标题: 突然想到让deepseek来解释一下递归 [打印本页] 作者: 密银 时间: 2025-1-29 14:16 标题: 突然想到让deepseek来解释一下递归 本帖最后由 密银 于 2025-1-29 14:19 编辑 . }, k- [& n4 \/ s
, n8 V7 J" V) r8 j4 ~
解释的不错$ |* x% p0 u( a1 O$ }8 {( J1 t
* e: Q) j9 x- f7 y3 Q* a) j
递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。 " h3 x1 R) Z2 D3 t+ z* O. Z* t. d: V. F l
关键要素2 A0 W( j/ h7 Z8 M- H7 [
1. **基线条件(Base Case)**& L& W0 m! {' z) }/ G" M5 l7 c
- 递归终止的条件,防止无限循环 2 K- ?8 S) }9 R( N% _! p9 S& d - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1 ?! J3 K/ w3 u/ I; G - w2 w( ?) ?2 F/ l1 A2. **递归条件(Recursive Case)**& Q1 E, F: ?& i# |5 H% ]
- 将原问题分解为更小的子问题( s5 n8 L( N0 w& @
- 例如:n! = n × (n-1)!! A4 h( J1 G8 U
0 E* @' S* X: ]: j _2 v: p 经典示例:计算阶乘) D5 `) l2 L9 E/ K' ^
python) K3 U* H+ B) _3 {: |" X, O7 i
def factorial(n): 5 \0 Q+ B9 M% B1 A4 G: J if n == 0: # 基线条件' n6 S0 q/ Y3 l8 c$ m5 g) N6 c
return 1' V; |5 s0 O5 r9 C% q
else: # 递归条件 6 p; M* f4 l; y% \4 O# N( l return n * factorial(n-1) 5 C, z2 n, e2 n% B a执行过程(以计算 3! 为例):8 o J- i0 a8 p( G$ J0 B
factorial(3)1 H% o: f: V* j+ I" J; R; c, Z
3 * factorial(2), o$ }2 |* K, {& m5 z
3 * (2 * factorial(1)) 9 s+ ~ s* Q6 P: v" v4 A6 d3 * (2 * (1 * factorial(0)))5 C" Y# c( b0 o* A+ y+ t
3 * (2 * (1 * 1)) = 6 7 `$ [) h/ u* T: C7 F 9 i1 a; _% l: Z2 V 递归思维要点 1 g. v9 {, C D3 g1. **信任递归**:假设子问题已经解决,专注当前层逻辑/ c' g; J6 n7 R+ F/ ~3 _9 }
2. **栈结构**:每次调用都会创建新的栈帧(内存空间) $ w2 I* y* ]5 v, O4 @3 A3. **递推过程**:不断向下分解问题(递)) _& h+ [% m+ X% F! {
4. **回溯过程**:组合子问题结果返回(归) W: K* B( L. r5 H& ^8 [) @# O. j$ B/ Y; U" @8 Q+ O/ a, G
注意事项 0 T2 _9 d* f: T* c4 Q必须要有终止条件' w* k7 z. B j# o4 h+ _
递归深度过大可能导致栈溢出(Python默认递归深度约1000层) , _/ Y F. L# H9 U6 @7 f4 B B$ A某些问题用递归更直观(如树遍历),但效率可能不如迭代 % D8 p+ T( q0 K# m) A" M. A尾递归优化可以提升效率(但Python不支持)% p* x- a0 W) g8 V4 I
: z7 ~& p4 G. g7 X5 Q# u2 q; S1 O
递归 vs 迭代 1 q4 J( A' N( ~" }| | 递归 | 迭代 | C1 t+ a3 y& R! p4 I9 d|----------|-----------------------------|------------------|) x7 j& r( Z$ |% l
| 实现方式 | 函数自调用 | 循环结构 |5 ^" j. x. t4 o, Y4 d. L
| 内存消耗 | 需要维护调用栈(可能溢出) | 通常更节省内存 | * R, {; l1 p) _0 Z| 代码可读性 | 对符合递归思维的问题更直观 | 线性流程更直接 | ' L U* x# O: O+ c| 适用场景 | 树结构、分治算法、回溯问题等 | 简单重复操作 |( j! k* X/ ?, o1 I
. f0 u8 D) K, G1 B/ z 经典递归应用场景 - L. x X/ a# _8 M, K1. 文件系统遍历(目录树结构) 0 N) E0 I) G' j2 E! E2. 快速排序/归并排序算法! ^2 M g, `! Z+ U& H7 j6 M( d
3. 汉诺塔问题1 c$ P' L/ s7 j/ }6 B
4. 二叉树遍历(前序/中序/后序)8 M8 Z, k1 L$ |7 B) U" }
5. 生成所有可能的组合(回溯算法)* G" }0 K B7 ]# @7 F" d
* V' X& ?9 m& V. \3 S试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。作者: testjhy 时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,. s* R& ?8 c/ }! V* a
我推理机的核心算法应该是二叉树遍历的变种。5 ?2 s; q5 T1 F6 a N% a
另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。作者: nanimarcus 时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation: : V6 z2 ~1 g# PKey Idea of Recursion5 T) b7 y' D/ o1 H0 C
