爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑
; H) d; t8 L/ y, C$ Z4 Y  i, t! g3 |5 _% g- V5 x' F
解释的不错8 q& R, y- }( T- w6 _- M

% x4 d7 x& b4 _0 ?/ b4 C递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
. w" u1 j( Z( [. r
  @5 a8 }9 p/ N1 v' x 关键要素* f- w  W9 D) z" d
1. **基线条件(Base Case)**2 }; p6 F8 o1 n4 h! T
   - 递归终止的条件,防止无限循环
3 ^1 Z) }# V- K2 Q   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1  X' q7 i+ u8 r  A& i/ p

, }& `# ]! n2 P! m2. **递归条件(Recursive Case)**" D5 i  U  [4 p+ ~; @' ~2 m% S
   - 将原问题分解为更小的子问题9 [) }$ B  m) w- T. v
   - 例如:n! = n × (n-1)!
- ?+ @: {, e: a  b. I( ~: \& l! g. @! d; J! V2 k% R3 \
经典示例:计算阶乘% {( [/ x1 o3 o6 s. W  Y7 x* t
python+ U. ^, U5 b! X- ?
def factorial(n):
9 D8 F& d* x9 f6 ]0 J1 |    if n == 0:        # 基线条件
! j$ n% J: m% ~. A* U! T        return 1
* l7 i" ~! ]+ C. Y: d  g    else:             # 递归条件# F2 m* }1 n" \) _8 j# c
        return n * factorial(n-1)( L+ D! `5 i1 v5 f5 c1 H
执行过程(以计算 3! 为例):- w; N9 A; L3 B& Y" k# \6 P! e# I
factorial(3)/ j1 n( s5 u* ?4 d$ M5 u0 r
3 * factorial(2)
- N. r1 K& T7 e9 }6 @! w3 * (2 * factorial(1))2 V; G- |8 k  N6 u
3 * (2 * (1 * factorial(0)))' w1 u% N* g* B( l. h3 d2 m. x
3 * (2 * (1 * 1)) = 6" A5 O& V. K: D+ z- e
' |, `2 J5 P0 B! R
递归思维要点' x5 V' e* _" N$ c7 ]* L4 ~
1. **信任递归**:假设子问题已经解决,专注当前层逻辑
; E: H6 `8 X  w2. **栈结构**:每次调用都会创建新的栈帧(内存空间)7 H5 r- Y' ~6 p7 c& @# t
3. **递推过程**:不断向下分解问题(递); s: T) \" K! W! F8 f( ~# t2 w& V% ]
4. **回溯过程**:组合子问题结果返回(归)# `  ^, d9 c* X) v3 M
* B( p. E" x* H. y
注意事项
: G- Y5 J9 w/ w2 n: [" j必须要有终止条件
/ E" ]# s! Z( N  m& @' f7 D递归深度过大可能导致栈溢出(Python默认递归深度约1000层); m/ L/ z- a$ g& w1 }
某些问题用递归更直观(如树遍历),但效率可能不如迭代+ b1 Q3 j' S$ Z' P; n" B
尾递归优化可以提升效率(但Python不支持)+ j$ ]6 Y. f% o4 L9 e

; \0 n2 \$ F+ l  V) g 递归 vs 迭代/ G0 o) Y6 e/ L5 F7 P( M# B* h
|          | 递归                          | 迭代               |: T( X7 s, r4 z! t5 z; E
|----------|-----------------------------|------------------|
: k2 A  Z- @/ B  C| 实现方式    | 函数自调用                        | 循环结构            |
5 Z* p# K& D5 e: ~" T| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |$ J" k2 U0 ?  C' }  b1 s
| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
6 f) m" L, |  g4 K| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
+ U) a2 U! E- f3 t: I* m1 r
* Z7 @$ A2 d- f3 R 经典递归应用场景
+ `( J" f9 C1 \! W/ F! D1. 文件系统遍历(目录树结构)8 L! o1 P% ?$ o9 Z1 w" B
2. 快速排序/归并排序算法
/ }, _" y3 z8 M- P3. 汉诺塔问题3 G% o. L8 G( ]1 l
4. 二叉树遍历(前序/中序/后序)& \, P9 |5 x+ _4 ^  o  `: _2 {
5. 生成所有可能的组合(回溯算法)& ~  O" q0 c" [! D. Y2 b% M# {# |
8 _% S6 _8 \9 V# A; k7 P, L% m
试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,+ k& H, ^5 @' s/ V
我推理机的核心算法应该是二叉树遍历的变种。" k0 Z% `2 j2 n  p, R! j. Y
另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
% a* V6 J: Y8 J/ K, h0 uKey Idea of Recursion# f7 S$ Z2 ~% y3 |; u, P$ _
( r5 T* g/ W7 H* N/ G3 G. L0 B
A recursive function solves a problem by:! h  n; u, L+ x9 [) D& z2 o

