- f
    factorial(3) = 3 * 2 = 60 y$ E' e  A9 r+ f2 O
    factorial(4) = 4 * 6 = 24
    ; E! L( {) w% n/ ~; \9 s/ R, R5 K/ wfactorial(5) = 5 * 24 = 120
    ; G  Y: j/ d! I: M. X8 m
    / t0 O* w2 w0 G5 E6 H" mAdvantages of Recursion  P- T6 {- d$ u  K2 C

    9 H' Y: v3 o" g' w9 U% T2 c    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    ) f! M+ B+ Q! [
    7 S1 N# G. H2 ?% P% F    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    5 W' H: ?- j8 \  b4 x9 s6 J0 k& S( ?1 U) Y6 J0 w
    Disadvantages of Recursion2 J& T3 @: W0 ]7 M; [- r) a

    / m8 c# r" t% A4 n. j    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.# y3 U/ P: ]! f0 z. L! p
    " r2 o* B% X6 S: P6 F. {# h# C
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).; `# V- [9 b. N
    4 ^7 _( C( W5 ^) k+ m& N
    When to Use Recursion' X4 M8 E6 U* G: J, X+ Z

    - B, i3 |7 `5 T& C    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ' Q+ F9 E( Q5 N7 D  G/ c8 [- h+ e- Q1 y+ x! Z
        Problems with a clear base case and recursive case.% y* e* @. Y4 Q0 d2 l4 T
    ' z! \/ A  T5 B# F8 M
    Example: Fibonacci Sequence
    ( ~, z' b" l1 ]1 V! d$ t
    6 Q# _3 e/ _, ]% HThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    % U; R8 s6 ~5 J* Q  P" S3 Y6 p0 \2 n) S1 }  L- U8 R. `: w$ b# m
        Base case: fib(0) = 0, fib(1) = 1
    8 H! K. s7 |" a: ]2 ]1 ?+ x. u% Z) b3 y6 V! R. E. h
        Recursive case: fib(n) = fib(n-1) + fib(n-2)0 o# H. C! C( c5 Q  B

    9 B- C! N9 w+ U+ `! Rpython* G2 w$ i2 }; Y( a: M" _+ f$ h
    ' Z3 h% R8 t: [! ]+ |$ I9 @

    $ i, n/ R; P* \$ B& f2 U5 edef fibonacci(n):
    ; o% w: Q+ D- H    # Base cases: O! k6 d& Y# `" z
        if n == 0:
    & T$ s$ P$ Q& k( |8 t9 H6 U- Y        return 0
    ! ~; D' w$ V, Z# C    elif n == 1:9 w' `* _5 M! x$ d" X9 P& Y- c! c
            return 1' t* J  o: ?2 |# X# A. `
        # Recursive case
    ' i5 N( c1 ]$ n8 P' u3 m. Y  u) z    else:* f* B, s5 s3 M9 B5 W$ j
            return fibonacci(n - 1) + fibonacci(n - 2): g; M+ G( V! V3 [3 U* L$ d
    8 F! L1 X' c% K/ j, A6 |; i) x) ]
    # Example usage
    , C. p/ s. q" r) k; m, ~print(fibonacci(6))  # Output: 8
    ) _! `6 v4 E& \! C/ ]6 O
    & u6 _; x, W+ l% W) VTail Recursion
    ' t( M# J4 g! G, c' C
    2 F9 k5 F# T, o2 N4 GTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    9 q8 D$ M3 K; ]$ N9 k( s6 Z3 H# P0 \/ l2 t3 x. B" k1 O; X
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-2 13:20 , Processed in 0.031535 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表