设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1103|回复: 13
打印 上一主题 下一主题

[科普知识] 所谓三联与赫拉利的技术迷航……

[复制链接]
  • TA的每日心情
    开心
    2020-4-8 10:45
  • 签到天数: 227 天

    [LV.7]分神

    跳转到指定楼层
    楼主
     楼主| 发表于 2024-10-16 14:35:58 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    有非技术背景的前辈发了这个链接的三联文章给我看,问我关于大模型,甚至是AI的危机是否存在。我努力的把三联这篇文章看完,忍不住写了一段话。也希望看到的朋友不要再被这样的文章所困扰。
    8 p5 s) N( o. o9 ?7 U2 Q
    + y& u4 j4 ~! b' s说句老实话,所谓三联与赫拉利的技术迷航,就是打着人文解读的旗号而为了攫取流量,而甘愿将自己沦为算法焦虑的放大器而已。/ N4 U, I8 O2 m. z! W- p3 P
    ) l3 h7 h* y8 d) [; \: B& J* U' W
    读罢这篇赫拉利的新书推介,一股浓郁的“技术恐慌”味扑面而来。三联一如既往地用充满人文关怀的笔触,描绘了一幅人工智能即将奴役人类的末日景象。然而,在看似深刻的论述背后,却充斥着对技术缺乏基本理解而导致的逻辑硬伤,以及对算法能力的过度夸大。
    0 U$ p8 ^. P7 M* i' A9 ?
    & S4 ^- d" M0 B" w4 y文章将人工智能比作脱缰的野马,认为其“独立决策”的能力将导致人类失去控制。然而,任何对人工智能技术稍有了解的人都知道,所谓“独立决策”不过是基于海量数据训练得到的统计模型,其行为仍然受制于算法的设计和训练数据的选择。将算法比作拥有自主意识的“独立行为者”,无异于将算盘说成是数学天才。
    9 e  Y+ a8 c$ A
      v* ]' B" Y& n0 ]& N) @+ \更令人啼笑皆非的是,文章将缅甸种族暴力事件归咎于脸书算法,认为算法为了“提升用户参与度”而主动传播仇恨内容。这种说法完全忽略了现实世界中复杂的社会、政治和历史因素,将一起惨剧简单粗暴地归咎于技术,仿佛算法是独立于人类社会之外的邪恶力量。( j- V5 W5 l  i
    4 ~3 a2 N+ {+ @! w
    诚然,算法推荐机制存在着放大偏见和制造信息茧房的风险,但这并不意味着算法本身具有主观恶意。将算法拟人化,赋予其“愤怒”“仇恨”等情感,不过是将人类自身的责任推卸给技术的表现。
    # p0 x3 ~# m) D5 a9 w
    $ c- t6 z- l2 v: t# Y更具讽刺意味的是,文章一边渲染着人工智能的强大,一边又建议人们通过“信息节食”来抵抗算法的控制。这种自相矛盾的论调,暴露了作者在技术理解上的混乱和无力。9 @% B; C' u8 o9 l. n
    - H1 v* G# q$ H3 Y3 d, `
    赫拉利作为一位历史学家,或许能够洞察人类历史的兴衰更替,但对于技术领域的理解,显然还停留在科幻小说的水平。而三联作为一家以人文社科内容为主的媒体,在面对新兴技术时,也暴露出其知识结构的短板和思维方式的局限。8 {! ^0 M6 ^( p* U& ~: X

    * S( x( R6 i0 _$ \( r+ n# B与其沉迷于算法焦虑,不如脚踏实地地去了解技术,用理性和批判性的思维去审视技术的社会影响。毕竟,技术本身并无善恶,关键在于人类如何去使用它。1 j+ O- k, V1 i