8 C) k0 K6 L1 w    Breaking the problem into smaller instances of the same problem.
% x$ N! y3 J% f' o2 _7 l2 R7 g% r7 B/ ]1 L7 U2 Q- _: V; m: x5 N
    Solving the smallest instance directly (base case).2 j+ X  z# w$ e- R" ~- ~6 W+ N5 P

0 b/ Y1 f" T0 Q3 }/ ?    Combining the results of smaller instances to solve the larger problem.
0 L9 r4 ^- Q6 x" l' X+ }1 K$ R  }$ V2 k+ f/ Z6 u2 W
Components of a Recursive Function
# D& q9 I  _' N8 X
5 O9 J4 l* T+ [    Base Case:/ q6 y% X! b5 P2 w

( }. W& @7 @) {7 G; i( Q        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
8 _) f( |6 @5 i: d9 w  H# [4 ^: }: I, @1 c1 c+ H0 r9 a( h3 ]4 B
        It acts as the stopping condition to prevent infinite recursion.
4 B) r* f/ b. E! m& G/ K' i" M0 u$ e. _7 w% I
        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.3 m' @$ E- D1 L$ e- |" M

# [9 D) ]% i9 Q( c( i    Recursive Case:
  Y0 k- ^9 J- t6 Y+ n3 _' N7 K  n0 D+ H. l% `2 y+ E
        This is where the function calls itself with a smaller or simpler version of the problem.7 i( k% l; I# n1 J  E
% Z6 h% w7 A9 [! J* p' u
        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
2 ], }# L6 i4 I) ^- Q: k8 g
0 }0 T% Z. X, f% ^! Q) LExample: Factorial Calculation; |4 {* ~3 b2 K9 s% {( u9 Z
) n2 z$ K4 D: \: \
The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:  |, g6 }+ P$ g) {5 b& q

4 w+ e$ {3 |$ |4 U& Z% }6 b7 _    Base case: 0! = 1
% b* ~# n/ L1 b3 e& b# G( u/ V1 m$ x# _$ o
    Recursive case: n! = n * (n-1)!. l# i8 R& x9 Y8 H6 U/ X

; v7 [$ F4 S( D- I8 S2 JHere’s how it looks in code (Python):% R0 _  w# t) A" ?) Y6 v
python
! K, B7 M/ ?7 @$ W: }3 Z+ U& C
/ i8 ^' F9 M0 \& A
% F2 U4 f8 v8 ~  Qdef factorial(n):8 f: W9 v  [7 {5 g
    # Base case
) O8 n' [2 u4 }    if n == 0:
, e4 x7 d' y( R( V9 U9 B. a2 `. \        return 1
+ P0 B  x0 f4 O0 K! J2 p    # Recursive case1 R/ Z+ ^  ^" Z; F
    else:
) E  T. K9 o/ e' l) E2 t! ^        return n * factorial(n - 1)
: Y0 G  ?$ k/ v( a& R* W% R8 Q) a. ^9 Y7 J
# Example usage
8 c8 p. k( T3 m# P# \0 Yprint(factorial(5))  # Output: 120
* H7 \) e3 e8 Z  \$ F
; \7 `* J- q# r" c  W# x% X: xHow Recursion Works
( C* c0 ~1 s* H
6 Y6 I1 L' u% C    The function keeps calling itself with smaller inputs until it reaches the base case.
6 Y3 \$ I* q8 b6 \' X+ t( ~. h9 z
  w8 w1 f4 V( }) m- x+ U    Once the base case is reached, the function starts returning values back up the call stack.4 R1 ?8 C7 B" y2 x$ I* w

* S, v$ X  L; i" C% `& B9 V" [/ i    These returned values are combined to produce the final result." O& x1 S% X' D- e/ p# V# K

