标题: 突然想到让deepseek来解释一下递归 [打印本页] 作者: 密银 时间: 2025-1-29 14:16 标题: 突然想到让deepseek来解释一下递归 本帖最后由 密银 于 2025-1-29 14:19 编辑 ; H) d; t8 L/ y, C$ Z4 Y i, t! g3 |5 _% g- V5 x' F
解释的不错8 q& R, y- }( T- w6 _- M
% x4 d7 x& b4 _0 ?/ b4 C递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。 . w" u1 j( Z( [. r @5 a8 }9 p/ N1 v' x 关键要素* f- w W9 D) z" d
1. **基线条件(Base Case)**2 }; p6 F8 o1 n4 h! T
- 递归终止的条件,防止无限循环 3 ^1 Z) }# V- K2 Q - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1 X' q7 i+ u8 r A& i/ p
, }& `# ]! n2 P! m2. **递归条件(Recursive Case)**" D5 i U [4 p+ ~; @' ~2 m% S
- 将原问题分解为更小的子问题9 [) }$ B m) w- T. v
- 例如:n! = n × (n-1)! - ?+ @: {, e: a b. I( ~: \& l! g. @! d; J! V2 k% R3 \
经典示例:计算阶乘% {( [/ x1 o3 o6 s. W Y7 x* t
python+ U. ^, U5 b! X- ?
def factorial(n): 9 D8 F& d* x9 f6 ]0 J1 | if n == 0: # 基线条件 ! j$ n% J: m% ~. A* U! T return 1 * l7 i" ~! ]+ C. Y: d g else: # 递归条件# F2 m* }1 n" \) _8 j# c
return n * factorial(n-1)( L+ D! `5 i1 v5 f5 c1 H
执行过程(以计算 3! 为例):- w; N9 A; L3 B& Y" k# \6 P! e# I
factorial(3)/ j1 n( s5 u* ?4 d$ M5 u0 r
3 * factorial(2) - N. r1 K& T7 e9 }6 @! w3 * (2 * factorial(1))2 V; G- |8 k N6 u
3 * (2 * (1 * factorial(0)))' w1 u% N* g* B( l. h3 d2 m. x
3 * (2 * (1 * 1)) = 6" A5 O& V. K: D+ z- e
' |, `2 J5 P0 B! R
递归思维要点' x5 V' e* _" N$ c7 ]* L4 ~
1. **信任递归**:假设子问题已经解决,专注当前层逻辑 ; E: H6 `8 X w2. **栈结构**:每次调用都会创建新的栈帧(内存空间)7 H5 r- Y' ~6 p7 c& @# t
3. **递推过程**:不断向下分解问题(递); s: T) \" K! W! F8 f( ~# t2 w& V% ]
4. **回溯过程**:组合子问题结果返回(归)# ` ^, d9 c* X) v3 M
* B( p. E" x* H. y
注意事项 : G- Y5 J9 w/ w2 n: [" j必须要有终止条件 / E" ]# s! Z( N m& @' f7 D递归深度过大可能导致栈溢出(Python默认递归深度约1000层); m/ L/ z- a$ g& w1 }
某些问题用递归更直观(如树遍历),但效率可能不如迭代+ b1 Q3 j' S$ Z' P; n" B
尾递归优化可以提升效率(但Python不支持)+ j$ ]6 Y. f% o4 L9 e
; \0 n2 \$ F+ l V) g 递归 vs 迭代/ G0 o) Y6 e/ L5 F7 P( M# B* h
| | 递归 | 迭代 |: T( X7 s, r4 z! t5 z; E
|----------|-----------------------------|------------------| : k2 A Z- @/ B C| 实现方式 | 函数自调用 | 循环结构 | 5 Z* p# K& D5 e: ~" T| 内存消耗 | 需要维护调用栈(可能溢出) | 通常更节省内存 |$ J" k2 U0 ? C' } b1 s
| 代码可读性 | 对符合递归思维的问题更直观 | 线性流程更直接 | 6 f) m" L, | g4 K| 适用场景 | 树结构、分治算法、回溯问题等 | 简单重复操作 | + U) a2 U! E- f3 t: I* m1 r * Z7 @$ A2 d- f3 R 经典递归应用场景 + `( J" f9 C1 \! W/ F! D1. 文件系统遍历(目录树结构)8 L! o1 P% ?$ o9 Z1 w" B
2. 快速排序/归并排序算法 / }, _" y3 z8 M- P3. 汉诺塔问题3 G% o. L8 G( ]1 l
4. 二叉树遍历(前序/中序/后序)& \, P9 |5 x+ _4 ^ o `: _2 {
5. 生成所有可能的组合(回溯算法)& ~ O" q0 c" [! D. Y2 b% M# {# |
8 _% S6 _8 \9 V# A; k7 P, L% m
试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。作者: testjhy 时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,+ k& H, ^5 @' s/ V
我推理机的核心算法应该是二叉树遍历的变种。" k0 Z% `2 j2 n p, R! j. Y
