爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑
2 y2 C# r5 ]0 w  [
& i7 i; T6 P6 D2 y; H' Q- z! s; A解释的不错# p6 c  t0 W/ m( s
1 V4 i) {/ w6 e+ c6 ~
递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
0 m) p% N- ^( p
) L& E/ v4 X# y( F8 i 关键要素2 y# A1 h2 D' u% m& W: ~
1. **基线条件(Base Case)**7 Q  v1 R8 Y+ A
   - 递归终止的条件,防止无限循环) E, t2 `- u6 w+ e% `
   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
+ A4 X' Y( W$ b, p+ J0 p# v( V: C& B
$ [, k, {! w  b2. **递归条件(Recursive Case)**
! M' I5 Y" r2 D, |' P! p3 w5 \   - 将原问题分解为更小的子问题7 c3 X4 m- i6 e3 `2 |7 h
   - 例如:n! = n × (n-1)!9 C4 {$ U5 M4 H; {
: H/ D* x6 h5 z0 D9 H
经典示例:计算阶乘
% v6 p' B3 {; }python
( I$ l1 g- C1 Zdef factorial(n):
7 y9 _) a" s3 y! G0 ?! u4 J    if n == 0:        # 基线条件' I# a$ K9 M# ~
        return 15 o7 v$ @* c) `: M5 i
    else:             # 递归条件2 g" C& y/ T, v
        return n * factorial(n-1)
( m) [8 n  w( d# n& ~! N3 V5 v执行过程(以计算 3! 为例):9 H: \4 v& F$ w
factorial(3)
: s0 S/ C" W7 H3 * factorial(2)- Z3 s# ]. U4 k4 X$ `( d
3 * (2 * factorial(1))9 y1 k/ L' W$ _! f0 F' t4 D4 _2 h
3 * (2 * (1 * factorial(0)))
3 X2 R9 A  i" e$ a. j3 * (2 * (1 * 1)) = 63 m1 o; l& @6 J6 F# n6 m2 L3 C' N3 r

* {+ [) {& S3 x7 M8 B" g 递归思维要点. d* l# p/ T6 {
1. **信任递归**:假设子问题已经解决,专注当前层逻辑+ N% @5 x- H3 S0 X% v& y; v
2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
" Q# i& @/ q. {- L0 w3. **递推过程**:不断向下分解问题(递)
/ s  x2 [" e2 j/ \' {7 t4. **回溯过程**:组合子问题结果返回(归)' @8 U! P1 ~2 N/ E% H% P

$ r' ?& w1 V* M4 m2 e9 p  r" Q 注意事项
- F% g* b+ H( O, r% o必须要有终止条件
% L$ s8 R  k# H) }. D' V递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
; C6 {# k. }: e: b4 Z某些问题用递归更直观(如树遍历),但效率可能不如迭代
  Y; f% r& ]" d尾递归优化可以提升效率(但Python不支持)
& P, R2 \- n! y( m* @% u: b  H
6 Z, ^+ e2 a( W% \  F 递归 vs 迭代
8 p0 ~1 [, i3 |4 v|          | 递归                          | 迭代               |# m9 d) F3 t: F, g! k9 _* W2 f
|----------|-----------------------------|------------------|$ ~6 i& s8 o8 S/ L- f
| 实现方式    | 函数自调用                        | 循环结构            |
  W3 A+ P5 ~% V| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
7 v6 p0 A" Q/ y- x7 r| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |6 J4 q. Z, Y/ s7 H  |) M2 |; j
| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
  e* Q1 m9 O9 l) g! @+ N4 b" N+ L# x4 c6 r; ]9 u5 q0 P
经典递归应用场景
& l0 A) d0 h# c1. 文件系统遍历(目录树结构)5 W- U/ Y# i$ L! n2 X* q; e
2. 快速排序/归并排序算法
) _9 e) z% N0 f% A1 e4 p2 X3. 汉诺塔问题5 `6 u# e$ _& B
4. 二叉树遍历(前序/中序/后序)
& h/ [- R; i, q0 C8 I3 a5. 生成所有可能的组合(回溯算法)
- m" B- ?: L: G8 Q% b! q+ I- K5 m( U+ s# ]; c0 ?8 p$ b
试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,; Y: ~9 c% q, d# k
我推理机的核心算法应该是二叉树遍历的变种。6 U/ Q/ N# }* Z, Z
另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
# N& H+ _6 z8 o3 ^Key Idea of Recursion
4 o2 K2 j( ^+ P& ~% j3 W
; }$ Y# k8 J: ~0 k/ v5 E) M9 [A recursive function solves a problem by:' T. }; y6 ~4 W  p2 ]

