设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1156|回复: 1
打印 上一主题 下一主题

[科技前沿] 大模型辅助招聘的偏见问题

[复制链接]
  • TA的每日心情
    开心
    2020-4-8 10:45
  • 签到天数: 227 天

    [LV.7]分神

    跳转到指定楼层
    楼主
     楼主| 发表于 2024-12-14 09:29:26 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    继续大模型的话题吧,今天我要聊的是人工智能在招聘领域的最新应用,以及我们如何防止这些智能助手变成“偏见制造机”。这不仅是一个充满挑战的技术问题,更是一个关乎社会公平和效率的重要议题。
    # e8 F. @  T$ ~1 x0 o) Y! u8 E& K) D6 p! {% v: `
    想象一下,你是一家大型企业的人力资源经理,每天面对堆积如山的简历,你希望快速找到最合适的候选人。这时,一个强大的大模型(LLMs)出现了,它能够快速阅读和分析成千上万的简历,甚至还能评估候选人的潜力和适配度。这听起来是不是很酷?大模型在招聘领域的应用,确实能够显著提高我们的工作效率。用大模型先筛简历,这一点已经是目前的线上招聘领域的通用做法。! n% b1 F0 y4 L& ~

    # y, x- w( _, h公司名称        产品名称        产品类型        主要功能        效益提升
    5 A+ u- i% M" h1 v拉勾招聘        HRMind        大模型招聘产品        简历筛选、候选人评估、面试        简历筛选效率提升80%,候选人评估准确率提升30%4 s0 c, [5 t# d
    腾讯招聘        AI面试官        自动评估系统        面试评估        面试评估效率提升50%
    ) \* i* x/ b) f字节跳动        智能招聘助手        招聘辅助系统        简历筛选、候选人推荐        简历筛选效率提升60%$ K0 V5 J1 @& d! E0 @
    智联招聘        AI人才画像        人才评估系统        了解候选人性格、能力、价值观        帮助更准确地判断候选人职位适合度
    : A! n6 ~% f7 n8 a- J, n( K6 ?0 y- l( K5 ^2 P- P4 D
    但是,这里有一个“但是”。这些模型可能会有偏见,它们可能会无意识地偏爱某种类型的候选人,而忽视其他同样优秀的申请者。这不仅不公平,还可能损害公司的多样性和创新能力。这就引出了我们的下一个话题——算法审计。1 A( v, u/ `% Q

    ) F4 C+ ]( O$ T# M算法审计就像是给模型做一次“体检”,检查它们是否有“健康问题”。一种有效的审计方法是对应实验,这是一种在人类判断中检测偏见的工具。在招聘领域,对应实验通过改变申请材料中的元素(比如名字)来衡量种族和性别对决策的影响。这就像是在模型的“大脑”里安装了一个公平性的“监控器”。
    " K4 _# r$ l, Y# p# s6 n/ u
    8 z8 v. T! c! Q6 i6 D5 g9 z9 i让我们来看一个实际的研究案例。研究者们使用了一个大的公立学校地区的K-12教师职位申请语料库,通过操纵申请材料中的元素,比如名字和代词,来测试模型是否会对不同种族和性别的候选人产生不同的评分。结果发现,模型在评分时确实存在中等程度的种族和性别差异,这种模式在改变输入模型的申请材料类型以及对LLMs的任务描述时基本保持稳定。
    4 H. M) V8 L% g; W. n" y: r
    2 a% w' i5 X$ M8 X8 M# b! b全球各地的监管机构都在关注这个问题。比如纽约市的LL144法令要求雇主在使用AI工具进行人员分类或推荐就业时进行偏见审计。欧洲的数字服务法案也要求大型在线平台进行审计。这些都是为了确保AI技术的应用不会加剧社会的不平等。' `3 {# r6 O$ h

    ( |; i8 W- H5 @7 I% K( W! P' f' L4 s那么,这些偏见是从哪里来的呢?一部分可能来自于模型训练时使用的数据。如果训练数据本身就存在偏见,那么模型很可能会“学习”到这些偏见。另一部分可能来自于模型的设计和任务指导。因此,我们需要从数据收集、模型训练到任务指导的每一个环节都进行严格的监控和调整。
    5 I. O1 d( r8 f, a/ E5 }
    0 l2 P1 `4 d* a0 p" f/ |5 E在进行算法审计之前,我们还需要对数据进行编辑和处理,以确保数据的“清洁”。这包括删除简历中的个人信息,比如地址、电子邮件、电话号码等,以及使用自动语音识别技术转录视频回答。这样,我们就可以更准确地评估模型的偏见,而不是被数据中的噪声所干扰。: W/ O9 s" L! J. ^& g& x

    * Z$ w# a$ ]# ~% ^, l' s: u为了测试模型的偏见,研究者们还生成了合成申请档案,通过改变申请人的名字、学院、头衔和代词来模拟不同的种族和性别。这样,我们可以更直观地看到模型在面对不同候选人时的反应。! _: x  |8 c% f  l+ @& C

    1 }: Z5 U0 e+ J0 e4 v# Q; @$ s大模型在招聘领域的应用是一个双刃剑。它们可以极大地提高我们的工作效率,但同时也可能带来偏见和不公平。通过算法审计和监管,我们可以确保这些技术的进步不会以牺牲公平为代价。这不仅是技术的问题,更是我们作为技术使用者的责任。5 B+ p. ^" J) }6 P
    4 I$ F$ ^+ I" d( R4 A, j9 F, P
    最后,让我以一个有趣的比喻来归纳一下在招聘领域是用大模型的现状:想象一下,大模型就像一辆高速列车,它能够快速地带我们到达目的地,但如果不控制好方向,它也可能带我们偏离正确的轨道。因此,我们需要时刻保持警惕,确保技术的发展能够惠及每一个人。
    1 ]/ ?5 A( Y! a* F
    7 _1 m& q* b: G6 u9 O, j& ?原文链接' Q( ~' m9 \# u; m/ M0 ?& v' ~

    评分

    参与人数 2爱元 +28 学识 +2 收起 理由
    喜欢就捧捧场 + 12
    老票 + 16 + 2 涨姿势

    查看全部评分

  • TA的每日心情
    奋斗
    6 小时前
  • 签到天数: 3166 天

    [LV.Master]无

    沙发
    发表于 2024-12-14 10:06:59 | 只看该作者
    哈哈,xiejin兄弟关于大模型的种种分析都挺好的,其实,大模型和人也都是一样,人在招聘中选择候选人,跟自己的阅历(也是一种“大数据学习”)和在这种阅历上形成自己的个性也有影响,也会使自己戴上有色眼镜。所以筛选出多个候选人,然后由一个招聘组面试,招聘组多个人就是试图避免个人倾向性。$ N! U* a" G" _) V: O
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-7 20:43 , Processed in 0.055289 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表