爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑 9 v9 x- C* i6 E) _

/ g; D: T1 e0 R" E6 h2 X+ R* p解释的不错
, a5 n. ?% a$ |! m2 `1 X. k& }% q3 `. X( _$ \( g
递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。+ H, H1 E' ?8 `' {' j

. ~" Z( w  d+ X% y! J4 @ 关键要素; j. K' Y1 `% U) @+ K
1. **基线条件(Base Case)**
8 w. |" l8 L1 A( [- X/ Z2 d  P   - 递归终止的条件,防止无限循环# W3 s  N; }' ]. b6 y5 d( O: \6 j
   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
- v' P/ E# A0 n1 @9 G7 D
- D  }8 t$ }3 }) M5 K9 \! j$ G2. **递归条件(Recursive Case)**
- @4 X4 R4 J3 N; Z3 y' Z3 Z   - 将原问题分解为更小的子问题
& t% s9 D; Y3 [5 N( ]# F   - 例如:n! = n × (n-1)!! E) ~' E7 r$ z* N6 h2 k# h
, K9 l* c0 Y% I, C8 I( Q) t  e
经典示例:计算阶乘
, R2 f' L! G, d4 tpython. K2 Y% |7 U3 B8 ^8 v
def factorial(n):
' h3 ?0 F  [" @, `    if n == 0:        # 基线条件
- N' G; Z. M4 o1 J4 ~" T        return 1
2 M. d) T5 ?6 d; c    else:             # 递归条件4 w0 D& j! s8 h, _: }
        return n * factorial(n-1); \2 E  N  z6 F7 K* P7 j, z/ t2 ^
执行过程(以计算 3! 为例):0 R4 O9 u9 }4 Y0 E6 C2 W3 q
factorial(3)
) P' X  ^! |* X0 D5 t3 * factorial(2)
9 z) a6 e* W; X3 * (2 * factorial(1))
3 q+ Z  p6 S9 Y: {2 E3 * (2 * (1 * factorial(0)))
1 c* L4 R$ S+ B* Q* v# {3 * (2 * (1 * 1)) = 6
" Q) y: ~5 Z( d2 }' Q% `  V/ U/ K( i
递归思维要点
2 n4 |0 f* L4 P1. **信任递归**:假设子问题已经解决,专注当前层逻辑0 z: P$ m! p4 R% e& E, w
2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
% J/ C- U! Y& O1 t: b1 R7 E8 k% v" r& F3. **递推过程**:不断向下分解问题(递)
7 }3 |+ a) L) u) N& m  ?; ]& z4. **回溯过程**:组合子问题结果返回(归)- e  U- s5 u; Q$ x7 r3 ?

% v. Y1 I' E; Q1 _8 t' y' |, ? 注意事项9 n! y" L1 J. ^+ B) o1 n
必须要有终止条件/ R. v+ D1 _) V: M3 L$ T
递归深度过大可能导致栈溢出(Python默认递归深度约1000层)  L3 i$ t9 y" H- s" T) F' _
某些问题用递归更直观(如树遍历),但效率可能不如迭代' g  q* Z' ]! v# S' g% x/ ~
尾递归优化可以提升效率(但Python不支持)
; ?1 m6 z8 E+ I7 P% v8 p, R0 d; z. B5 u5 J6 ]7 `5 `
递归 vs 迭代9 G' B/ R+ c! U6 b
|          | 递归                          | 迭代               |
# E4 {- w0 B/ c% u. V7 a|----------|-----------------------------|------------------|
* ^) |' h; T: z2 `$ B; s3 X$ p| 实现方式    | 函数自调用                        | 循环结构            |$ l% \& ^/ h2 ~9 h
| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
* J* M9 z( A5 |$ @: d6 A- ]| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |# F& ^2 c# Y1 C# m2 l0 l: f. O
| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |! p" Y5 V6 i# P# k7 P7 \
9 t; X* z. A6 [7 J. I, Q
经典递归应用场景! n, {( L3 j" E' ?" y4 c9 {* a
1. 文件系统遍历(目录树结构)
# E! G" l. U% q, ^2. 快速排序/归并排序算法
3 r4 Y. ]9 P1 R3. 汉诺塔问题
& j, J; [; e1 z6 |# F) b0 n% ]4. 二叉树遍历(前序/中序/后序)1 k, [. |9 a: `! @- x  N3 M2 Y
5. 生成所有可能的组合(回溯算法)2 @! m# D% x* m2 k4 s7 W: Z