# l9 H8 T8 X: F8 P    Breaking the problem into smaller instances of the same problem.5 Q) `: j  G0 C/ h2 X! r. g
! z% w( [) m: c- a# }, h' j
    Solving the smallest instance directly (base case).8 S5 t, Y- [+ G9 B
! C! ~6 s% z8 y+ y5 O
    Combining the results of smaller instances to solve the larger problem.8 `* k8 s; m* ]

* w) P. S5 r7 W/ y- G" tComponents of a Recursive Function
% ~+ m: ~% v" C/ v5 T/ ]( K" [  l. n5 d! X
    Base Case:* n: A) }# x6 t0 z4 F, i5 N8 d& N
! `; n6 n  |( s
        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.8 k* V" }$ U  ^, k0 d0 w0 t, M
$ m) @( ?9 V- m# E
        It acts as the stopping condition to prevent infinite recursion.) X% U, W2 V* D
8 C$ O8 Q0 \" Q- Y8 v: [
        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.2 \6 \, u. `6 p. k- s

& R4 K1 h  w7 m2 m* u- V% t    Recursive Case:
! _' X7 A# {( c* J2 u1 a  M4 n0 X- l  w+ n6 ~& ~9 L+ A) n
        This is where the function calls itself with a smaller or simpler version of the problem.  `6 F9 N8 k! Z* @
# q0 t) G1 i2 {& A
        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).# I# B& a5 N; H/ _7 \  R
$ W: k' F, m; h2 k8 B% @
Example: Factorial Calculation, f8 o) N2 S6 C" I, x6 W3 ^1 h9 T# N

  ?; e1 E! s) s" UThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:! d9 M7 R% L9 y; [

* M, K3 H7 `1 R" m    Base case: 0! = 1
0 T3 i# a0 K' r, P6 @1 ]: P5 _1 r* w1 ?
    Recursive case: n! = n * (n-1)!3 c  Q: I4 G7 L: P
' {5 d. i! t7 E' ~% B
Here’s how it looks in code (Python):
- u. t1 g3 L' W4 v& g3 bpython$ \, H2 t2 c+ d. y, u9 u

$ X4 Y+ E" u& Y7 y" N* m- @# O$ j8 ?% e
def factorial(n):
2 F4 m3 I- G  R* e    # Base case( T  z% A7 J* h
    if n == 0:6 B1 |+ g- ^! g% Y# G
        return 1- a1 T0 H: o$ Y6 G7 A8 G) X
    # Recursive case
3 v# t0 x+ v/ K7 l$ w    else:4 o) d" w/ S0 u3 G' S: \7 I
        return n * factorial(n - 1)
5 M) g; I0 E# E* l( M) f- F, h
# Example usage( o$ g7 p( |' w& g2 p1 }
print(factorial(5))  # Output: 120
7 J' J! @. V8 E+ }- S+ x( s/ `8 }8 ~( q! u  }1 w
How Recursion Works
1 O7 ~4 ?0 Y3 J  K; f. ^8 O2 I! Z  p2 V9 b5 L7 E' n$ {& v
    The function keeps calling itself with smaller inputs until it reaches the base case.
/ N$ |# v1 T" @( w- F) z' S; V/ u5 |
    Once the base case is reached, the function starts returning values back up the call stack.( a4 v4 Y% Y6 C; i% w

9 H8 z6 |9 @+ J% b& N& v    These returned values are combined to produce the final result.
. I$ |/ i1 S* E+ r0 y" U
- N8 d3 a7 c$ kFor factorial(5):
/ X0 Z  U2 S9 M
0 Z) \# {+ v% a: ~3 q# W# `3 i, ^" v
factorial(5) = 5 * factorial(4)
3 n/ D$ M) o2 ]/ b% g5 D7 Yfactorial(4) = 4 * factorial(3)8 m7 J1 k0 R. k- V. }
factorial(3) = 3 * factorial(2)8 M" \, L( q4 w  ~& W
factorial(2) = 2 * factorial(1)2 u  `) h: y9 v$ S/ W  t9 g
factorial(1) = 1 * factorial(0)0 `5 |' `% E0 F8 W3 U6 q
factorial(0) = 1  # Base case8 |* ?! E# R1 {6 z