另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。作者: nanimarcus 时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation: % a* V6 J: Y8 J/ K, h0 uKey Idea of Recursion# f7 S$ Z2 ~% y3 |; u, P$ _
( r5 T* g/ W7 H* N/ G3 G. L0 B
A recursive function solves a problem by:! h n; u, L+ x9 [) D& z2 o
8 C) k0 K6 L1 w Breaking the problem into smaller instances of the same problem. % x$ N! y3 J% f' o2 _7 l2 R7 g% r7 B/ ]1 L7 U2 Q- _: V; m: x5 N
Solving the smallest instance directly (base case).2 j+ X z# w$ e- R" ~- ~6 W+ N5 P
0 b/ Y1 f" T0 Q3 }/ ? Combining the results of smaller instances to solve the larger problem. 0 L9 r4 ^- Q6 x" l' X+ }1 K$ R }$ V2 k+ f/ Z6 u2 W
Components of a Recursive Function # D& q9 I _' N8 X 5 O9 J4 l* T+ [ Base Case:/ q6 y% X! b5 P2 w
( }. W& @7 @) {7 G; i( Q This is the simplest, smallest instance of the problem that can be solved directly without further recursion. 8 _) f( |6 @5 i: d9 w H# [4 ^: }: I, @1 c1 c+ H0 r9 a( h3 ]4 B
It acts as the stopping condition to prevent infinite recursion. 4 B) r* f/ b. E! m& G/ K' i" M0 u$ e. _7 w% I
Example: In calculating the factorial of a number, the base case is factorial(0) = 1.3 m' @$ E- D1 L$ e- |" M
# [9 D) ]% i9 Q( c( i Recursive Case: Y0 k- ^9 J- t6 Y+ n3 _' N7 K n0 D+ H. l% `2 y+ E
This is where the function calls itself with a smaller or simpler version of the problem.7 i( k% l; I# n1 J E
% Z6 h% w7 A9 [! J* p' u
Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1). 2 ], }# L6 i4 I) ^- Q: k8 g 0 }0 T% Z. X, f% ^! Q) LExample: Factorial Calculation; |4 {* ~3 b2 K9 s% {( u9 Z
) n2 z$ K4 D: \: \
The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as: |, g6 }+ P$ g) {5 b& q
; v7 [$ F4 S( D- I8 S2 JHere’s how it looks in code (Python):% R0 _ w# t) A" ?) Y6 v
python ! K, B7 M/ ?7 @$ W: }3 Z+ U& C / i8 ^' F9 M0 \& A % F2 U4 f8 v8 ~ Qdef factorial(n):8 f: W9 v [7 {5 g
# Base case ) O8 n' [2 u4 } if n == 0: , e4 x7 d' y( R( V9 U9 B. a2 `. \ return 1 + P0 B x0 f4 O0 K! J2 p # Recursive case1 R/ Z+ ^ ^" Z; F
else: ) E T. K9 o/ e' l) E2 t! ^ return n * factorial(n - 1) : Y0 G ?$ k/ v( a& R* W% R8 Q) a. ^9 Y7 J
# Example usage 8 c8 p. k( T3 m# P# \0 Yprint(factorial(5)) # Output: 120 * H7 \) e3 e8 Z \$ F ; \7 `* J- q# r" c W# x% X: xHow Recursion Works ( C* c0 ~1 s* H 6 Y6 I1 L' u% C The function keeps calling itself with smaller inputs until it reaches the base case. 6 Y3 \$ I* q8 b6 \' X+ t( ~. h9 z w8 w1 f4 V( }) m- x+ U Once the base case is reached, the function starts returning values back up the call stack.4 R1 ?8 C7 B" y2 x$ I* w
* S, v$ X L; i" C% `& B9 V" [/ i These returned values are combined to produce the final result." O& x1 S% X' D- e/ p# V# K