5 H% @# ?9 m  z% \: _, K试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,! h+ j* x" S6 L1 M
我推理机的核心算法应该是二叉树遍历的变种。' j1 t2 k* N3 V, D$ ?
另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
4 {5 D9 i( p. t  G! n4 gKey Idea of Recursion! _- c6 S7 R' v; Y; v. ~3 P- ~
% y. h3 q- Y4 u1 m  ], Q& Q
A recursive function solves a problem by:
- q' w& _/ n/ v* E% @% ^( ^9 _8 c3 b6 j7 j# c
    Breaking the problem into smaller instances of the same problem./ ]( x% a) J; o) W! \; O

/ c% W0 t% y$ K2 T0 y6 _  e    Solving the smallest instance directly (base case).( [6 |6 X5 ?5 {+ O

8 C; F; N/ C$ |7 X# F    Combining the results of smaller instances to solve the larger problem.+ B5 P  k2 R" {; a! y9 N& h. S, _
% A' {8 h4 E7 f/ L" i* ~8 ?
Components of a Recursive Function
& B8 X" T* g0 \" L) b8 F8 I
. J! W( u' e5 u6 U% s) y    Base Case:
. w9 D% D. u1 V: y1 `
6 e6 P- a. y+ E* r! m        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.- M3 B1 o. B$ J* `9 N8 _
& B: g9 y2 i! O7 U/ H
        It acts as the stopping condition to prevent infinite recursion.; s- W0 b/ r/ P8 R  j* Z4 d

+ g! k' _+ F/ K: m8 b/ F7 M+ e        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.' s1 q& B5 \4 ]: ]- q
5 }9 a" i1 E# h0 s( \
    Recursive Case:: y! y" l; J7 _4 W0 i. u2 I) a
7 i% v& f/ ]2 S' D6 d1 r# h
        This is where the function calls itself with a smaller or simpler version of the problem.% g! F, ^; ~4 G( l8 I8 ]2 y
. v( w  y7 H% Z; U1 X
        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1)./ n6 e! T9 B3 N' }, W
4 v3 f! G: Z% t" ?
Example: Factorial Calculation9 }+ n; {! K0 E

- @3 K  Y8 l. P7 i* zThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:! l$ A$ i, J. i' j9 h( u

9 W0 l; ?: ]% E, f2 w/ B2 F    Base case: 0! = 1
# K  \' a" f; Z1 O1 R: q# A: k; w9 U* i, d
    Recursive case: n! = n * (n-1)!
0 e* r6 ^1 A; K  }0 P4 x' H1 j. A0 ?( h$ a7 N
Here’s how it looks in code (Python):0 V' @9 w4 i$ z$ c* t! `: p
python
, ~8 C$ M: \. ?" o. r
, J) f/ [: h, m1 t) g
9 O/ y$ y9 }/ \1 J" ?6 c5 `def factorial(n):# I( f% b2 J. K; V: {" D+ A5 l  A
    # Base case
" T# }/ p# Q* m+ n, H# P    if n == 0:
$ I( O# Y2 N  C+ l. ]; p6 I        return 1
$ g, @+ k, W" f1 x+ c    # Recursive case0 |0 n  P8 m% v' v' l+ k
    else:
$ \- i/ I" V6 g8 I! M        return n * factorial(n - 1)8 Z0 s$ p) ^4 D, h% V* k* }5 v

: Q8 K6 d; o8 o- {# Example usage- m+ Y8 Z% c  _4 E& D$ T9 N- X) {
print(factorial(5))  # Output: 120
, o) {: k6 ~! [
/ J- J8 e3 s1 d# J" g1 pHow Recursion Works4 w8 h5 y* S. m: V( D# \
( s1 ^1 S9 w( q, f! a9 Q+ ^' g
    The function keeps calling itself with smaller inputs until it reaches the base case.  g0 }$ c: _& `5 I3 m$ L) a
/ U0 d& J' v# D, D4 l2 O' Z: O
    Once the base case is reached, the function starts returning values back up the call stack.
: z. |$ v( R% V. b# u4 X8 M2 ^6 q5 F8 b/ A' j- z' ^
    These returned values are combined to produce the final result.
/ l  o: R" w' j/ q! L, E) i8 |& C9 b% u0 C
For factorial(5):
6 u8 c( A8 v! T: o0 Q/ Z  D; z' h
1 {: W% g- U6 C; C: ?: O7 q) Y) k! W
factorial(5) = 5 * factorial(4)
6 ]! ?6 k5 b4 x6 ^+ pfactorial(4) = 4 * factorial(3)5 D) j' h" N3 z5 ?. g2 o+ P& l, \
factorial(3) = 3 * factorial(2)+ |" u: o' X5 _( H8 ~' O
factorial(2) = 2 * factorial(1)
$ o8 o' _6 J8 @' v, B! Xfactorial(1) = 1 * factorial(0)! Q. `. q  E( w2 Y: y  F& E
factorial(0) = 1  # Base case0 Y" G6 ?  s. n! H+ F4 B3 a' v8 L