- @# o1 {! p: W; J
A recursive function solves a problem by: ; j* B% w3 B# D+ o) h8 C/ u* Q4 z. ^, w
Breaking the problem into smaller instances of the same problem. 5 l- ^- G( y: D b3 y4 ?4 `& O3 h' o
Solving the smallest instance directly (base case).' u& M2 [4 H# Q% Z3 H$ [! P. B$ g. M
8 B! Z2 C: X0 s- p( x Combining the results of smaller instances to solve the larger problem.9 J3 A) K" N2 p2 C- q( S
5 Z& R. T7 O: |3 E1 ?. O1 [
Components of a Recursive Function) `9 W1 L2 P6 @3 d/ U8 s
' [ V+ j3 s$ L* ^' T Base Case:# E: r9 ?, W" Y1 N$ i/ s$ b
% z, z) k1 n7 [% R" y5 d' u3 g This is the simplest, smallest instance of the problem that can be solved directly without further recursion. \6 E8 V# z" ?1 n0 ~6 ~ ]
D7 b4 e' U. V9 T
It acts as the stopping condition to prevent infinite recursion. - t. [6 I' d) ]/ j7 j8 u; e 0 n* S- D# i+ [4 S- Q2 d$ Y2 H Example: In calculating the factorial of a number, the base case is factorial(0) = 1. $ h& \$ W0 ~; o7 Z) g. ? ! n# ?) O! C; U Recursive Case:6 [9 ?* |. Q$ W$ J2 F
8 s& l8 N" e+ V9 B/ c+ W2 i7 I This is where the function calls itself with a smaller or simpler version of the problem. 2 w% ^4 R u8 j" j ; Z" a/ x; X% D' [1 z8 R Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).0 A: u6 Q8 F [- a: h; F# C$ n/ @
# u6 R5 ^2 P: f" M, U
Example: Factorial Calculation , p5 l- d' [1 ?" N3 I0 X" c2 v* E9 f2 b4 @2 W+ @
The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:6 A: |4 X# \8 i5 f* i n
% M4 b) C( s% N; l9 s/ r- j+ M m Base case: 0! = 1 + Y, @; \; J% `5 h$ |+ Z! \9 [# t0 i7 U
Recursive case: n! = n * (n-1)!: X- r' O# l i/ Y
( a1 H$ [( d1 j. B( g
Here’s how it looks in code (Python): n: R! Q, J; i8 u6 ? |python I+ v: P7 [ A; z- }* k' X 4 `# o, W* e5 O2 u$ c0 e5 ^2 P F# X% C; a
def factorial(n):& ], r" d' }( |- T1 N- ]. E
# Base case, x: W0 l5 M: L. r
if n == 0: 8 F# A& d, g8 r' ]% U4 b, e return 1 ?" ~: ^; N! j: E # Recursive case 2 p! m0 b; } s6 P! y else:, ?7 d+ l* G8 i6 K$ o
return n * factorial(n - 1)( H# @* C" Q7 J2 L
( v) j; M6 ^( ~# Example usage3 C1 W; @1 m' {
print(factorial(5)) # Output: 120 " }) j ?" ^3 B; N) d2 |. x" K' k' y0 u$ k% C& d4 P
How Recursion Works6 t% t& Y; z, p+ ]1 i7 |0 W
! K' K4 |+ s% F5 n0 c5 T: v
The function keeps calling itself with smaller inputs until it reaches the base case. " ]7 r8 |" C! y6 ]" v, n( ~) X- I( A1 m4 y7 L( d; ?! U
Once the base case is reached, the function starts returning values back up the call stack.* D: @; |( D3 Y
. r% z1 p2 x o, z1 y9 F9 D3 r- L" m2 b These returned values are combined to produce the final result. 9 z2 n' v m( B1 E' o3 c5 F8 ?% a/ B9 R% `$ y0 Z
For factorial(5): 2 L8 o" P% E! g& f3 F" P. Y ) u, S: C# t7 j, g) R; `% a' X* Y4 V/ {* u! @: R
factorial(5) = 5 * factorial(4) 4 f/ u2 A9 o. W' [" U7 H0 P$ sfactorial(4) = 4 * factorial(3)+ z; w% k* [3 f1 _+ O7 b