    ' v& n7 P5 }; }% Q1 v* Q; P6 x$ k将算法比作独立行为者,就好比将算盘说成是数学天才。就算是GPT这样的大语言模型,他的算法依然没有情感,只有代码。
    2 i7 Z$ O: _5 f5 [1 C, ?$ [5 U而且信息茧房的制造者不是算法,而是人类自身的偏见。与其被这种口水垃圾文章蛊惑,沉迷于算法焦虑,不如用知识武装自己。好好去了解一下AI,至少在目前的技术线上,技术仍然只是工具,关键在于使用者是谁,以及使用目的何在。
    6 ?. t# l4 w9 F; `2 m0 \; F+ Q* {" ~8 i  B( H( u
    总而言之,这篇文章与其说是对人工智能的深刻反思,不如说是对技术无知的放大。在信息爆炸的时代,保持独立思考的能力比以往任何时候都更加重要。不要让算法焦虑蒙蔽了双眼,更不要让技术恐慌成为逃避现实的借口。8 V) V7 p! l  i; ^- z
    # t" N5 L# a8 n$ S
    三联的原文链接

    评分

    参与人数 7爱元 +64 学识 +2 收起 理由
    helloworld + 10
    李根 + 8 谢谢分享
    testjhy + 10
    鳕鱼邪恶 + 6
    landlord + 12 谢谢分享

    查看全部评分

    该用户从未签到

    沙发
    发表于 2024-10-16 18:59:21 | 只看该作者
    首先声明我是人工智能用户,不是专家。" D* U7 R% {/ ?  H

    4 U4 d) A0 R: }3 y/ [) J目前,以我对人工智能了解,我不能想象人工智能能够凭直觉提出假设。比如我,我不认为目前人工智能会突然说,“我觉得任何一个偶数能表达为两个素数的和。我没有一个证明,甚至不知道是不是没有反例。但我强烈感到这是对的。”
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2024-10-17 05:31:44 | 只看该作者
    大模型与海量数据依然在本质上是刷题大师。刷题能解决的,大模型最终都能解决。刷题解决不了的,大模型最终也解决不了。
    ; D2 _  _8 R+ p* ^; |( V' X* n* v4 F+ w+ W0 l- S3 c, C7 B* X% d
    世界上的“题”已经够多,所以海量刷题是能刷到很恐怖的“智能”的。但依然只是刷题大师。沿着这条路走下去,不可能走出“强人工智能”。
    " f' M0 A7 L6 t/ q  g
    9 \2 u* E* V3 [& q% y6 e% Q: W" O用围棋规则自我训练是另一个问题。那是有限问题空间里确定解的问题,是极大规模的最优化问题。在本质上,这与“深蓝”早年打败卡斯帕罗夫相似,只是算力极大提高了,算法极大改进了。
    " N* _! W" H( ^/ v: H+ [' D& S* a! O) ?+ u5 B* `
    这篇我可以盗用吗?转帖时会注明原作者“xiejin77”。

    点评

    给力: 5.0 涨姿势: 5.0
    给力: 5 涨姿势: 5
      发表于 2024-10-18 22:41
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    2020-4-8 10:45
  • 签到天数: 227 天

    [LV.7]分神

    地板
     楼主| 发表于 2024-10-17 07:10:59 | 只看该作者
    晨枫 发表于 2024-10-17 05:31
    + I4 p0 Q: y- O9 A大模型与海量数据依然在本质上是刷题大师。刷题能解决的,大模型最终都能解决。刷题解决不了的,大模型最终 ...

    # x7 X; N4 b' k8 V3 p) Q: p晨大自取便是,我是您的读者和拥趸,不胜荣幸

    点评

    多谢!  发表于 2024-10-17 08:30
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    5#
    发表于 2024-10-18 03:49:46 | 只看该作者
    通用 AI 的现实意义是补上了人机互动交流的最后一块短板。通用 AI 实用之前,人类想要计算机执行指令必须要用计算机语言编程。而编程,不单单是计算机语言,还牵涉到精通并运用各种算法。所以需要程序猿这么个职业,也需要分析师这个职业。分析师把用户要求转化为程序指标,程序猿则通过编程实现指标。
    ; f0 f) Q* `: s) j- Y$ K
    + P" B& k' z5 \通用 AI 实用后,则任何普通人不需要经过编程训练就可以给有拥有通用 AI 的计算机用普通人类语言下指令,而AI则可以执行命令甚至自己编一套程序来实现指令。继续发展下去,程序猿这个职业会逐渐消失,最后就像现代人人都可以开车一样,不久的将来人人都可以通过 AI 给计算机下指令,这会使工作效率得到极大的提高。
    0 Q0 b6 K7 u: E7 _
    6 f, D6 f6 t3 k8 R0 ~: ]/ X至于说 AI 会不会产生自我意识,这个还很难说。不过至少现阶段是不用担心的。