7 Q1 n: e# q. Z/ L8 p3 sFor factorial(5):
7 F1 O& U! W/ ^7 K! L( @. C
: N9 u9 v) Y; p4 `
1 r" Z2 V: W" r) T% m% v  }* R- Sfactorial(5) = 5 * factorial(4); r9 L  V2 i9 N: t1 z
factorial(4) = 4 * factorial(3)
, I3 Y. H" f7 u: wfactorial(3) = 3 * factorial(2)& K; l1 J* |" v6 y
factorial(2) = 2 * factorial(1)
, }- ]: P3 [/ nfactorial(1) = 1 * factorial(0)# `) S" r  s4 _# g! L. Q& k3 J
factorial(0) = 1  # Base case
7 i9 b+ W- Q  D: b9 v
, \, x; |: }* z, o9 [, bThen, the results are combined:
7 }. [6 j+ n# a/ y0 F# t: W/ K* s. C, \5 @1 G, h

) F  J: C9 q9 l- ?, qfactorial(1) = 1 * 1 = 1
; |/ E5 P% e/ T- V' I8 c% `/ M6 Ofactorial(2) = 2 * 1 = 2
7 \  O) u* n! @( O# efactorial(3) = 3 * 2 = 6
4 c6 W2 P" b/ S  g. Sfactorial(4) = 4 * 6 = 24
+ }5 b9 p7 v( M. o+ r5 Zfactorial(5) = 5 * 24 = 120% g0 X5 {  r2 `) k7 W6 B, k" J

6 }0 K9 C+ e4 }$ r9 ^! BAdvantages of Recursion3 K6 b; F. C9 Y; [

1 d% z5 \! S! _* `0 @7 |    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).$ M& b* L. [8 }# F; J4 g. R
8 [9 H8 p4 F4 |# M
    Readability: Recursive code can be more readable and concise compared to iterative solutions.
! a- r4 L/ B! x; u  ^! V3 t- A' V" M' Y2 ?
Disadvantages of Recursion) X2 j; d3 S/ ~  ]) N5 d

* B+ W% F$ n. j6 s  z    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.9 a- F) h2 `  f
! J" A6 Y& T3 t+ Q( b: a
    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).$ g/ Q& ]! n9 H2 y. v  h
2 p( I. R' |' v, G/ L& x: s
When to Use Recursion
) Q7 ?1 y! W0 M- Q" g. n4 n, Z7 b) z: ^- \" x+ j
    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
+ I6 t* i7 Y+ q8 E! p. \8 W+ A1 c/ L" v' {6 ?8 k9 w4 }3 M/ k5 U4 a3 M
    Problems with a clear base case and recursive case.$ U% h# i3 G' N$ {4 q- n4 _

" W+ _+ Q: i" T, J8 W  A5 {. H8 fExample: Fibonacci Sequence: i) T; W2 |+ n& @

" l3 N" e* w, w4 R! z* t( SThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:5 G. M1 I! [& w: u% Q% q, ?
4 B3 B' X, d* [$ c: |
    Base case: fib(0) = 0, fib(1) = 1- u" f8 o2 |/ I$ L: N, V# i

6 |. ]2 ?7 U3 r& k3 r    Recursive case: fib(n) = fib(n-1) + fib(n-2)
+ |2 |: M5 j0 Q/ _+ `" C; {  C  Q, H/ ~3 ^4 z3 Z
python: t0 [' o7 N! X# t' V) s
) F( h# P2 u1 T2 z% _, g
1 ~. r) u; w8 Q1 G
def fibonacci(n):
2 p2 m) I% g2 |    # Base cases# R! B% u8 ~  @' W& A1 e7 W1 r; n- @
    if n == 0:+ J1 Q: Z3 h. U$ ~7 k
        return 0
7 V$ \) _) W) w, E1 t    elif n == 1:' V( W% T8 L/ d5 }# a+ g7 `
        return 17 m2 ?% w* s) W' N1 ?, D
    # Recursive case
5 n+ M* `6 B* [$ I" @    else:
; m4 h) Y/ h  ]$ a        return fibonacci(n - 1) + fibonacci(n - 2); V; M& {5 M0 s" N
! K& r0 s& G6 a. Z' }
# Example usage
* W5 g5 N1 F/ z. e2 k" Jprint(fibonacci(6))  # Output: 8
) ^1 X! h. b! k1 P4 z
1 {! c6 V8 L* _9 @, p) `  I' ~Tail Recursion
' N# O- U4 n5 q. B. }! A8 M) g+ {8 u* a2 l: w' I
Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).6 T4 W6 [0 z! q( b; Z+ J6 r% ~

: s4 Z$ Z' h" ?6 H& jIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://www.aswetalk.net/bbs/) Powered by Discuz! X3.2