factorial(3) = 3 * factorial(2) ) y$ Y, v9 [" m/ Rfactorial(2) = 2 * factorial(1)- G% Z) [1 I' H* I+ @
factorial(1) = 1 * factorial(0)9 R, R8 ^ z- F" v2 K
factorial(0) = 1 # Base case & Z5 c2 u+ A# s) @9 I ; c. l( e- _) Z; y4 {2 J4 d, v. ^Then, the results are combined: % N: y0 T! ], h' ?0 _8 B( D% P " v) j1 Q7 ]' P " S/ H5 ~) N% L& N8 ]factorial(1) = 1 * 1 = 1( o& T5 G. \5 ?! U2 @
factorial(2) = 2 * 1 = 2 + Q J$ Z" d( o( b( U& ~factorial(3) = 3 * 2 = 6 $ w! o! B; \: `( D0 U! ^factorial(4) = 4 * 6 = 24/ k8 Q r% x" f+ a
factorial(5) = 5 * 24 = 120. |" U5 ?# ^8 @. }; ~+ l$ Q
& j R9 A F4 R2 O8 m
Advantages of Recursion1 p' g6 n; i$ |
% D7 b: N5 ^7 [/ Z3 t C) ?8 h Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).+ d( P9 U p( T) S: e
6 P6 y* }( @- `% {# Y1 q0 m
Readability: Recursive code can be more readable and concise compared to iterative solutions. 2 I) u, X. L9 m9 ^" [" J( m) O; l! |! d Y+ {
Disadvantages of Recursion 7 @* B7 m; r( f2 Y h8 n# m8 z H( p Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion. " T8 b6 F, ^ Y7 o9 k. K+ U/ M; Q! Q% q: D& o
Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).: v2 y7 T+ L' @4 D- ]3 u" V
! D0 ~ |7 Y$ }- F4 {/ a/ sWhen to Use Recursion ! e0 e) k8 s# c# ^" r5 `' \) D S a7 b. O, |8 h
Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).( k8 @, M0 D7 |
' [, g* l4 Q3 T* u/ l$ Z( h7 w% V Problems with a clear base case and recursive case. : r6 C& @# V1 h- P- t, B, ] * F( l4 G) v- G( o/ U( DExample: Fibonacci Sequence 9 V. F- q, D! ~& p+ ~ & G: [" R7 K& a6 n, j3 uThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones: " W% K6 _+ B' z6 t 9 P! {4 _$ U" ^# n Base case: fib(0) = 0, fib(1) = 16 `2 _5 i' f0 z. e/ B
; J! E, k- K3 Q: F/ H# C/ g$ v
Recursive case: fib(n) = fib(n-1) + fib(n-2)3 E- J- k; p) ^- z6 i: t
+ N% p8 f- e! q; N, k" o+ `python p P# V4 K% d9 j' o( c- e& Y9 w- A3 ~0 ]! i% f2 `
9 h" O/ q5 i3 a, J' A( K5 R& G2 Q
def fibonacci(n):( y: Z4 j( @2 Q8 t# Z9 J
# Base cases) z# G6 R. g1 ?) }! E
if n == 0:! g' }% L& j' y/ y$ ]% X- |( s
return 0! Q* S: {) k$ Z/ g
elif n == 1: 6 r1 E- u7 z, b return 1 : \- l3 ^" f9 F # Recursive case . G# u l; l7 \9 v- h! c' g: x else: / G- [ J& j1 ?$ W3 _2 n return fibonacci(n - 1) + fibonacci(n - 2) # A/ F/ ?/ b Q1 R! p6 }# H7 ?. {. K9 F/ B0 ^ k ]$ z4 C( e
# Example usage: z9 [# Y# `: }8 W0 \' Y
print(fibonacci(6)) # Output: 8 * z" j! ~6 z" S. I& g / `. @6 h1 R' ~! fTail Recursion* n0 w4 p2 M& o t$ D# g E6 r/ R8 t
, Z- t9 {3 q' I- E- pTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion). 8 K& N1 y' \8 g2 C8 k0 R% i5 \, G1 v m& d: ^4 N, g* U0 T7 y( n2 J
In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.作者: nanimarcus 时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。