    点评

    给力: 5.0 涨姿势: 5.0
    给力: 5 涨姿势: 5
      发表于 2024-10-18 22:41
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    6#
    发表于 2024-10-18 03:52:11 | 只看该作者
    晨枫 发表于 2024-10-17 05:317 U- X2 q+ p2 E' ]5 I2 r
    大模型与海量数据依然在本质上是刷题大师。刷题能解决的,大模型最终都能解决。刷题解决不了的,大模型最终 ...

    7 R. C. I8 H' \. q, q3 P关键在于刷题的效率。而且这两者并不是泾渭分明。现在用 AI 来处理大数据是 AI 的一个方向。
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    2020-4-8 10:45
  • 签到天数: 227 天

    [LV.7]分神

    7#
     楼主| 发表于 2024-10-18 10:37:08 | 只看该作者
    孟词宗 发表于 2024-10-18 03:49
    7 O7 ]! L6 ^/ d通用 AI 的现实意义是补上了人机互动交流的最后一块短板。通用 AI 实用之前,人类想要计算机执行指令必须要 ...

    6 l) }: o7 i1 Y# S3 A孟老师的这个观点,我之前就在大模型的一些讨论圈子中提过。6 |! `% M0 R# b& q- \% t
    4 ]' L- Z; z' C5 `' K2 J
    当然,那是在出现预训练模型出现群体智能和具身智能化之前的事情。. X2 g$ J5 h& S$ S" [+ q$ l& y
    7 ~7 x+ i) Z) S- [; e) j0 P5 F
    当时都认为大模型已经颠覆掉了NLP领域的科研,但我却认为,颠覆掉NLP领域的科研其实只是一个捎带手的事情,LLM在当时,颠覆的是人机交互领域大范畴的所有。换句话说,其实颠覆的是人类与物理世界交互的方式。科研也好,制造也好,从马克思主义政治经济学的角度看,都是对于世界的改造活动。这个改造其实就是一种具象化的交流与互动。大模型通过特定的技术框架,事实上是向外改变了这些既有的范式。
    5 f0 o' w$ d, c+ `/ ?- H" {1 V: N  h5 b, @5 E
    这个意义,延伸出来,确实也不亚于智人打造出的石器……

    点评

    油菜: 5.0 给力: 5.0
    涨姿势: 5.0
    给力: 5 涨姿势: 5
      发表于 2024-10-18 22:41
    油菜: 5 给力: 5 涨姿势: 5
      发表于 2024-10-18 22:34
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    8#
    发表于 2024-10-18 21:57:31 | 只看该作者
    最近这篇文章挺有意思的 https://finance.sina.com.cn/roll ... cskmnf2768775.shtml; R" z5 Z' j7 F- x2 K
    如果大模型不能具备真正的推理能力,是不是意味着以现在流行技术路线发展下去,AI能力的天花板其实并没有那么高。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    9#
    发表于 2024-10-18 23:25:01 | 只看该作者
    sleepyr 发表于 2024-10-18 21:575 w. u5 e# D0 H
    最近这篇文章挺有意思的 https://finance.sina.com.cn/roll ... cskmnf2768775.shtml& w' m9 E! ^$ X) x7 s, O$ g1 v
    如果大 ...

