爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑
4 Q5 u: k+ G  `
' l6 q' K+ e, `$ p. e; H解释的不错
# `/ P1 c" r6 a
2 l7 Z" r+ r, t+ R递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
1 y6 j( z' ~0 C- r: @9 x
6 `1 `& i# K$ _( i" y1 G3 W. p' f 关键要素
* O. H) m. m: ]1. **基线条件(Base Case)**5 l1 s8 r% x1 Q, |, l" _
   - 递归终止的条件,防止无限循环) z' {5 }  K6 l2 [
   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 12 n1 m- Y6 x/ @6 z6 F

5 d% d' B( j# N, f: R- e5 ~2. **递归条件(Recursive Case)**5 v9 x5 L5 E/ N7 Q0 c5 D
   - 将原问题分解为更小的子问题% X5 C( O* U! d# f" s( _+ c3 ]$ O8 s
   - 例如:n! = n × (n-1)!, V' ^% |% z9 i4 t5 w* Q

. Q6 l/ |% [! ~( i1 F' Z* y! M 经典示例:计算阶乘
) e: l7 v1 T9 [7 s1 B5 Fpython
! n3 W2 }  A! ]( F) Udef factorial(n):) U# l, {% {/ q! a) ]
    if n == 0:        # 基线条件. j. ]) l% T3 l2 d
        return 1; c9 \2 o0 K+ p# D2 C! x
    else:             # 递归条件
+ H' N% j% Z4 a' _2 J' P7 y: M        return n * factorial(n-1)
. P: ~& a+ z/ u5 m; K$ q执行过程(以计算 3! 为例):! m- q7 z% ?0 u! T& S
factorial(3)- [! {! a7 A# C6 T$ J
3 * factorial(2)
8 N; o% _+ g; j3 * (2 * factorial(1))
1 n4 U3 ~! Q& F9 ]6 k3 * (2 * (1 * factorial(0)))( B+ Q& }$ H' s
3 * (2 * (1 * 1)) = 6
% H# H0 ^; Q0 A: A! |9 ]  C. r+ ~4 m% ~+ u* _
递归思维要点7 t8 T# K8 H7 m4 d
1. **信任递归**:假设子问题已经解决,专注当前层逻辑& n5 L3 z+ n0 h( j4 c9 _
2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
* H9 |% P9 v. p1 U+ s3. **递推过程**:不断向下分解问题(递)! k- X- R7 ]: m
4. **回溯过程**:组合子问题结果返回(归)* B: U5 E4 @9 P' a' A
, D4 F6 I9 [4 Z) Q6 Z2 r: S* k0 M; W
注意事项
. B7 F1 A) k7 c& z2 E3 B) Z: v必须要有终止条件
. m5 i4 w6 C6 V, h/ {( ]1 L2 P递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
  |1 J0 M8 \' t4 O" T某些问题用递归更直观(如树遍历),但效率可能不如迭代
+ G% D- G# @. B  q4 t尾递归优化可以提升效率(但Python不支持)
2 [+ C/ V* [# Y( m7 `9 j3 m- f7 q! T
) |6 ~$ S6 J, D$ o1 W( d0 w( \ 递归 vs 迭代
( h" G6 E; H' \7 C) N4 N" _) G|          | 递归                          | 迭代               |6 M1 H$ d0 m) n
|----------|-----------------------------|------------------|
1 Y! [( G/ x3 ?0 `| 实现方式    | 函数自调用                        | 循环结构            |1 @* W. c+ @% q: R) ?
| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |$ y- s8 P$ x7 l1 F6 r
| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
0 e% p9 i- K7 ]( a| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |1 F% {0 b4 e" T, k9 a0 H( E
) X( b& H0 h& b. [# p: k
经典递归应用场景
3 t5 v8 y9 S/ z: S  \  A6 H( V0 n! |5 ~1. 文件系统遍历(目录树结构)
9 K# _8 R# H, K2 i2. 快速排序/归并排序算法
6 ~# z7 s- R% J3. 汉诺塔问题
0 f" q) j3 P  X  ?% f( m4. 二叉树遍历(前序/中序/后序)
5 }+ k' `5 H* Q8 @5. 生成所有可能的组合(回溯算法)5 [( @4 |# K: W& b# \7 [, x% z
" P/ N4 p. r3 T* Y( J
试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
1 M1 d8 f; s, X  i% c: N# Q我推理机的核心算法应该是二叉树遍历的变种。
8 A6 @8 R8 `5 c% K3 |; H另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
0 V. F6 n" e" x! Q, U3 [- \7 ?2 w, FKey Idea of Recursion3 ~9 c' g  n; b  [