: @2 {2 K& g4 ~$ PThen, the results are combined:
8 n$ q# k# M" w7 B( `
- M5 f; i" ?' Y6 c: f) }" d2 i* w1 m# Y) c1 L0 ?2 p6 F4 ^
factorial(1) = 1 * 1 = 1
3 H8 M3 w; ^9 gfactorial(2) = 2 * 1 = 2* l7 M6 P/ y" C( P' R3 \6 C
factorial(3) = 3 * 2 = 6
& \; M3 C) B, S  Zfactorial(4) = 4 * 6 = 246 @& J" ~9 Q% z5 `3 Y' e+ M* n- n
factorial(5) = 5 * 24 = 120
+ D  U/ T2 E1 ~3 v7 m" E- U
/ ~8 I4 U  z3 @- S+ h6 E5 FAdvantages of Recursion
+ |+ y! e! m: D+ d) T: u+ F( Z3 Z6 I7 R, l$ L3 d3 U) z  N" |9 K5 d; ?
    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
8 n* [7 C( ?& H1 k7 j5 i- f4 F
. B; b  x# w; J# g3 L( S2 p. _    Readability: Recursive code can be more readable and concise compared to iterative solutions.
) O0 l  b; K- n1 m! p, n. H$ P9 A  @* E: ~9 O! ?& ]$ K  _
Disadvantages of Recursion4 X$ }7 p4 v& r
9 A: D, e. o  E/ j* \  t3 K
    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
8 `3 j" L5 }. ?8 u
8 i! }+ T' K5 P- H! ~" h    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).8 P+ E, d. D- J. T. p

) W1 s0 w  Q! }) ^When to Use Recursion
) T( n8 X. Y& I, w4 [& D0 B% S+ a+ a! S0 v
    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).) `1 [5 I* _; `8 r1 ]
. N! I) P9 _' K
    Problems with a clear base case and recursive case.
3 O. Q; f& _9 A) `/ w+ v# H
( d& U2 a: ^: A3 q4 ~% zExample: Fibonacci Sequence
6 v# y8 k3 W( _, t" A
( e  z8 g. H# Z3 m2 v5 sThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
+ C) M% n: e, {$ [- u/ f1 W7 ^  f
- w1 P1 J- }, U, H( O7 M    Base case: fib(0) = 0, fib(1) = 1
! M* k7 n% r, e" _* w
& L4 r7 `  y" F( C    Recursive case: fib(n) = fib(n-1) + fib(n-2)- M/ _% J; o& P5 l: W; F8 }% G! S; C

, M/ o3 c2 u) |' M0 xpython% J& S) l1 f* m1 A0 w
4 |; [; [: B, j: O. {- V0 D

" f7 i$ \7 \  \( u, R) R( mdef fibonacci(n):
8 c+ a# y6 ^7 o. |1 E2 d& K    # Base cases
" I# K( t  r; Z, d3 `0 s; M" q    if n == 0:0 Q$ {. B% a- T4 M8 f
        return 0/ H( o, r& ]7 B  U. U+ \
    elif n == 1:
3 I  t$ N# R+ J/ @/ g5 k9 U        return 1  Y% s/ z9 {* _- G6 q
    # Recursive case0 o0 t( E( s  `# B, p' i
    else:- B2 r/ W0 M1 |( `
        return fibonacci(n - 1) + fibonacci(n - 2)  J: ^' j7 }+ ]3 i* E
8 N7 ]9 Q' b' z% y- `: h
# Example usage
) B, P: i1 K0 A2 X; C/ cprint(fibonacci(6))  # Output: 8
8 v, ~$ z5 i, O) \! i8 {" Z& s+ T/ }4 g9 P/ n. \2 @* x; \
Tail Recursion9 \8 n8 V3 ?" E+ d$ c6 u1 {7 N

( @) Z* Z) Z- S8 A* \5 ?Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
% z  e4 [7 Y) `+ j2 O- o: |
  U" L3 z7 n+ wIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://www.aswetalk.net/bbs/) Powered by Discuz! X3.2