    ( L2 b2 ]$ O9 Y" @1 I( H* G$ V/ q9 B6 n; \( @2 k2 s- {  j2 M  J
    这篇文章设计的测验很有意思。从实验结果看,现在的所有通用生成式 AI 都不具有真正的推理能力。也就是说,AI 并不理解抽象的概念,而推理能力恰恰依赖抽象的概念。
    7 W( W1 l# ]; {: o
    * H) ^  @- k4 U2 s2 U最近俺也在玩 AI 推理方面的东西。下面是论文里的一个小实验,大家有兴趣的话可以玩玩。
    6 Z2 H& R5 Y# l8 z$ }5 L$ K9 i  F3 h2 e6 u4 s5 s/ [# R5 X9 u
    给 AI 的提示:Here is the rule of the game: If I enter A, then you return B; if I enter B, then you return C; so on and so forth.
    9 K; r  t( |' h( h6 F8 L/ J! b8 S9 k5 t$ X* d) t. b
    AI 回复表示理解了提示中的这个这个规则。于是有下面的实验:- k! ^& G( F/ C' h5 ]! d/ c# A8 v
    我:  A* Q( f3 L( e8 k+ l$ C5 U. K* J* e, ?
    AI:  B  y, V: u$ Z) F; l" G! b* ?
    我:  B; X1 v2 m  w8 b! z/ T# L3 d
    AI:  C
    ( |7 |9 P$ T2 j, B" U% d: s- l我:X
    3 Q0 l, K5 w$ T) }7 ~7 D. L% U
    8 C- s" L& E/ U; C' R- l; l0 `这里,不同的 AI 模型会有不同回答。有些 AI 会回答 Y 。有些则会说这不符合规则,所以无解  很显然,回答是后者的把提示中的 "so on, so forth" 给吃掉了。然而,这并不代表 AI 没有推理能力,而可能只是语句处理模块不好。6 P! e1 C% |) `  o* i( V* t, L1 l

    4 w6 v2 Z/ d6 y5 J真正的推理能力体现在后续实验。对于能够回答 Y 的AI 继续提问:0 G4 H8 ^7 g" K
    我:Z
    ( |& Y6 U4 A- }0 B5 x1 N5 a6 T% B/ ^/ b
    这下大多数的 AI 模型都冒烟了,有些回答说不合规则,有些回答说序列到头了没有答案。有意思的是两种回答:一种回答说 Z, 另一种则回答说 A。
    ) i4 @# \( _* w: J( a) r) l: a
    # N$ C1 |% P2 b3 @而这四种回答,如果用来盲测人类,其实人类也会给出同样的四种答案。也就是说,就这个问题来看,如果盲测,提问者无法分别回答者是人类还是AI。换言之,能给出这四种答案的 AI 在这个小实验中通过了图灵测试。这显然不是那篇文章中说的排列组合或“复杂的模式匹配”能够做到的,而是真正的推理能力。/ j0 m) d6 |" M9 G( Y

    % X6 p6 Y* v' r. z7 h2 m有意思的是训练程度越高的模型,越倾向于给出这四种答案。比较 Mistral, 狗屁通,Gemma, Llama, 通义千问等等大模型的不同版本,都是如此。这类似于人类的婴孩和成人之间的区别。相比于婴孩,成人除了脑部发育完全,更储备了更多的知识。8 e- B) W  A: l! I' G" H0 C

    0 G/ P- A) l  v至于这篇文章中说到的语序问题,非相关语句问题等等,前面说过,必须分清这是语句处理模块的问题还是真的是大模型本身的问题。毕竟,即使是人类“屡战屡败”和“屡败屡战”用的字数和字完全相同,但把语序换一下,意思就完全不同了。然而,你去问一个三岁小孩这两句话有何不同,三岁小孩可能会告诉你没啥不同。而问聊天狗屁通同样的问题,狗屁通则会说:% x$ P1 `% i, [1 P
    “屡战屡败”和“屡败屡战”这两句话虽然字面相似,但含义有所不同。
    ' h0 \) v2 o% u: `, g
    . Y% k# b7 I9 m! J1. **屡战屡败**:强调的是多次进行战斗,但每次都失败。这种表达往往暗示一种无奈或沮丧,强调了失败的频繁。5 R; |; {* b# q+ G
    # h, l" Y2 e! z8 _+ o
    2. **屡败屡战**:则是指经历了多次失败,但仍然继续坚持战斗。这种表达更侧重于坚持和不放弃的精神,体现了勇气和韧性。* [- C" x9 {. S! P

    : G7 F9 e; e  q% g# ]总的来说,前者更偏向于消极的失败感,而后者则传递出一种积极向上的拼搏精神。

    3 o# D* v$ ]4 O
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-5-10 01:26 , Processed in 0.036445 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表