7 C( \4 ?- e" q- {" `, T9 K9 d/ ZThen, the results are combined:% u7 @  y- k# [/ d( W- o
6 d2 |4 O* e- ?% G+ i1 x
" B6 s! p( B1 P- Z4 ?7 R7 z3 @
factorial(1) = 1 * 1 = 17 ?7 D. r2 h) L) X& {
factorial(2) = 2 * 1 = 22 u/ W# B* F% ?
factorial(3) = 3 * 2 = 6
+ ]8 N% |6 U) Y: dfactorial(4) = 4 * 6 = 247 r2 V% ]+ l# U% |4 E/ m% t
factorial(5) = 5 * 24 = 120/ E# D4 C+ ]5 ~5 N+ f: q

$ ^8 n. u! z* j  U9 ?1 zAdvantages of Recursion
/ a/ J# ^! z! W
5 {' N" a% a0 a    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).) _: V: Y4 n5 n' g
+ h, R; Z& {+ G. r, R
    Readability: Recursive code can be more readable and concise compared to iterative solutions.
1 f! X& x! y# z1 p* `& J. x/ j6 o& V7 F# x* |* [6 n+ T  t( P5 m
Disadvantages of Recursion' |* M3 {: H  P$ P/ E+ C
: x: h2 A$ A1 |: B2 H9 V/ C: K& D
    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.. w) f/ L- W& \0 l
. ?. M$ d& _1 z
    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).6 C  `$ Z) Z! O

, J, h, w# M6 x. C5 N7 M5 gWhen to Use Recursion
& L- G- r# i) ]* e. V- a; h
) o2 ^* i2 y+ ]! X1 S    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
; F* _5 ?* ^! O7 X" X. {. w' ^, m: S
' m* \/ I" q* U0 ?    Problems with a clear base case and recursive case.# `# |, \; b2 R7 j$ F% Q
  A. U" U( S7 D& ~7 ?
Example: Fibonacci Sequence5 t( k2 E9 K& `$ ^& l! o3 F- W

1 M$ ]2 h& G+ t* E! GThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
! m' M* G( v2 |. u" X; ^
6 E2 l6 a: e8 P5 I8 j3 Y    Base case: fib(0) = 0, fib(1) = 19 _% R7 I/ w) [6 ]
8 R$ f( m! W6 O8 k
    Recursive case: fib(n) = fib(n-1) + fib(n-2)
  H1 {$ R, x* H  R" c+ t3 ?, e0 [2 v9 U  F% s/ F1 ^
python
9 @" j& L! U0 G
* ?) Q2 U- C0 M# _8 Y; v9 j6 A0 b  Y+ `- H
def fibonacci(n):: {7 V+ u; o& ]& w! t: {1 \
    # Base cases
% E: o- Q) P! E) I' i9 l    if n == 0:9 D/ g) L3 d3 l* f
        return 0( b  J# U" ?4 n) l/ O8 k  X, n+ v
    elif n == 1:
2 @1 n+ |4 ~3 L  N4 e; n% R8 U        return 1& A) O  T' b% h" I  L( Q) y
    # Recursive case
4 m4 J) v/ u; X+ t    else:
8 g0 r6 B0 Q9 l, _' P5 B        return fibonacci(n - 1) + fibonacci(n - 2). t) p1 C7 e  {

+ S# K: ~* m' N7 F& Q: V  f# Example usage
2 |1 b- L7 B0 M- Y. F8 A; Hprint(fibonacci(6))  # Output: 8
* b- |# F, X% r) |( J3 h9 X! }8 ]2 B# @  d- f  L  U' V% E, o; Q
Tail Recursion
+ p5 O$ A  }& g3 y
  k3 T9 i1 f, u' H  e  XTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).4 r5 x6 c3 r" H( i9 Y9 z
9 g' S1 `% {% t' n6 K% f9 A
In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://www.aswetalk.net/bbs/) Powered by Discuz! X3.2