| 
 
TA的每日心情|  | 开心 4 小时前
 | 
|---|
 签到天数: 3592 天 [LV.Master]无  | 
 
| To use DeepSeek for training your project, follow these steps based on whether you're leveraging their API or self-hosted models: 1. Choose Your DeepSeek Model
 DeepSeek offers models like DeepSeek-R1, DeepSeek-MoE, or chat-optimized models. Decide if you need:
 
 API Access: For quick integration without hosting (ideal for inference or limited fine-tuning).
 
 Open-Source Models: For full control, fine-tuning, or customization (e.g., via Hugging Face).
 2. Access the Model
 Option A: Use DeepSeek API
 Sign Up: Get an API key from DeepSeek’s platform.
 
 API Documentation: Review their API docs for endpoints, parameters, and rate limits.
 
 Example API Call (Python):
 import requests
 
 api_key = "YOUR_API_KEY"
 url = "https://api.deepseek.com/v1/chat/completions"
 
 headers = {
 "Authorization": f"Bearer {api_key}",
 "Content-Type": "application/json"
 }
 
 data = {
 "model": "deepseek-chat",
 "messages": [
 {"role": "user", "content": "Explain how AI works."}
 ]
 }
 
 response = requests.post(url, json=data, headers=headers)
 print(response.json()['choices'][0]['message']['content'])
 
 Option B: Self-Hosted Models
 Download Models:
 
 Get open-source models from Hugging Face Hub (e.g., deepseek-ai/deepseek-r1).
 
 Use git-lfs to clone large files.
 
 Install Dependencies:
 pip install transformers torch
 
 3. Fine-Tune the Model (Self-Hosted)
 If using open-source models, fine-tune them on your dataset:
 
 Load the Model and Tokenizer:
 
 python
 
 from transformers import AutoModelForCausalLM, AutoTokenizer
 
 model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-r1")
 tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-r1")
 Prepare Dataset:
 Format your data into prompts and completions. For chat models, structure with system, user, and assistant roles.
 
 Training Setup:
 Use Hugging Face’s Trainer:
 
 python
 
 from transformers import TrainingArguments, Trainer
 
 training_args = TrainingArguments(
 output_dir="./results",
 per_device_train_batch_size=4,
 num_train_epochs=3,
 logging_dir="./logs",
 )
 
 trainer = Trainer(
 model=model,
 args=training_args,
 train_dataset=tokenized_dataset,  # Your preprocessed dataset
 )
 
 trainer.train()
 
 4. Deploy the Model
 API: Directly use the API endpoint in your application.
 
 Self-Hosted: Deploy via cloud services (AWS, GCP) or frameworks like FastAPI:
 
 python
 
 from fastapi import FastAPI
 from pydantic import BaseModel
 
 app = FastAPI()
 
 class Query(BaseModel):
 prompt: str
 
 @app.post("/predict")
 def predict(query: Query):
 inputs = tokenizer(query.prompt, return_tensors="pt")
 outputs = model.generate(**inputs)
 return {"response": tokenizer.decode(outputs[0])}
 
 5. Resources & Considerations
 Documentation: DeepSeek Official Docs for API details.
 
 Hugging Face Integration: Use their transformers library for model loading.
 
 Compute Requirements: Fine-tuning large models may require GPUs (e.g., A100s).
 
 Data Privacy: For sensitive data, prefer self-hosted models over API.
 | 
 评分
查看全部评分
 |