& j. ~$ D, Z2 Z" G9 JA recursive function solves a problem by:/ c# K/ E; W( B" J
% ~: a% D- _: l0 F) C9 E9 c: R
    Breaking the problem into smaller instances of the same problem.+ l- M! e' r8 ]/ [
/ u+ w/ ]  {5 C) W2 F
    Solving the smallest instance directly (base case).2 L. }4 b9 q$ ]) Y% [; k# P
) Z  [  m& h, K% J$ C6 K
    Combining the results of smaller instances to solve the larger problem.  n# i8 _6 A, e' y  T
% m2 V: [% H) P; z9 n- ]3 B2 v
Components of a Recursive Function5 S" i+ V  p2 B' p* f$ A

& g! Y  |% Y6 V' D    Base Case:
9 \; q8 ^# L, h/ p3 X
, Z0 ^3 f; a% B& r        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
. X: s8 p  F2 b. p6 K0 s2 U
: ^+ l' n" V+ c; @" P# e0 s        It acts as the stopping condition to prevent infinite recursion.+ v, k2 a; F1 |& J7 B( F
4 a( o. G' v/ [# s) d
        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
1 R  ]. U+ T( L8 Z) u3 I
% Y! Y1 @0 g) E8 I8 s6 H0 E9 m    Recursive Case:
! R& [& `+ V) _9 v1 p4 b; i4 j. |% C6 P5 F, m3 @$ C
        This is where the function calls itself with a smaller or simpler version of the problem.
# h/ |; p# Q, j& q$ Z
" z9 a: V0 x+ x        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
  A) ]. S+ B2 |( {# ]7 I' w( R7 O$ d  B0 l4 B/ n
Example: Factorial Calculation/ j- ^1 d/ M: j5 j6 O) ^  ~8 L

1 }# _' J7 j+ XThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
; Z# _3 h8 o( L" B* U  a& d0 y, w
    Base case: 0! = 1: t0 W# B  |, N5 K* U. J

! ~/ [: H+ \9 D' ~2 Z    Recursive case: n! = n * (n-1)!
0 h+ w9 {" q; L+ ]  s: E* X2 r+ H) R4 e) t
Here’s how it looks in code (Python):8 e" O0 V6 O$ B$ S9 |# ]+ L# J) O
python
: i8 d7 c/ z* |$ E
* z3 c, h( j  r; S! B+ {6 E" c( i
def factorial(n):' N% e( I9 g7 n
    # Base case
  t; T* O$ d# [) ~: S  O    if n == 0:
9 n- Y5 N: k' ?9 `/ K+ m! m- V        return 11 I, u9 ^4 O0 }. M( h" B1 E; y& b
    # Recursive case( c/ [# C3 V+ Z4 x5 r4 e
    else:
6 c4 E) }. c0 h9 a1 X! T8 `        return n * factorial(n - 1)
2 b1 ~) Z* t/ `: D) c  U/ ]/ i0 h9 Z; t
# Example usage/ b/ f. A4 |# r6 j9 d5 r& ?; G
print(factorial(5))  # Output: 120, F5 i6 v$ }4 w4 r# M  M

6 W. i8 D: S) M. wHow Recursion Works- ^) E2 C6 P0 t8 D2 {4 c1 n

7 _/ D% O/ p  u  z    The function keeps calling itself with smaller inputs until it reaches the base case.  x( _' }* ~* J9 s) h

. O9 E- S+ ?* p" ^    Once the base case is reached, the function starts returning values back up the call stack.
; j& \8 D5 N* a' X5 E4 B7 O  Z' o4 w$ ?! y
    These returned values are combined to produce the final result.+ [9 i7 Y9 V  J: u; U1 i7 @