7 Q1 n: e# q. Z/ L8 p3 sFor factorial(5): 7 F1 O& U! W/ ^7 K! L( @. C : N9 u9 v) Y; p4 ` 1 r" Z2 V: W" r) T% m% v }* R- Sfactorial(5) = 5 * factorial(4); r9 L V2 i9 N: t1 z
factorial(4) = 4 * factorial(3) , I3 Y. H" f7 u: wfactorial(3) = 3 * factorial(2)& K; l1 J* |" v6 y
factorial(2) = 2 * factorial(1) , }- ]: P3 [/ nfactorial(1) = 1 * factorial(0)# `) S" r s4 _# g! L. Q& k3 J
factorial(0) = 1 # Base case 7 i9 b+ W- Q D: b9 v , \, x; |: }* z, o9 [, bThen, the results are combined: 7 }. [6 j+ n# a/ y0 F# t: W/ K* s. C, \5 @1 G, h
6 }0 K9 C+ e4 }$ r9 ^! BAdvantages of Recursion3 K6 b; F. C9 Y; [
1 d% z5 \! S! _* `0 @7 | Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).$ M& b* L. [8 }# F; J4 g. R
8 [9 H8 p4 F4 |# M
Readability: Recursive code can be more readable and concise compared to iterative solutions. ! a- r4 L/ B! x; u ^! V3 t- A' V" M' Y2 ?
Disadvantages of Recursion) X2 j; d3 S/ ~ ]) N5 d
* B+ W% F$ n. j6 s z Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.9 a- F) h2 ` f
! J" A6 Y& T3 t+ Q( b: a
Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).$ g/ Q& ]! n9 H2 y. v h
2 p( I. R' |' v, G/ L& x: s
When to Use Recursion ) Q7 ?1 y! W0 M- Q" g. n4 n, Z7 b) z: ^- \" x+ j
Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort). + I6 t* i7 Y+ q8 E! p. \8 W+ A1 c/ L" v' {6 ?8 k9 w4 }3 M/ k5 U4 a3 M
Problems with a clear base case and recursive case.$ U% h# i3 G' N$ {4 q- n4 _
" l3 N" e* w, w4 R! z* t( SThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:5 G. M1 I! [& w: u% Q% q, ?
4 B3 B' X, d* [$ c: |
Base case: fib(0) = 0, fib(1) = 1- u" f8 o2 |/ I$ L: N, V# i
6 |. ]2 ?7 U3 r& k3 r Recursive case: fib(n) = fib(n-1) + fib(n-2) + |2 |: M5 j0 Q/ _+ `" C; { C Q, H/ ~3 ^4 z3 Z
python: t0 [' o7 N! X# t' V) s
) F( h# P2 u1 T2 z% _, g
1 ~. r) u; w8 Q1 G
def fibonacci(n): 2 p2 m) I% g2 | # Base cases# R! B% u8 ~ @' W& A1 e7 W1 r; n- @
if n == 0:+ J1 Q: Z3 h. U$ ~7 k
return 0 7 V$ \) _) W) w, E1 t elif n == 1:' V( W% T8 L/ d5 }# a+ g7 `
return 17 m2 ?% w* s) W' N1 ?, D
# Recursive case 5 n+ M* `6 B* [$ I" @ else: ; m4 h) Y/ h ]$ a return fibonacci(n - 1) + fibonacci(n - 2); V; M& {5 M0 s" N
! K& r0 s& G6 a. Z' }
# Example usage * W5 g5 N1 F/ z. e2 k" Jprint(fibonacci(6)) # Output: 8 ) ^1 X! h. b! k1 P4 z 1 {! c6 V8 L* _9 @, p) ` I' ~Tail Recursion ' N# O- U4 n5 q. B. }! A8 M) g+ {8 u* a2 l: w' I
Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).6 T4 W6 [0 z! q( b; Z+ J6 r% ~
: s4 Z$ Z' h" ?6 H& jIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.作者: nanimarcus 时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。