2 R) n) T$ ^3 |* \) g1 qFor factorial(5):
1 x  J  x9 |7 j( x, M& r* R' ]- V' j6 _  z& @

% ^+ t4 \' t  I1 z* d# mfactorial(5) = 5 * factorial(4)# M# ^2 |4 @7 R7 U, F8 v
factorial(4) = 4 * factorial(3)
2 w, E9 R$ ]4 v' k2 s2 hfactorial(3) = 3 * factorial(2)
% N( J" A8 [7 r- F& X- I% wfactorial(2) = 2 * factorial(1)
$ x1 [( B) s: `' B' ofactorial(1) = 1 * factorial(0)
- S! |1 b' N2 ]factorial(0) = 1  # Base case5 b5 r  r4 H9 A" H2 V" s

$ {' r0 E. z/ G* h# Z" y( c# HThen, the results are combined:
& b6 i0 M: h1 @6 G9 B7 ~8 ^3 p  q( x  l% ]5 Z

3 Z; a1 ], H* U8 q: Pfactorial(1) = 1 * 1 = 1
: g1 D9 C- s3 f' G( z  Afactorial(2) = 2 * 1 = 2/ s/ q, j- Z7 P- N3 x4 S
factorial(3) = 3 * 2 = 6
8 l# x$ O$ |# M& u5 lfactorial(4) = 4 * 6 = 24
* X; i6 `% P1 _0 qfactorial(5) = 5 * 24 = 120
/ u  X. g# ]" B- ]6 m
8 ]3 i4 Z% R3 j4 z1 ]' {5 jAdvantages of Recursion' c" A3 L. q& D2 C
6 {' O& l0 g$ J0 ?# @5 h
    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).9 I* ?5 ~& b8 {$ V+ H

+ `. ?7 ]/ N/ h" A& Z. k! U    Readability: Recursive code can be more readable and concise compared to iterative solutions." T2 w2 V, B4 ]
2 n; `2 O. N5 Q1 U3 n
Disadvantages of Recursion& x/ m# _3 j' x* o& z

% q+ g) n2 ?2 ]8 F% k# I* L    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
- c# w; w- G2 d, Q/ }$ `: j, L" W$ N
    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).' }3 y% Q% p0 k

" e! ~, Z9 s& m, ^$ w% ~; V! |4 gWhen to Use Recursion$ ~: G$ a2 P7 ~, \

9 W; ^; \4 s4 F, q  w& X8 B    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).% j, \% G+ j1 }# m
1 j0 j5 U& R' @8 Y1 ?; x. {- @7 }
    Problems with a clear base case and recursive case.
( D  G; Y' }5 y
. d! I2 T/ |3 t3 s& e8 yExample: Fibonacci Sequence
' \8 G' X9 h4 E8 c1 Y8 r1 P
$ Y' j% Z: d3 f1 e/ }. ~The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:" W3 g( q) w0 C; P0 R9 T" ]
2 v& y7 @; I0 k, H) k  e
    Base case: fib(0) = 0, fib(1) = 1. J5 M4 ]/ f2 s/ {; `/ t

# s5 a' f& v7 k9 ^/ {1 N# I    Recursive case: fib(n) = fib(n-1) + fib(n-2)% l8 ~+ T! N: E1 Z$ o# ]' l% f
0 D) I5 ^) N1 W+ ]  |
python
. o& y' \$ E  s5 o7 l6 z1 z+ w
" `7 m9 i% M3 T7 P0 V# [. e' l! J- S1 v' O9 p1 \+ l
def fibonacci(n):
. x: i& ^0 E" ~& }8 w    # Base cases
% D' x) j1 V# b5 z9 j: U0 O3 T9 Z    if n == 0:+ U7 U* V. d) \" G& t# F
        return 0
$ N4 N% w9 `- @    elif n == 1:* _; f3 J: \+ |
        return 1
' M: E  m4 k2 O* k+ B0 I    # Recursive case
8 V8 `2 e2 E2 C: ^# x    else:8 L" ?7 ~" o; K. z+ h6 x% ^
        return fibonacci(n - 1) + fibonacci(n - 2): X& }- F+ ]; `$ F9 K2 V1 Q4 n, D6 h, L
1 d& s% j3 T6 a' h0 e) m
# Example usage, p+ d; n$ g3 U
print(fibonacci(6))  # Output: 8: [& P9 l- ^7 l  R3 }

# }" R4 E, e* Q4 C' G6 I# }% JTail Recursion
3 L" o: w  j5 n6 ~$ {9 Y+ t  d: P
Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).5 E% M3 L' u3 _7 L
! ?- d1 W0 N" l5 I1 W
In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://www.aswetalk.net/bbs/) Powered by Discuz! X3.2